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ABSTRACT

This study outlines the general performance of two different simulation-optimization (S/O) models developed to
examine the capabilities of the new proposed management scenario to control seawater intrusion (SWI) in
coastal aquifers. In the first S/O model, a finite element (FE) simulation model is directly linked with a multi-
objective genetic model. In the second model a trained surrogate model is linked to the same optimization
model. The simultaneous abstraction of saline water near the coast and artificial recharge of treated wastewater
into the aquifer are the main principles used in the proposed management scenario. The recharge is implemented
using a surface pond and therefore unsaturated flow theory is utilized in the simulation. The objective functions
include minimization of the total economic cost of the management scenario and also the minimization of the
total amount of salt in the aquifer. The results show that implementation of the surrogate model in the S/O
framework results in a significant reduction in CPU time.

Keywords: seawater intrusion; coastal aquifer; simulation-optimization; EPR

1. Introduction

Saltwater intrusion is a common contamination problem in developed and urbanized coastal areas
especially in arid and semi-arid regions of the world. In critical cases SWI may be followed by
abandonment of production wells of freshwater, human health problems and damage to natural
ecosystem [1,5]. Therefore, appropriate management strategies should be implemented to control SWI
with acceptable limits of economic and environmental costs. In parallel with raising awareness of the
concerns on management of coastal groundwater resources, there has been a growing need to find
optimal solutions for controlling the SWI problem. The problem is a multi-objective optimization
problem that aims to find the trade-off relationship between conflicting objectives. In the early stages
of this advancement, different linear/nonlinear programing optimization tools were incorporated with
simulation models. However, the problematic features of the traditional optimization techniques in
attaining the correct optimal solutions for multi-objective complex problems have triggered the
demand for innovation and use of other types of optimization tools such as evolutionary algorithms
[5]. In the S/O process the numerical simulation model is linked with a chosen optimization model. In
cases with computational complexity some works have attempted to link surrogate models with the
optimization algorithms. A recent review of the research efforts related to the application of S/O
modelling in management of SWI in coastal aquifers has been presented in [2] and [4].

This paper presents the development and application of two S/O models to assess the efficiency of a
new management method for controlling saltwater intrusion while satisfying water demands, and with
acceptable limits of economic and environmental costs. The first S/O model (FE-GA) is developed by
direct linking of a finite element (FE) simulation model with a multi-objective genetic algorithm. In
order to reduce the computational burden the numerical simulation model is replaced by an
Evolutionary Polynomial Regression (EPR) based surrogate model in the next S/O model (EPR-GA).
A comparison is made between the capabilities of both schemes in capturing the optimal results in
hypothetical coastal aquifers.



2. Evolutionary Polynomial Regression (EPR)

EPR [7] is a relatively recent hybrid data mining method that integrates the best features of the
conventional numerical regression with the effectiveness of genetic programming. In EPR, the created
models are presented in the form of mathematical expressions which are easily accessible to the user.
This important feature, however, is not available in other black box data driven methods such as
artificial neural networks. The possibility of getting a set of models (not only one) for a complex
phenomenon is the other important feature of EPR. The level of accuracy for each model is evaluated
based on the coefficient of determination (COD):

Z(yEPR-ya)z
cob=1-N 1
D (V.- avg(y,))’ @

where y, is the actual output value; yepr is the predicted value that is computed by the trained EPR
model; and N is the number of data points on which COD is computed. Detailed explanation of the
EPR methodology can be found in [7].

3. Model Description

The studied aquifer system is a 2D hypothetical unconfined aquifer with 200 m x 40 m dimensions. A
density dependent FE model SUTRA (Saturated-Unsaturated TRAnsport) [3] is used for the
numerical simulation of this flow system. The hydrostatic water heads of 31 m and 30 m are assigned
to the left and right sides of the domain respectively to represent the freshwater and seawater pressure
boundaries of the aquifer system (Figure 1). The aquifer is discretised into 2000 elements and 2091
nodes. The presence of an unsaturated flow layer in the model requires simulating this layer with finer
spatial and temporal discretization in order to limit the instability and oscillation resulting from
calculated pressure and saturation values which may change drastically during wetting events [3]. To
simulate a plan for future demand, a local production well screened at coordinates (40, 10) m is
incorporated into the model (see Figure 1). It is assumed that 26 m®day of groundwater is
continuously pumped from this well. The total calculated mass of solute in the aquifer would be raised
from 27 tons prior the pumping to 98 tons after pumping. Consequently, a management action is
required to comply with the planned demand for water while protecting the aquifer against SWI.

Production
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Figure 1: Model geometry and boundary conditions

A new management scenario called ADRTWW [1,6] is proposed to restrict the negative impacts of
the intruded saline wedge and the pumping of freshwater from production well. This methodology
consists of three steps; Abstraction of brackish water from the saltwater wedge, Desalination of the
abstracted brackish water to meet a part of the projected water demand, and artificial Recharge of the
aquifer using Treated Waste Water [1,6]. A pond system with dimensions 15mx2m located 65 m from
the shoreline is used to collect the reclaimed water and then recharge the aquifer. The calculated
recharge rate under this pond system is 0.35 m/day.



4. Simulation-Optimization models:

In order to investigate the cost-effectiveness of the ADRTWW management scenario in different
arrangements of its recharge/abstraction components and also in a wider range of optimal solutions,
two different S/O frameworks are developed. In the first S/O framework, so called FE-GA, the FE
based numerical model (SUTRA code) is directly linked with non-dominated sorting genetic
algorithm, NSGA-II [8]. NSGA-II is a popular, fast and elitist multi-objective genetic algorithm. In
FE-GA, the numerical model (SUTRA) is repeatedly called by NSGA-II to calculate state variables
(pressures and concentrations) in response to each set of generated design variables. After evaluating
the corresponding fitness of the objective functions and passing through multiple elitism and
evolutionary processes, the trade-off curve of optimal solutions is captured. In the second framework
(EPR-GA) a suitably trained EPR is linked with the same multi-objective algorithm. Prior to its
linking, the developed surrogate (EPR) model is trained and tested externally on the inputs/outputs of
the SUTRA model describing the response of the aquifer system. The results of the EPR-GA model
are compared with those obtained by direct integration of the numerical simulation model into the
optimization (FE-GA) model. In both FE-GA and EPR-GA, the S/O process aims to minimize the
total mass of salt (f;) in the aquifer as well as minimizing the costs (f;) of construction and operation
of the management process subjected to several side constraints.

5. Results and Discussion

The values of the main parameters adjusted for the optimization algorithm in both developed S/O
models are the population size = 50, total number of generations=100, probability of crossover = 0.9
and probability of mutation = 0.0025. Figure 2 shows the results of the trade-off between the two
objectives of the management scenario using both FE-GA and EPR-GA models. It can be seen that
the captured non-dominated fronts in both models are very close to each other. In the FE-GA model,
the optimal points on the Pareto front correspond to abstraction rates in the range of 9.7-25.50 m*/day
and the location of the abstraction well at a distance of 10-20 m from the sea boundary and at the
depth of 36-37 m. Figure 3 shows the final steady state distributions of salinity throughout the system
for one of the optimal solutions selected based on engineering judgment in terms of the objective
functions along the Pareto front (marked in Figure 2). In this selected solution, the optimal location of
abstraction well, determined by FE-GA, is 15 m from the sea boundary abstracting the groundwater at
the optimal rate of 15.5 m%day. The optimal depth of the well is 37 m below the top boundary. The
great performance of this optimal solution in controlling SWI is compared with the no-management
scenario. The 10%, 50% and 90% salinity contours of the no-management scenario are illustrated as
dashed lines.

The total computational time of the analysis by FE-GA is 16 days on an Intel(R) Core(TM) i7-2600
CPU @ 3.40GHz (8 CPUs) with 16 GB RAM in this small aquifer system. The application of fine
spatial and temporal discretization of the unsaturated flow zone increased the computational
complexity of the simulation process. Under this circumstance, the multiple calls of the SUTRA in the
optimization framework make the S/O method by FE-GA computationally inefficient. Consequently
in the second scheme of the S/O framework it has been replaced by a metamodel (EPR). Horizontal
(Xa) and vertical (Ya) coordinates of the abstraction well, and also its pumping rate (Qa) are the input
parameters considered in EPR-GA. A database of 500 cases of these input variables is randomly
generated with a uniform probability distribution. Then, by multiple runs of the SUTRA code the
outputs (total mass of salinity, f;) corresponding to each set of these data are calculated as the
response of the system in each control scenario. The required database for training and validation of
the EPR models is developed using the created sets of input and output. In each scenario 400 cases of
data are used to train the EPR model and the remaining 100 cases (that are kept unseen to EPR during
the model development process) are used for validation of the developed model. The following best
EPR model (Equation 2) with high levels of fitness (COD values) is selected for prediction of total
mass of solute (f;) in ADRTWW scenario. The COD values of this EPR model are 94.9% and 93.1 %
in training and testing datasets respectively. The input data of this equation were used concurrently to
evaluate the second objective function (cost function, f,) as well. The average time required to
complete the analysis using EPR-GA (including the time to generate the database) is less that 10 % of



the time required by FE-GA on the same CPU core that can be considered as a very significant
difference.
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management scenario (dashed lines)

Figure 2: Optimal solutions obtained using
both S/O models

6. Conclusions

This paper presented the results of an investigation into the capabilities of two different S/O models to
find the set of optimal solutions for a new management scenario for controlling saltwater intrusion in
coastal aquifers. The results showed that the two S/O schemes were in excellent agreement in terms of
capturing the Pareto front of the system in the management scenario. The application of EPR-
metamodel in the S/O framework (i.e linking of EPR with optimization tool) resulted in significant
reduction of the overall computational complexity and CPU time compared with those obtained by
direct linking of the numerical simulation model with the optimization tool.
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ABSTRACT

This paper presents a topology optimisation approach that combines an adjoint-based sensitivity analysis [1] with
level set methods (LSM) [2] for front propagation, and the discontinuous Galerkin (DG) symmetric interior penalty
(SIP) method [3]. The problems considered in this paper will be limited to the minimum compliance design of
two-dimensional linear elastic structures.

Key Words: topology optimisation; level set methods, discontinuous Galerkin method; symmetric interior penalty
method.

1. Introduction

One of the most challenging aspects of structural design is finding the optimal layout, or topology of a
structure. Topology optimisation is the most general form of structural optimisation and is concerned
with finding the boundary of a given problem domain which is optimal in that it minimises an objective
functional while satisfying given constraints.

In this paper a topology optimisation is implemented by performing an adjoint-based sensitivity analysis
to compute the gradient of the objective functional as described in [1]. The level set function (LSF) which
defines the internal boundaries of the problem can then be advected along the steepest descent gradient
towards an optima. The LSM developed by Osher and Sethian [2] is a simple and efficient method for
computing the evolution of a moving interface. Since it was first used for structural optimisation in [4],
the LSM has been used for boundary tracking in many shape optimisation implementations and has
proven efficacy.

In this paper, the spatial domain of both the physical problem and the level set transport problem are
discretised using the DGSIP method [3]. The DG method differs from the continuous Galerkin (CG)
method in that it works over a trial space of functions which are only piecewise continuous. One of the
main advantages of DG finite elements is that they are trivially parallelisable. As such this work is a first
step towards exploiting parallel computing techniques to create an efficient shape optimisation method
for large-scale problems.

Following this introduction, Section 2 will present and explain an algorithm for finding the solution to
the minimum compliance problem for a cantilever beam. This will be followed by some numerical results
for the given problem and conclusions in Section 3.

2. Topology optimisation algorithm and problem formulation

For the general case the proposed optimisation algorithm is as follows:

1. Define the problem domain.
2. Initialise the LSF as a signed distance function (SDF).
3. Until the value of the objective functional converges:
(a) compute the current state and the adjoint state through the solution of the physical and adjoint
problems;



(b) compute the advection velocity; and
(c) evolve the interface through the solution of the transport Hamilton-Jacobi equation.
i. Reinitialise the LSF to a SDF through a geometric redistancing method.

The algorithm will now be explained through the use of an example optimisation problem. The objective
of the optimisation process will be to determine the boundary, which for a given domain, load distribution
and boundary conditions, will minimise the compliance of the system whilst satisfying a given weight
constraint. Mathematically this can be stated as:

inf J(©) where: J(Q)zf g-uds+€f dx (D)
oQN Q

Where J is the objective functional, Q is the domain, dQ is the Neumann part of the boundary, g are
the surface tractions, u is the displacement field, and ¢ is a penalty term enforcing the weight constraint.

2.1. Step 1: Defining the problem domain

The problem to be discussed in this paper aims to find the optimal topology of a 2D cantilever beam
problem, the dimensions and the boundary/loading conditions are shown in Figure 1(a). The domain is
discretised into a mesh of 100 by 50 first order, piecewise continuous, square elements. The domain has
two sets of elastic properties which represent the material section and the void section. The material part
of the domain has Young’s modulus, £ = 1Pa and Poisson’s ratio, v = 0.3, and the void is modelled as a
much more compliant material section which has a Young’s modulus E = 10~*Pa and Poisson’s Ratio,
v = 0.3. The value of Young’s modulus varies smoothly across the interface between the two materials
by applying a smoothed sign function to the LSF and using this as the input to a linear function which
varies between the two values of Young’s Modulus as the sign function varies between -1 and 1.

1IN
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(a) Cantilever beam problem (b) Initial zero level set

Figure 1: Initialisation of the problem

2.2. Step 2: Initialisation of the LSF as an SDF

The interface between the material portion and the void portion of the domain is defined as the zero level
set of the LSF, ¢. Where the level set function is greater than zero the domain is filled with material and
where the level set function is less than zero the domain is filled with the ersatz material which represents
the void as further described in Section 2.1.

There are two main reasons for initialising the LSF as an SDF. First of all, numerical inaccuracies will
occur during the transport process if there are large variations in the gradient of the LSF, especially in the
region close to the zero level set. Secondly, initialising the LSF as an SDF and maintaining this property
through frequent reinitialisation greatly simplifies the level set transport equation as discussed in Section
2.5.

When choosing the initial LSF, one must be sure to ensure that there are sufficient holes in the domain.
This is because for a two dimensional problem being evolved with a time stepping scheme which satisfies a
strict CFL condition, no holes can be created during the optimisation process [1]. The initial configuration
can be seen in Figure 1(b), where black represents the material and white represents the voids.
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2.3. Step 3(a): Computation of the state and the adjoint state through DG solution of the physical model

In order to compute the gradient of the objective functional, an adjoint-based sensitivity analysis is
performed. The minimum compliance problem is self-adjoint and as such is simpler than the general
case in which an adjoint state would also have to be computed at each iteration. The author points the
reader towards [1] for the details of deriving the topological derivative and simply states the result that
for the objective functional stated in (1) the topological derivative yields a vector field, V:

V=bn with b=o) () -7 (2)

In order to compute this advection velocity field, it is necessary to first compute the displacement field
for the current state of the cantilever beam problem. For a linear elastic stress analysis problem, the DG
approximation for the displacement field, u, is given by:

ffde:va-DBudQ—f[[v]]-D{{Bu}}dF—f{{Bv}}-D[[u]]dl“+f,u[[v]]-[[u]]dl“ 3)
Q Q r r r

Where I' denotes the element face, f are the body forces, v is the test function, B is the strain-displacement
matrix, D is the elastic properties matrix, u is a penalty parameter, [[¢]] denotes the jump of g and {{g}}
denotes the average of g. For this problem, the boundary conditions are imposed strongly. Once again the
author directs the reader to [3], for the details on the discretisation of elliptic problems using the DGSIP
method.

2.4. Step 3(b): Computation of the advection velocity

The advection occurs only in the normal direction to the interface and so the advection velocity at each
node is given by, b, defined in (2). The stress, o, and strain, &, can be recovered from the displacement
solution of the linear elasticity problem described in Section 2.3. The ¢ term is a penalty term which
describes the volume ratio, i.e. the ratio of material to void, at convergence. It is prescribed during the
initial iteration, for the numerical example in this paper, £ = 150.

2.5. Step 3(c): Evolution of the interface

The evolution of the LSF occurs through the solution of a Hamilton-Jacobi equation. However, as
mentioned in Section 2.2, the maintenance of the LSF as an SDF ensures that the Euclidean norm of
the spatial derivatives is always equal to unity and as such the level set transport equation can be greatly
simplified as described in [5], which can be stated as follows:
9 _
ot

Equation (4) is solved explicitly in time using a forward Euler method. The time step is constrained by
the CFL condition and is inversely dependent on the maximum absolute value of the advection velocity
field at each iteration and the size of the elements in the mesh. (4) is solved in space using DG finite
elements once again. For this particular equation, both CG and DG formulations are the same, however,
the DG formulation of (4) can be solved independently for each element, allowing for a much more
efficient solution.

“4)

2.6. Step 3(c)i: Reinitialisation of the level set function

Maintaining the signed distance property of the LSF can be achieved through multiple methods. One
method is known as geometric redistancing (or the brute force method). For this Yamasaki et al. [5]
presented a method which involves discretising the zero level set and then computing the minimum
distance from each node to the discretised interface and multiplying this by the sign of the level set at
that node. When using a discontinuous LSF the multiplication by the sign can cause discontinuities at
the interface which results in the LSF not being reinitialised as an SDF. To remedy this a smoothing is
applied to the LSF prior to the reinitialisation whereby the value of the LSF at each node is taken to be
the average of the values at each of the degrees of freedom at that node.

8



3. Numerical results and conclusions

The problem presented in the previous section was ran for 50 iterations. Figure 2(a) shows a smooth
convergence of the objective functional until it reaches a minimum. The final shape after 50 iterations is
shown in Figure 2(b).
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Number of Iterations

(a) Convergence of the objective functional

Figure 2: Numerical results

(b) Final topology after 50 iterations

To conclude, a topology optimisation algorithm using level set methods and the discontinuous Galerkin
method has been presented and explained. The algorithm was implemented to find the optimal topology
of a 2D linear elastic cantilever beam. The results show that the algorithm has good convergence and
stability properties, and the optimal design shown is similar to that published in the literature.
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ABSTRACT

We present a statistical method for recovering the material parameters of a heterogeneous hyperelastic body. Under
the Bayesian methodology for statistical inverse problems, the posterior distribution encodes the probability of
the material parameters given the available displacement observations and can be calculated by combining prior
knowledge with a finite element model of the likelihood.

In this study we concentrate on a case study where the observations of the body are limited to the displacements
on the surface of the domain. In this type of problem the Bayesian framework (in comparison with a classical
PDE-constrained optimisation framework) can give not only a point estimate of the parameters but also quantify
uncertainty on the parameter space induced by the limited observations and noisy measuring devices.

There are significant computational and mathematical challenges when solving a Bayesian inference problem in
the case that the parameter is a field (i.e. exists infinite-dimensional Banach space) and evaluating the likelihood
involves the solution of a large-scale system of non-linear PDEs. To overcome these problems we use dolfin-adjoint
to automatically derive adjoint and higher-order adjoint systems for efficient evaluation of gradients and Hessians,
develop scalable maximum aposteriori estimates, and use efficient low-rank update methods to approximate
posterior covariance matrices.

Key Words: Bayesian inference, dolfin-adjoint, posterior, FEniCS, hyperelasticity.

1. Theoretical framework

Following the infinite-dimensional presentation of Stuart [1], we introduce the parameter-to-observable
map G : M — Y as a deterministic function that maps the parameters m € M to the observables y € VY,
where M, Y are Banach spaces:

y=gG(m). (1)
In our case, every evaluation of this map G will involve solving a PDE governing the behaviour of a
geometrically non-linear hyperelastic solid.

The parameter m we wish to infer is the (spatially-varying) shear-like parameter of the following Neo-
Hookean energy potential W:

Pl
W(X, 1o, lc) := %(IC ~2)=mlnJ + Z(nJy? )

where I¢ = tr(C) and lll¢c = det(C) are the first and third invariants of the right Cauchy-Green tensor
C = FTF, F is the deformation gradient and J = det F = (Ill¢)"/2. The displacement field u* € V at
equilibrium can then be found through a standard minimisation problem of the following form:

u* = arg min{ W(X,Ic, ) dxg — f t-u ds}, 3)
uevV Qp aNQO

10



_ [
-_
(a) Observed displacement fields ygps. (b) Shear-related parameter m.

Figure 1: (a) Three virtual experiments (shear and two friction-free compression tests) on a hyperelastic
body (b) with a parameter field m given by a circular inclusion in a softer matrix. Grey shape is the
square undeformed configuration of the body. Colour shows magnitude of displacement at equilibrium.
Note the warped deformation on the boundary - if we only have these limited observations, how much
can we tell about the parameters in the centre of the domain? This is the question we attempt to answer
with this work.

where ds and dxg are measures on the undeformed configuration domain Qg and its boundary dyxQy,
respectively and ¢ are the external applied tractions on dn €. Virtual experiments and the exact parameter
field used to create them are shown in Figure 1.

We state the Bayesian solution to the infinite-dimensional inference problem as follows: We describe
the observer’s prior beliefs about the parameter m through the prior probability measure py. Given the
likelihood model mjike, Which gives the probability that we will observe y given the parameters m, the
goal of the inference problem is to find the posterior probability measure pP°* (Stuart [1], Theorem 6.2)
as:

o< Tiike (Y = G ) (4)

where the Radon-Nikodym derivative (Stuart [1], Theorem 6.29) gﬁ :::r is the derivative of the posterior

probability measure uP°* with respect to the prior probability measure .

We further assume that our prior knowledge can be expressed by a Gaussian distribution with mean mg
and covariance operator Cp, or more compactly myrior ~ N (mo, Cp). Again, following the well-posedness
result of Stuart [1], we solve a Helmholtz-like PDE problem to generate actions of our prior covariance
on a vector.

Furthermore we assume that our noise model is white-noise Gaussian with mean zero and covariance
operator ['pie. We can then re-write the posterior more concretely as:

1 1
Tpost (m]y™**) o< exp (== [[yobs = GIIL, == llm = moll,., | - )
2 noise 2 C()
Taking the logarithm of the above equation results in the following weighted least-squares functional:

A 1 1
Fam) := = In Tpos(mlyons) = 5 1yobs = Gm)II%y + 5 llm = moll? . (©)

We characterise the Bayesian posterior via extraction of two pieces of information. The maximum a
posteriori point myap is characterised by the maximum of the above functional:

MMAP = arg Max Mpost = arg min(— In mpog) (7
meM meM
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This is a classical point estimate similar to those found in the PDE-constrained optimisation literature, but
in that case the norms used are usually somewhat arbitrary. By formulating out problem in the Bayesian
seting, our problem has rigorous statistical meaning [1].

An effective simplification in the case that the parameter-to-observable map G is a linear operator
A : M — Y we can write the following semi-analytical expressions for the MAP point and the posterior
covariance:

mmap = C(A* ;Jisey"bs + C()_lm())a (8)

C=(ATpeA+CH7" 9)

where * denotes the usual adjoint operation. After some some algebraic manipulation we can show that
the posterior distribution is infact Gaussian and can be written:

Tpost ~ N (mniap, H D). (10)

where the Hessian operator { = C~! is the second Fréchét derivative of the weighted least-squares
functional J(m) defined above. It is worth pointing out at this stage that our hyperelastic forward problem
does not lead to a linear parameter-to-observable map G. Thus, the above result does not for our problem
hold because the map G induces non-Gaussianity into the posterior.

However, a useful approximation, as long as the posterior is not too non-Gaussian, is to evaluate the
Hessian of the functional around the MAP point and use it as an approximation to the true second moment
of the distribution about the MAP point.

2. Solution approach

We implement our solver within the dolfin-adjoint package [3], which is based on the finite element solver
DOLFIN from the FEniCS Project [4]. We express the forward model in the high-level Unified Form
Language (UFL) before automatically deriving finite element cell tensors for the adjoint and higher-order
adjoint equations using symbolic manipulations.

We first solve the problem of finding the MAP point using a mesh-independent bound-constrained
quasi-Newton optimisation algorithm that uses the gradients from dolfin-adjoint to efficiently drive the
optimisation.

Then once we have found the MAP point, we evaluate likelihood Hessian actions from dolfin-adjoint
within a Krylov-Schur type eigenvalue solver to extract information about the directions in parameter
space that are most constrained by the observations, with respect to the prior. We use an efficient low-rank
update procedure from Spantini et al. [2] to construct an approximation to the posterior covariance.

6.0000-01

0525

045

0375

3.0006-01

Figure 2: Maximum a posteriori (MAP) point of the Bayesian inference problem. We can detect the
stiffness in the centre of the body, but the maximum value and precise radius are not recovered particularly
well. This uncertainty is quantified by the information in the posterior covariance fig. 3.
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(a) Spectrum of the inverse of the posterior (b) Trailing eigenvector.
covariance.

(c) Leading eigenvector.

Figure 3: (a) The leading eigenvalues A; > 1 (green) correspond to the directions in parameter space
most informed by the observations via the likelihood. Conversely, the trailing eigenvalues 1; <« 1 (red)
correspond to the directions in parameter space least informed, and thus correspond to the information
originally contained in our prior. Plots of (b) trailing and (c) leading eigenvectors. The least constrained
direction points towards the parameters in the centre. The most constrained direction points towards
the parameters at the corner where in effect we have two independent ‘sensors’ touching one piece of
material.

3. Results

We show our results along with full descriptions in Figures 2 and 3.
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Abstract

This paper presents the development of an automation process for the self-learning finite element method (FEM)
and its application to a number of engineering problems. The self-learning FEM involves the integration of a
suitably trained Evolutionary Polynomial Regression (EPR) model that represents the material constitutive
behaviour in the framework of the finite element method. The automation algorithm was coded in Matlab
environment using a new bespoke version of EPR. Two numerical examples are presented to illustrate the
proposed methodology. The results show that using EPR in the self-learning finite element method provides
very accurate predictions, simplifies the training of EPR and reduces the time required for analysis.

1 —Introduction

The self-learning simulation is an extension of the autoprogressive algorithm originally introduced by
Ghaboussi et al. [1]. Hashash et al. [2] proposed a self-learning simulation methodology, also called
inverse analysis technique. This methodology employs the auto-progressive algorithm that extracts
material’s constitutive behaviour (stress-strain relationship) using global load-displacement
measurements. The self-learning finite element method introduced by Hashash [2] utilizes a neural
network (ANN) based constitutive model to extract the materials behaviour [2]. Although there has
been valuable research on the self-learning FEM using ANN, and demonstration of the advantages
that ANN offers in constitutive modelling, however, it is also known that ANNs also suffer from a
number of drawbacks. For example, the number of neurons, number of hidden layers, transfer
function, etc. must be determined a priori, requiring a time-consuming trial and error procedure [3].
Faramarzi et al. [4] proposed an algorithm for training EPR models and their incorporation in the self-
learning procedure and highlighted the advantages of EPR over ANN. In this paper the process of
EPR based self-learning FEM has been applied to overcome the problems with the ANN approach
and improve the way of EPR training.

2 — Evolutionary polynomial regression (EPR)

In recent years, by rapid developments in computational software and hardware alternative computer
aided pattern recognition approaches have been extended beyond classical plasticity theories to
modelling many engineering problems. Evolutionary polynomial regression (EPR) is a new hybrid
technique based on evolutionary computing, aimed to search for polynomial structures representing
the behaviour of a system [4]. EPR is a combination of genetic algorithm (GA) which searches for
symbolic structures and least square (LS) regression which is used to estimate the constants values
[5]. A typical formulation of EPR expression can be stated as:

m
y = Z F(X, £(X),a;) + aq (1)
j=1
where y is the estimated output of the system; a; is a constant value; F is a function constructed by

the process; X is the matrix of input variables; f is a function defined by the user; and m is the
number of terms of the expression excluding bias a,.
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3 — EPR based self-learning finite element method

The methodology of incorporating an EPR in finite element analysis was first presented by Javadi and
Rezania [3]. They showed that a properly trained EPR on experimental data can be implemented in a
finite element model with more simplicity compared with a conventional constitutive model [3].
However, this approach of training EPR needs a large number of experiments which is costly and may
not be available in all cases. Therefore, training EPR within the self-learning FEM seems to be much
more efficient. The framework of the self-learning FEM consists of two steps. In step 1, the applied
load and constrained boundary conditions are implemented and the boundary forces and
displacements are measured for each loading increment. Two finite elements analyses are considered
in parallel (FEA and FEB) and an EPR model which represents the stress-strain relationship is trained.
The FE model (A) simulates a structure and applies the forces while in parallel, the FE model (B)
applies the corresponding displacements. The stresses and strains are determined at each integration
point for both FE models. The methodology assumes that the stresses of FE (A) are accurate and
strains of FE (B) are accurate and they are used to train the EPR model. Each cycle of self-learning
that accomplishes the entire applied load is called a pass. Several passes may be required to complete
the analysis. The flowchart of the EPR-based self-learning FEM is shown in Figure 1.

&
<

Matlab code

FEM (A) Apply Prepare data for training FEM (B) Apply P
a load measurements  [< 7\

Run EPR v

\4
Jacobian Matrix Strain

New

Pass

A

Whole load applied i
Next increment o PP ° Next increment

Figure 1. The flow chart of the proposed automation process of EPR-based self-learning FEM

4 — Numerical examples

4 —1 Example 1

A 2D plane stress panel subjected to in-plane compression is considered. The geometry of the plate,
boundary conditions and loading are shown in Figure 2. Due to the symmetry, only a quarter of the
plate is simulated. The material of the plate is linear elastic with Young’s modulus E = 500 pa and
poison’s ratio u = 0.3 and the pressure applied is 10 pa. This example has been deliberately kept
simple in order to verify the process of EPR based self-learning simulation.

The measurements are generated synthetically from a FE model using ABAQUS. It is assumed that
during the experiment the displacements at the node on the right corner (nodel) are recorded. Two
finite elements models are created and three EPR models are used for the training process. Figure 3
shows the prediction of EPR-based self-learning FE model for the displacement at node (1) from one
pass. Comparison is made between the results of the actual (linear elastic) model and the EPR based
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self-learning FEM. It can be seen that the EPR-based FEM is able to provide an excellent agreement
with the actual data.

30 cm
P
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] 1
- |
8
s _ 6
e z EPR Model
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™ 2
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@ \ 0 0.1 0.2 0.3 0.4 0.5 0.6
OO OEOEGHON Displacement (cm)
Fig.2 Geometry, loading, mesh and BC of the plate. Fig. 3 EPR based self-learning FEM prediction at nodel 1.

4 - 2 Example Two

A 2D truss structure with 13 axial force elements is considered in the second example. The geometry,
boundary conditions and loading are illustrated in Figure 4. The truss is subjected to a concentrated
load (100 KN) at node 3. The load—displacement data were generated using FE simulation with
ABAQUS using the nonlinear Ramberg-Osgood model. The load and the corresponding displacement
at node 3 are considered as the experimental measurements used in the self-learning process. The
general form of the Ramberg-Osgood model is [6]:

a 2Boo O \n _
E+ 3E (ao) =€ (2)

Where E = 20.0x10°pa, co = 1.0x107 pa, B =2.34, n = 3.

The values of stresses were considered as input and strains as output. After training, in each run, an
EPR model with the highest COD was chosen. It can be seen from Figure 5 that the EPR-based self—
learning method is able to accurately capture the nonlinear behaviour of the truss from the first pass.

ni

100 KN

4 Panels @ 4m =16

i
L B

Fig. 4 Truss structure and the applied load
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Fig. 5 Comparison between the Ramberg model and the EPR-based self-learning FEM
(displacements at node 3)

5 — Conclusion

The conventional approach to constitutive modelling using data mining techniques requires a
significant amount of data which could be costly and not available at all cases. Furthermore, obtaining
a homogenous stress-strain state in experiments could be very challenging, especially for complex
loading conditions. In this paper an EPR-based self-learning FE simulation model has been developed
as an efficient approach for learning the constitutive behaviour of materials. The main advantage of
using EPR in the self-learning FEM is that it gives transparent and structure equations representing
the constitutive behaviour of material which can be readily implemented in FE code. The
implementation EPR in the FE procedure is straightforward. In the self-learning FEM, there is no
need to check yielding, to compute the gradients of plastic potential curve, to update the yield surface,
etc.

The developed approach takes the advantages of the rich data buried in non-homogenous materials. It
was shown that the EPR-based self-learning FEM is able to capture the material behaviour from one
pass, reducing the overall computational time. In the two examples presented, the automation process
was run only once and the EPR model captured the complete behaviour with very high accuracy. It
should be noted that in more complex problems, more passes may be required to capture the more
complex material behaviour. The proposed approach can be used in different boundary value
problems.
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ABSTRACT

The development of an automated aerodynamic optimisation algorithm using a novel method of param-
eterising a computational mesh by employing userdefined control nodes will be presented. The shape
boundary movement is coupled to the movement of the novel concept of control nodes via a quasi-1D-
linear deformation. Additionally, a discrete third order smoothing step has been integrated to act on the
boundary during the mesh movement based on the change in its second derivative. By implementing the
discrete boundary smoothing both linear and non-linear shape deformation is achievable dependent on
the preference of the user. The domain mesh movement is then coupled to the shape boundary movement
via a Delaunay graph mapping. An optimisation algorithm called Modified Cuckoo Search (MCS) is used
acting within the prescribed design space defined by the allowed range of control node displacement. In
order to obtain the aerodynamic design fitness a finite volume compressible Navier-Stokes solver is uti-
lized. The resulting coupled algorithm is applied to a range of case studies in two dimensional space
including the design of a race car diffuser and a subsonic, transonic and supersonic intake.

Key Words: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation,
computational fluid dynamics

1. Motivation

During the last 30 years, Computational Fluid Dynamics (CFD) has become a very mature field now
being the primary tool for aerodynamic design [1]. In light of this, computational aerodynamic shape
optimisation has emerged aiming to replace the resource intensive manual optimisation process based on
human expertise and intuition.

Despite these advancements, significant challenges for the modelling community remain in the param-
eterisation approach, the efficient transfer between CAD and CFD systems and improvements in the
computationally expensive mesh re-generation process and CFD evaluation during optimisation [2, 1].

Aerodynamic designers have a clear preference towards tools that are intuitive, efficient and allow a
wide ranging applicability. This paper presents a novel implementation of computational aerodynamic
shape optimisation in which the parameterisation approach makes use of user—defined ‘control nodes’
in the mesh as the method for both defining the geometry movements and as the design parameters for
the optimisation process. The ‘control nodes’ are linked to the rest of the discrete shape boundary via
a a quasi-1D-linear boundary deformation. This is coupled to a ‘discrete boundary smoothing’. The
Fast Dynamic Grid Deformation (FDGD) approach [24] has been applied to move the domain mesh and
results in a self-contained algorithm formulated to propagate the effect of the ‘control node’ displace-
ment throughout the discrete shape boundary and computational mesh making a mesh regeneration step
redundant and allowing a flexible yet small design space. Also, there is no requirement to convert the
geometry definition ‘stored’ in the mesh into any oilgar format during the optimisation processs.



2. Methodology

2.1. Geometry Shape Parameterisation

The developed approach is a discrete parameterisation acting directly on the boundary mesh. Once the
initial computational mesh has been created (which could have originated as a CAD geometry), the
geometry is then parameterised by choosing ‘control nodes’ at critical positions defined by the user
on the geometry. An important feature of the parameterisation is the dimensionality of the explorable
design space which can be adjusted through the number of control nodes and the designers settings. The

number and position of these control nodes is crucial in the evolution of the geometry. The total degrees
Nc¢,

of freedom are defined as d = ZN fen With fon being the degrees of freedom on each ‘control node’ [3].
k=1

2.2. Mesh Movement

A methodology involving three steps has been defined starting with the displacement of the ‘control
nodes’ based on the fitness that has been evaluated by the optimization algorithm. In a second step,
the boundary of the geometry is deformed given the ‘control nodes’ displacement. A new scheme was
developed to propagate the displacement of the ‘control nodes’ throughout the boundary and was termed
‘discrete boundary smoothing. Finally, the domain nodes are moved utilizing the FDGD method [5].

The ‘discrete boundary smoothing’ is inspired by the idea of artificial dissipation, a scheme applied to
stabilize numerical solutions containing high gradients. The most common JST scheme applies a second
and fourth order term for stabilisation. A modified approach applies a term TQ = —(D' —D?*)Q exhibiting
a third order and first order biharmonic and harmonic operator of the form D3Q = V[18®V?]Q and
D'Q = ApVVQ with A and 8 being coefficients to scale and sense sharp gradients in the solution field
[6]. This idea has been adapted. Let Q be the discrete boundary so that 7Q may be discretized for a
number of smoothing iterations i = 2, 3, ..., Ny and yields

Q! = Q'+ IV - V) (1

[| |l is defining the norm operator in this paper. The smoothing iterations propagate the deformation of a
boundary node and its respective change in V>Q throughout the boundary. The first step i = 1 is reserved

to perform an initial linear deformation step. 8 is applied to achieve mesh independence and is given as
As?

g =g
A great advantage of the ‘discrete boundary smoothing’ is its flexible design space definition. This is
greatly enhanced through the introduction of the scaling factor A. In order to allow both linear and
non-linear deformation along the same boundary , A is set to be variable so equation 1 becomes

i+1 _ i iTIV2OL | — (V200
Q! = O + BV - V2] @

with j = 1,2,..., Ng whereas A is selected by the user individually for each ‘control node’ and then
linearly interpolated for the remaining boundary nodes. For A = 0 the smoothing is disabled and only the
linear deformation step occurred, for 4 > 0 smoothing is applied resulting in a non-linear deformation.
It also allows great local control and shape preservation capabilities when used in conjunction with the
range of motion defined per ‘control node’.

2.3. Computational Fluid Dynamics

The applied FLITE CFD system fluid solver is an edge—based, node—centred finite volume discretisation
for solution of the compressible Reynolds Averaged Navier—Stokes equations [6]. All cases are fully
viscous applying the Spallart-Allmaras turbulence model. In case of the jet intake case, the mass flow

was fixed along the engine inlet face. 19



2.4. Modified Cuckoo Search

Modified Cuckoo Search [4] is an evolutionary algorithm applying the ‘survival of the fittest’ strategy
to a given population. Each agent within the population exhibits a fitness value which is defined the
objective function as for example Lift to Drag ratio. The population is separated into good and bad
agents dictated by the fitness. All good agents are ‘cross-bread’ and the bad agents perform a random
walk called Lévy flight in search of an improved agent. The process of replacing and creating eggs
continues until a stopping criteria is met.

3. Case Studies

3.1. Intake Duct Optimisation

A common problem in aerodynamic design is the optimisation of an engine intake duct. In this case study
a land-based supersonic vehicle has been optimised first for distortion and consequently for pressure
recovery and distortion combined. Pressure recovery P, measures the amount of restored total free
stream pressure Po, P, = P /P; to allow minimization of pressure losses. Distortion o provides a

measure of standard deviation of the total pressure P; in relation to the mean total pressure P, across a
L|p,-P

plane or line of interest using the integral o = — f t_—t| dl. Solutions to the fully viscous problem
0 t

were sought at a range of Mach numbers Ma = [0.5,0.8,1.1, 1.4]. The applied mesh contains a total of

82868 mesh nodes and 163419 mesh elements including 7 boundary layers using four control nodes with
a specified explorable design space of x¢ € [-0.3,0.3] and y¢ € [-0.3, 0.3] for each control node C. The
travel path as well as the fitness are illustrated in Figure 2. The utilized mesh as well as the initial and
final pressure field for the case of Ma = 0.5 and optimization for Distortion only are visualized in Figure
1.

Figure 1: A supersonic vehicle with engine intake duct showing (a) detailed mesh including the control node
locations and their range of motion  (b) the pressure field of the initial geometry  (c) the pressure field of the
optimised geometry for Ma 0.5
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Figure 2: (a) The development of the fitness with increasing generations only considering distortion
(b) Control node movements of best egg starting from their initial position 0 - start point o - end point
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3.2. Race Car Diffuser

A 2D diffuser shape of a race car was optimised for down-force to drag ratio. Downforce has been mea-
sured as the negative lift according to F' = — 55 p(n e j)dB and drag was determined by D = 55 p(nei)dB
with p is the non-dimensionalized static pressure, n is the normal unit vector directing into the surface
and i and j are the parallel and vertical unit vectors in relation to the freestream velocity direction. Up to
four control nodes were selected to determine a solution at a Mach number of Ma = 0.1 on a mesh with
41324 mesh nodes and 93564 mesh elements.

4. Conclusions

An automated aerodynamic shape optimisation algorithm has been developed making use of the con-
cept of ‘control nodes’ in the mesh. The approach was coupled to the ‘discrete boundary smoothing’
technique allowing both linear and non-linear deformation along the same boundary. The approach is
complemented with the FDGD domain mesh movement allowing to cut the mesh regeneration step and
reduce the problem inherent in translating geometries from CAD-based geometry definitions to CFD
meshes. Modified Cuckoo Search (MCS), an evolutionary optimisation approach, has been implemented
to find the global optimum. The resulting algorithm is self-sufficient during the entire optimisation cy-
cle and has been successfully applied to various different aerodynamic problems including a race car
and subsonic, transonic and supersonic engine intake duct optimisation. It demonstrated to be robust in
terms of the diverse applicability as well as its ease of implementation for all test cases and improve-
ments in the fitness were achieved with a fast convergence in terms of number of generations. It has
also demonstrated to be intuitive to use being able to include human expertise and allowing a flexible yet
small design space.

For future work, the authors aim to extend the code into 3D. Additionally, ’dynamic’ control nodes will
be tested with the position being an optimisation by itself in order to increase the explorable design
space whilst maintaining the rapid convergence. Also, enhancing the optimisation methodology may be
exploited by implementing hybrid schemes combining this evolutionary approach with local gradient-
based searching.
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ABSTRACT
In this paper, we focus on the generation of a strongly coupled monolithic system to describe the interaction
of the magnetic field, generated mechanical vibrations and corresponding acoustic behaviour active in an MRI
environment. We linearise the resulting nonlinear equations and consider both temporal and frequency dependant
axisymmetric formulations of the full three dimensional problem. We also utilise a stress tensor approach for the
electromagnetic forces, previously employed in [1, 2, 3]. This formulation allows the use of H' conforming hp
finite elements, which when combined with ip refinement results in the possibility of accurate solutions. The fully
discretised scheme is solved by a Newton-Raphson procedure, in an extension of [1], which employed a fixed-
point algorithm. The results of our formulation are benchmarked against a series of numerical examples including
an application to a realistic magnet geometry shown in Figure 1.

Key Words: MRI Scanner; hp finite elements; Acoustic Magneto-Mechanical Coupling; Multi physics

1. Introduction

Recently Magnetic Resonance Imaging (MRI) has become an important tool in the medical industry.
The non-intrusive imaging capability and high resolution makes it desirable for identifying a range of
medical ailments, such as tumours, damaged cartilage and internal bleeding. The most common type of
magnet used in MRI scanners are superconducting magnets, consisting of superconducting wire cooled
by liquid helium contained within a vessel known as a cryostat. Figure 1 shows a typical setup of an MRI
scanner, which consists essentially of four main components. A set of main magnetic coils produce a
strong uniform stationary magnetic field across the radial section of the scanner. The secondary magnetic
coils are used to avoid large stray fields arising outside the scanner. The cryostat consists of a set of
metallic vessels used to maintain the supercooled magnet temperatures and shield from radiation. A set
of resistive coils inside the imaging volume, known as gradient coils, produce pulsed gradient magnetic
fields to generate an image of the patient.

Main Magnet Coils

Gradient Coils

Radiation Shields

Figure 1: Primary Components of a typical MRI scanner

The presence of eddy currents in these conducting (metallic) vessels can be caused by changing magnetic
fields, such as those generated by the pulsed gradient fields. These eddy currents can cause perturbations
in the magnetic field. They also give rise to Lorentz forces and exert electro-mechanical stresses in the
conducting components which cause them to vibrate and deform. These deformations cause the magnetic
field to further perturb thus generating more eddy currents. The vibrations also cause perturbations of the
surrounding air, which in turn produces an acoustic pressure field. These phenomena can have undesired
effects causing imaging artefacts (ghosting), decreased component life and uncomfortable conditions for
the patient, due to the noise from mechanical vibrations.

23



2. Coupled System

The aim of this work is to develop a computational analysis tool to aid in the magnet design by providing
a better understanding of the induced vibrations and acoustic behaviour. These phenomena are described
through the coupled set of Maxwell (eq. 1a and 1b) and linear elasticity (eq. 1c) equations. In the air
the linear elasticity equations reduce to a scalar Helmholtz equation for the acoustic pressure (eq. 1d).
Here p denotes the density of the material, u the electromagnetic permeability, € dielectric permittivity,
v the electric conductivity, A and G the Lamé parameters, ¢ the speed of sound through a medium, E the
electric field vector, H the magnetic field vector, u the displacement field vector, p the acoustic pressure
and o™ is the cauchy stress tensor and the dot symbol () is used to represent a time derivative.

VXE = uH V-eE=0 in Q (1a)
VxH=]J(u,H,E) V-uH =0 in Q (1b)
V-o"™(u)+b(H) = pii o (w)y=A2NV-u)l + G(Vsymu) in Q. (1c)
1.
2 A . .
v2p _ =P -0 in Q, (1d)

The current term consists of J (i, H,E) = J* + J' (,H) + J° (E), the source, Lorentz and Ohmic,
or eddy currents. The magneto-mechanical coupling, shown in Figure 2, arises in the conductor due to
the Lorentz currents and through body forces in terms of Maxwell stresses, b (H) = V - ¢ (H) in
continuation of [1, 2, 3], defined as

o-e(H)zy(H@)H—%(H-H)I 2)

The acoustic pressure is coupled to the magneto-mechanical problem at the air-conductor interface
boundary (9€Q.) through jump conditions in the tractions and accelerations.

[ocm=0 on 0Q, (3a)

[ii] =0 on 09 (3b)

where n is the outward normal vector associated with the boundary and the double bracket symbol
[x] = x,, — x. defines the jump in the solution across a boundary. The subscripts ¢ and n correspond to
the conducting and non-conducting sub domains of our computational domain, shown in Figure 2.

Figure 2: Computational domain of the coupled system
3. Computational Framework

3.1. Axisymmetric Problem
Given that the geometry of the MRI Cryostat is constant across the bore section of the cylinder and

modelling only one set of gradient coils, the Z-gradient, the problem may be expressed in terms of an
axisymmetric formulation. By expressing the geometry in cylindrical coordinates the fields are inde-
pendent of the angular component and so the order of the geometry reduces from 3D to a 2D plane.
The problem is solved on the r, z plane as opposed to the x, y,z Cartesian domain, whilst still resolving
the full 3D nature of the fields. However this requires a more complex weak formulation, which takes
account of the differential operators expressed in cylindrical coordinates. By introducing appropriately
scaled variables the 1/r singularity at the radial axis can be eliminated and u, and u, the components
of mechanical displacements along with the Ay component of a vector potential for representing the
electromagnetic fields can all be discretised by H' conforming Ap finite elements.
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3.2. Time Harmonic System

Computational speed is of great importance to the design process of an MRI scanner, as designers must
test a large number of concept designs over a wide range of operational conditions. For this reason
one would prefer to solve in the frequency domain, rather than the full time dependant problem. This
formulation allows the designer to sweep quickly over the sourcing frequencies of the Z-gradient coil
and compute the dissipated power as a function of the frequency. We have therefore chosen to adopt the
approach taken in [1] of assuming a time harmonic, rather than pulsed, sourcing current in the gradient
coil so that we can formulate the equations in the frequency domain.

3.3. Monolithic Scheme

Unlike the work previously carried out in [1], which involves the implementation of a fixed point it-
eration scheme, we have chosen to adopt a Newton-Raphson approach to solve the coupled system of
non-linear equations (eq. 1). By forming the monolithic system, shown below in eq. 4, this method offers
a more robust solver with quadratic rates of convergence.

Koy Kpu 0 Oon Ru(H,u)
Kun Kuu Kuﬁ 6u =—-| R,(H, u,ﬁ) (4)
0  Kpu Kppl\ 65 Rj(u,p)

Where R is the system residual vector, obtained from eq. 1, § is the solution update vector and K is the
Tangent stiffness matrix, formed by taking the directional derivative of the residuals with respect to the
solution fields, outlined in [4]. To obtain the solution X = [H,u, p]T we define some initial guess X (0]
and update it by solving eq. 4 and iterating over X'¥*11 = XK] 4 § until convergence is acheived.

3.4. Perfectly Matched Layer

Due to the nature of acoustic wave propogation we must treat the infinite boundary of the computational
domain with special consideration to allow for accurate results. We have chosen to employ a perfectly
matched layer, or PML, to deal with the absorbtion of outgoing waves and avoid numerical pollution
from artificial reflections at the boundary. The PML is analogous to a metamaterial where its parameters
are artificial and are constructed through an exponential decay function in the complex plane (resulting
in a complex coordinate stretching in the layer), in order to absorb incoming waves. A full PML con-
struction and its behaviour in a Ap finite element context is discussed in [5]. To demonstrate the effect of
the PML a simple test problem is setup, shown in Figure 3, in which a sphere is located at the centre of
an axisymmetric domain and an incident plane wave is propogated in the positive z direction (upwards)
with a PML around the outer domain boundary. The acoustic pressure can be expressed as p = p'" + p*¢,
where p'" is an incident (known) plane wave and *¢ is the unknown scattered wave

z .5 & acoustic pressure on z=0 axis
PML
T PML 1 15 2 25/ . ”?” ’“”“3/’5 4 45 5
Figure 3: Problem Setup Figure 4: Pressure Field Figure 5: Solution Comparison

The contour plots of the computed scattered field p*¢ is shown in Figure 4. The left plot shows the
pressure field without the PML and the right plot with the PML implemented. Figure 5 is a line plot of
the scattered field p*¢ from the outer radius of the sphere at the centre of the domain to the edge of the
PML. It is clear from the plots that without the PML the artificial reflections at the domain boundary
cause numerical artefacts to emerge. With the PML implemented it is possible to absorb these waves
and allow for accurate solutions within the computational domain. In the PML layer the solution decays
to the defined boundary value and does not fully reflect the analytical solution.
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4. Numerical Results

We present the following numerical example of a realistic cryostat geometry of an actual MRI scanner.
Given that our axisymmetric formulation is still valid for a full 3D problem, Figure 6 shows the plots
of the two magnetic field components, generated by the static and gradient coils, around the full 3D
scanner.

Figure 6: Static (left) and Gradient (right) Magnetic fields

The acoustic behaviour of the MRI magnet geometry is important for determining the noise levels gen-
erated during an imaging cycle. The high noise levels can be uncomfortable for patients undergoing a
body scan, thus the need to accurately simulate the acoustic pressure generated by the scanner is of vital
importance. In Figure 7 the effect of p, polynomial basis function, refinement on the acoustic distribution
is visualised.

—
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i
—10Pa

Figure 7: p effect on acoustic wave problem

The solution for linear, p = 1, basis functions varies significantly from those with higher order basis
functions, p = 3 and p = 5. The linear shape functions result in numerical dispersion, which causes
the amplitude to grow until steady state, whereas the higher order basis functions are much better at
capturing the wave function and result in a more accurate solution.

5. Conclusions

The results presented here provide a framework to the set up of an analysis tool for the prediction of
deformation and vibration in the conducting regions of an MRI scanner and the correponding acoustic
patterns and sound levels that arise. The accuracy of the non-linear coupled /p finite element framework
has been verified on a series of further benchmark industrial and academic examples, which will be
presented in the talk at ACME conference Cardiff.
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ABSTRACT

In this paper, we study numerical solutions of Helmholtz problems using high order finite element formulations.
These include the polynomial high-order finite element method (high-order FEM) and the partition of unity finite
element method (PUFEM). The aim of the study is to solve efficiently and with high level of accuracy two dimen-
sional problems at high frequencies. The performance of both methods is compared and analysed on test examples
of practical interest.

Key Words: Helmholtz equation ; weak variational formulation ; partition of unity finite element method ; high
order finite element method ; propagation and evanescent waves

1. Introduction

Numerical solutions to the Helmholtz problems depend significantly on the wave number k. Specifically,
the accuracy of the solution of the Helmholtz equation using the conventional FEM deteriorates with
increasing wave number, even if the number of elements per wavelength is kept constant. This is due to
the pollution error [1].

With the aim to reduce the computational cost and improve the accuracy of wave problems, various
methods based on field enrichment have been proposed. We addressed the literature on partition of unity
finite element method (PUFEM) and other related methods. Another alternative to reduce the pollution
error is to increase the interpolation polynomial order over each element. High order polynomial ap-
proximations reduce resolution requirements which results in lower number of parameters in the whole
problem.

The current work assesses both PUFEM and high-order FEM for the solution of Helmholtz problems
with increasing wave numbers. PUFEM has been thoroughly investigated for acoustic [2] wave problems
and attempts have been made to compare its performance to that of the standard FEM. Given that only
low order elements have been considered for FEM, it is intended here to increase the polynomial order
p to hopefully claim a fair comparison.

2. Weak formulation and numerical approximation

Let Q c R? be an open bounded domain with a smooth boundary I'. We consider finite element dis-
cretizations for approximating the solution of the Helmholtz equation

—Au—-ku=0 in Q, (1a)
Vun+iku=g on TI. (1b)

The Galerkin finite element approximation is applied to the weak variational formulation of the
Helmholtz problem. The weak formulation is obtained by multiplying the Helmholtz equation (1a) by a
smooth test function v = v(x,y) and integrating the resulting equation over the domain € such as

- L(Au +k2u)v dQ = 0. (2)
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By applying the integration by parts to the integrand with second order derivatives and then introducing
the Robin boundary condition (1b), the system of equations to solve is then

f(Vu.Vv — kKuv) dQ + ik 56 uvdl = Sggv dr. 3)
Q r r

Our aim is to find an approximate solution uj, of the weak form (3) using either, high-order finite ele-
ments (FEM) or elements with plane wave enrichment functions (PUFEM).

In the high-order FEM model, the computational domain € is divided into N uniform non-overlapping
quadrilateral elements Q., e = 1,..., N. The field unknown variable over each element €, is then ap-

proximated by
#vert

wp = Y u;N;(€) (4)
j=1
where N; stands for the Lagrangian polynomial interpolation functions [3] and u; represents the nodal
values (unknowns of the problem) corresponding to the element vertices. The degree p of the polynomial
interpolation functions N; depends on the number of nodes assigned to each element. In general, for an
approximation of degree p the number of vertices per element would be (p + 1).

In the PUFEM model, the elements are chosen to be quadrilateral with #vert = 4. At each vertex, the
unknown variable u; of expression (4) is expanded into a linear combination of ¢ plane waves with
directions encompassing the two dimensional space [2]. The PUFEM approximation of the unknown
field variable within each element €2, is then given by

q

up = iz N; eikd'rAﬁ-. ®)

j=11=1

where N; are the bi-linear basis functions corresponding to the mesh vertex, d = (cos 6;,sin 6,)" and
0, = 2 l/g for I = 1,2,...,q. The unknowns of the problem are no more the coefficients u; but the
amplitude factors All. of the plane waves.

3. Numerical experiments

In this section, both PUFEM and high-order FEM models are assessed by considering test cases of
practical interest. The first one involves an evanescent wave and the second case deals with the propa-
gation of waves in a duct with rigid walls, which involves propagating and decaying modes. The per-
formance of each method is measured through the relative error, in percent, using the L, norm. The
discretization level in terms of degrees of freedom per wavelength is indicated by the paramter T given
by T = A /totdof/area(L2), where totdo f stands for the total number of degrees of freedom required for
the solution and Q. is the area of the computational domain. Another parameter of interest is fotsys
representing the total number of storage locations of the system matrix (x). Finally, the conditioning of
the system matrix (x), denoted by x(A), is also considered. It is computed using the 1-norm and is given
by «(A) = [|A]l1] |A~1|];. To conclude with, all the elementary integrals are evaluated numerically in a
straight forward way by using Gauss-Legendre quadrature. The number of integration points is chosen
to be enough so that the results are not affected by the integration errors.

3.1. Evanescent wave problem

The first test case deals with the numerical solution of an evanescent wave problem in a square domain
Q = [-1,1] x[-1,1]. The Robin boundary condition is applied on the boundary I" through the boundary
source term g. The exact solution of this problem can be found in [4].

The problem is solved for the wave number ka = 100 and 8 = 1.001. The results obtained with both
approaches are given in Table 1. We list the Lj-error, the condition number x and the total number
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Table 1: Evanescent wave test case for ka = 100 and 8 = 1.001. Relative percentage L;-error, €;[%], conditioning,
«(A), and total number of storage locations, totsysfor different numbers of 7.

p-FEM PUFEM
p=10 p=20 p=30

3.44969 (4.5) 4.44105 (3.8) 1.55543 (3.8) 1.61219 (1.5)

0.00053 (10.1) 0.00061 (6.4) 0.00025 (5.7) 0.08167 (1.6)

€2[%] 0.00015(11.4) 0.00016 (7.6) 0.00023 (7.6) 0.00081 (1.7)
0.00002 (13.9) 0.00002 (11.4) 0.00009 (9.5) 0.00080 (1.8)
0.80E+04 (4.5) 0.13E+05 (3.8) 0.23E+05 (3.8) 0.14E+09 (1.5)
0.40E+05 (10.1) 0.38E+05 (6.4) 0.47E+05 (5.7) 0.97E+09 (1.6)
k(A) 0.54E+05 (11.4) 0.53E+05 (7.6) 0.85E+05 (7.6) 0.37E+10 (1.7)
0.84E+05 (13.9)  0.12E+06 (11.4)  0.11E+06 (9.5) 0.51E+14 (1.8)
1,973,161 (4.5) 2,386,381 (3.8) 3,520,981 (3.8) 102,870 (1.5)
22,978,081 (10.1) 10,827,301 (6.4) 11,687,221 (5.7) 139,965 (1.6)

totsys 32,645,341 (11.4) 18,614,761 (7.6) 27,471,961 (7.7) 182,760 (1.7)
59,413,861 (13.9) 62,293,141 (11.4) 53,386,201 (9.5) 231,255 (1.8)

of storage locations of the final system matrix, totsys. The discretization level 7 is also given and is
presented between brackets.

The results from Table 1 show different aspects of the high-order FEM and PUFEM. As the order p
increases in the FEM, the discretization level T required to achieve a prescribed accuracy is decreased.
But PUFEM seems to provide similar quality results for significantly lower values of the discretization
level 7. For example, PUFEM provides 1.5% error with 7 = 1.5 whereas a similar error is obtained with
p =30and 7 = 3.8. Moreover, PUFEM provides an error of order 107#% with 7 = 1.7 whereas an error
of the same order is achieved with 7 = 10.1 for p = 10, with T = 6.4 for p = 20 and finally, with 7 = 5.7
for p = 30. On the other hand, the lowest levels of L,-error are achieved by the polynomial approach
approach (FEM) but with a significantly higher discretization level. Moreover, the number fotsys of
storage locations required by PUFEM is lower in comparison to the values required by high-order FEM.
However, looking at the condition number «, the values corresponding to high-order FEM are of the
same order while the value corresponding to PUFEM is orders of magnitude higher.

3.2. Wave propagation in a duct

The second test example deals with the propagation of a wave in a duct with rigid walls. The computa-
tional domain Q = [0,2] x [0,1] is considered with the Robin condition (1b) on its boundary I" through
the source term g. The exact solution of this problem can be found in [5].

We solve the problem for the wave number ka = 40. Two different values of 6 are considered which
give the highest-propagating mode (# = 12) and the lowest-evanescent mode (6 = 13). The computed
L,-errors, in percent, and the discretization levels are given in Table 2.

As shown in Table 2, the error decreases by refining the mesh grid for high-order FEM with a given order
p and by increasing the number g of enriching plane waves for PUFEM. This is valid for both values
of 8 representing propagating and evanescent modes. Again, for all cases, PUFEM requires less degrees
of freedom per wavelength in comparison to high-order FEM in order to reach a prescribed accuracy.
While high-order FEM requires more degrees of freedom per wavelength, this number decreases as
p increases. The results also show that the solution requires more degrees of freedom per wavelength
to reach a certain accuracy for the evanescent wave problem in comparison to the propagating mode
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Table 2: Wave propagation is a duct. Relative L,-error [%] and discretization level for high-order FEM and
PUFEM for ka = 40.

p-FEM PUFEM
p=10 p=20 p=30
0.00380 (5.7)  0.00020 (4.6)  0.00101 (3.4) 1.24777 (1.9)
0.00005 (9.0)  0.00006 (6.8)  0.00009 (6.8) 0.08853 (2.4)
6 =12 0.00005(11.2) 0.00005(11.2) 0.00007 (10.1) 0.00557 (2.7)
0.00005 (13.4)  0.00006 (13.4)  0.00005 (13.4) 0.00019 (3.0)
0.00870 (5.7)  0.00085 (4.6)  0.02018 (3.4) 39.14330 (1.9)
0.00011 (9.0)  0.00010 (6.8)  0.00012 (6.8) 4.14675 (2.4)
6 =13 0.00010(11.2) 0.00010(11.2) 0.00010 (10.1) 0.41524 (2.7)
0.00009 (13.4)  0.00010 (13.4)  0.00010 (13.4) 0.00121 (3.0)

problem. For example, PUFEM provides about 1.2% and 0.09% with 7 = 1.9 and 2.4, respectively, in
the case of propagating mode. These errors increased to about 39.1% and 4.1% respectively in the case
of evanescent mode. This observation is also valid for the high-order FEM approach.

4. Conclusions

In this work, two high order finite element formulations have been used to solve 2D Helmholtz problem:s.
The methods chosen are the high-order polynomial finite element method (high-order FEM) and the
partition of unity finite element method (PUFEM). The performance of each approach is assessed in
terms of results quality and required degrees of freedom per wavelength. The condition number and
total number of required storage locations are also considered.

PUFEM provides high quality results with a low number of degrees of freedom per wavelength,
especially for relatively high frequencies where the element size incorporates many wavelengths. Errors
lower than 1% were obtained with less than 2 degrees of freedom per wavelength. In such cases, the final
system to solve is obviously drastically reduced in comparison to high-order FEM and hence the number
of storage locations is also reduced. However, it is also shown that further increasing the discretization
level by increasing the number of enriching plane waves does not always enhance the results beyond
a certain level due to the ill-conditioning issue which is inherent to the plane wave enrichment technique.
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ABSTRACT

We present a method of obtaining properties of electromagnetic cavities with frequency dependent materials,
such as the resonant frequencies, quality factors and mode shapes, using a high-order discontinuous Galerkin
(DG) time-domain solver. Optimal convergence in the resonant frequency has been achieved for all numerical
examples. The accuracy of resonant frequencies obtained is quantified and we present a study of errors due to
geometrical approximation. Advantages of a multi-processor computation using Message Passing Interface (MPI)
are demonstrated.
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1. Introduction

Recent advances in manufacturing techniques, such as electron beam lithography make it possible to
manufacture resonant cavities on the scale of the wavelength of light. These devices frequently have
desirable qualities such as high quality factors and well defined resonant frequencies [1]. However, the
typical scale and the geometric complexity introduce several challenges for numerical simulation.

The behaviour of these resonators is described by Maxwells’ equations of classical electromagnetics.
For dispersive materials, an auxiliary ordinary differential equation based on the Drude model of solids
[2] is coupled to the Maxwell system. Frequency domain solvers are traditionally employed to find the
resonant frequencies and associated modes, but as the scale and geometric complexity of the devices
increase, the large eigenvalue system that must be solved becomes computationally prohibitive.

We propose using the Discontinuous Galerkin method with explicit time marching, which only requires
solving a block diagonal system of equations for each timestep [3]. The frequency spectrum, resonant
frequencies and quality factors are then recovered by a Fourier transform of the time domain solution.

2. DG solution of the transient Maxwell’s equations in dispersive media
Maxwell’s equations of classical electromagnetics and the auxiliary ordinary different equation required

for dispersive media in linear, dimensionless, conservation form by

dU 5 9F(U)
ot i 0xy

=S(U), )

where nggdenotes the number of spatial dimensions. The vector of unknowns, U, is
given by U = (€E|, €Es, €Es, uHy, uH,, uHs, Ji, Jo, J3)T, the flux vectors, Fj, are given
by Fi = (0,H;,—H,,0,-E3 E,0,0,0)7, F» = (-H30,Hy, E;3;,0,-E,0,0,0)7 and F; =
(H,,—H1,0,-E», E1,0,0,0,0)7 and the source term, S, is given by S = (0,0,0,0,0,0, a)flEl -
vadi, wflEz —vaJo, a)flE3 —Yd J3)T . Here E = (E|, E», E3) is the electric field intensity, H = (Hy, H», H3)
is the magnetic field intensity and J = (Jj, Jo, J3) is the polarisation current. The material parameters €,
MU, w and y are the electric permittivity, magnetic permeability, plasma frequency and electron damping
coeflicient respectively.
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We discretise the computational domain Q on an unstructured mesh. The DG weak formulation [4] of
(1) on an element Q, can then be written as

aU < OF, (U
f W-—edQ+f W - ZM—S(Ue) dQ + WA, [U.]dl, =0,
Q. ot e =l an Q.

where U, denotes the solution vector restricted to the element 2., W is a vector of test functions and
[Ucll = U, — Uy denotes the jump of the solution across the element boundary 9€2.. The boundary
term, derived after introducing the numerical flux on the boundary and using a flux-splitting technique,
results in

-n X [H] + nx (nx [E])
A;[[Ue]]:5 nx[E]+nx nx[H]) |,
03)(1

where n is the outward unit normal of the element and 034 is a zero vector of dimension 3. After
introducing the approximation of the solution and using a Galerkin formulation, the following system of
ordinary differential equations is obtained

dU
M— +R (@) =0,
o TRWO)

where U is the vector of nodal values, M is the block diagonal mass matrix and R (U) is the residual
vector. The system of ordinary differential equations is advanced in time using a fourth-order explicit
Runge-Kutta method.

3. Resonant frequencies and mode shapes

The engineering quantities of interest are the resonant frequencies and the associated modes shapes and
quality factors. In order to obtain these quantities from time domain simulations, we begin with an intial
field distribution containing a point excitation. Maxwells’ equations are solved to advance the fields in
time, and the amplitude of the solution field is recorded at fixed time intervals, At, at at least one point
in space for a period of time, 7. The resulting discrete field intensity signal is illustrated in Figure 1a.
Taking the fast Fourier transform of the field intensity signal results in its frequency eigenspectrum,
shown in Figure 1b for a 3-dimensional cubic cavity with a perfect electric conductory (PEC) boundary.
The resonant frequencies of the cavity correspond to the locations of peaks in the spectrum, whilst the
quality factors are related to peak widths. The mode shape associated to a given resonant frequency can
be obtained as a postprocess, by taking the discrete Fourier transform at the desired frequency.

For a high fidelity computation of broadband spectrums, two properties of the fast Fourier transform must
be taken into consideration: (1) the spectrum resolution is inversely proportional to 7'; (2) the highest
resonant frequency that can be computed is inversely proportional to Az. To alleviate the potentially large
computational cost which results, we employ a high-order DG solver with a NEFEM [5] rationale. This
enables the use of extremely coarse meshes that guarantee that the time step of the explicit time marching
algorithm is not restricted by the stability condition, but by the maximum frequency that is to be resolved.
In addition, an efficient parallel implementation using MPI has been developed, enabling to dramatically
reduce the computational time required to advance the solution large periods of time.

4. Numerical Results

The solver was validated validated using a rectangular 2-dimensional cavity filled with a dispersive
medium (€, = 1,0 = L,w = 6.7433,y = 0.0799), surrounded by a perfect electric conductor, with
a width twice its length. Figure 2a shows how error in the resonant frequency, calculated relative to
a reference solution, converges with 7 to a final numerical error due to spatial discretisation. Optimal
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(a) Signal obtained from simulation run. (b) Eigenspectrum obtained by FFT

Figure 1: Signal and corresponding eigenspectrum obtained from a time domain simulation for a cubic,
free-space cavity with a PEC boundary.

convergence of the error in resonant frequency is shown in Figure 2b, the error convergences as the
numerical dispersion error, at a rate #>P*?).
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(a) Convergence of the error in calculated resonant (b) h-convergence of the error in resonant frequency
frequency with T for three different meshes. obtained for the fundamental frequency.

Figure 2: Results for a rectangular cavity filled with a dispersive medium, surrounded by a PEC boundary

A circular free-space cavity is used to illustrate the effect of boundary approximations on computed
resonant frequencies. In Figure ??, convergence of error for p- and s-refinement is shown for iosparametric
elements and NEFEM elements. The geometrical error can be seen to have a significant effect for low-

order planar elements.
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(a) Convergence of error in resonant frequency with (b) Meshes for resonant frequency error below 1073, left to
square root of number of degrees of freedom for right: planar isoparametric elements, p = 1 nefem elements,
mode shown in (b). p = 4 isoparametric elements.

Figure 3: Results for a circular free-space cavity surrounded by a PEC boundary.
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Figure 4: Results for fully 3-dimensional cubic cavity with PEC boundaries

Parallel computation allows computation of resonant frequencies and mode shapes for challenging
realistic 2- and 3-dimensional geometries with high accuracy, in a reasonable run time. Dramatic speed
increases can be obtained for larger meshes, notable with higher-order elements, as illustrated by an
almost linear speed up shown in Figure 4b.

5. Conclusions

A method has been presented for obtaining electromagnetic resonance properties of cavities using
a parallelised discontinuous Galerkin time domain solver. We validated the method by showing #h-
convergence of the error in resonant frequencies. The method has been validated and optimal convergance
rates in the resonant frequency error has been achieved. The effect of geometrical representation and
high-order elements on resonant frequencies have been quantified and the advantages of parallelisation
quantified.
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ABSTRACT

This paper proposes a novel scheme for the solution of Maxwell equations in the time domain. A discretization
scheme in time is developed to render implicit solution of system of equations possible. The scheme allows for
calculation of the field values at different time slices in an iterative fashion. This facilitates us to tackle problems
whose solutions have harmonic or even more general dependency on time.

The spatial grid is partitioned into finite number of elements with intrinsic shape functions to form the bases of
solution. Furthermore, the finite elements are enriched with plane wave functions. This significantly reduces the
number of nodes required to discretize the geometry, without compromising on the accuracy or allowed tolerance
in the errors, as compared to that of classical FEM. Also, this considerably reduces the computational costs, viz.
memory and processing time. Parametric studies, presented herewith, confirm the robustness and efficiency of the
proposed method.

The numerical scheme can thus be further developed for solution of problems where analytical solutions cannot
be developed, or even when the solution cannot be categorized as time-harmonic in nature.

Key Words: Finite Element ; Partition of Unity ; Time domain ; Wave Equations

1. Transverse Electric Mode of propagation

Let Q be a unit square defined on a 2D Euclidean space, with its four edges as the boundary I'. The
boundary value problem be defined as follows

O’E
o *V2E = f x,y); on Q (1a)
OE
— + hE =g(t,x,); on I’ (1b)
ov
E° = Uy (Ic)
AE°
= _vV 1d
Y 0 (1d)

where E is the magnitude of the transverse electric field in the direction Z perpendicular to the Euclidean
plane. The above equation can be approximated using finite element and finite difference schemes for
numerical solution. Let’s discretize the time derivative in the following way (in order to facilitate the
development of time-dependent formulations [1] as seen in analyses for transient response [2] or diffusion
problems [3])
aZEn E" — 2En—l + En—2
o Ar? @
Where the superscript n stands for the value of the field at the time instance ¢t = nAt. Substituting in (1a)
gives

E"-2E"'+E"? ]
2 _
VE"l_ C2At2 _ij(tyx,)’)
= E" — (PAP)VPE" = 2E" ' —E" 2 + (AP) f(t, x, y) (3)
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The equation (3) can be used to obtain a weak form which can be further solved over a finite number of
elements in space as a linear system of equations. Let u be a test function multiplied to (3)

w(E" - (CAP)VPE") = u (2E" = E" + (AP) f (1, x,Y)) (4)

Integrating the left and right hand sides, over the domain Q with boundary I', and applying the divergence
theorem we get

f uE"dQ + (¢*Ar?) { f Vu-VE"dQ — f uv- VE"dF} = f u (2E"—1 —E" 2+ (AP f(t, x, y)) dQ
o) o) r o)

(5)
Where ¥ is the normal unit vector to I'. From (1b) and (5) we get the solvable weak form

f uE"dQ + (*Ar?) f Vu - VE"dQ + (c*Ar?) f u (hE™)drT =

Q Q r
f u(2E"" - E"72 + (AP) f (1, x,y)) dQ + (*Ar) f u g(tn, x,y))dT  (6)
Q r

This equation (6) can be used to solve for E™ for the given set of boundary and initial conditions. The
equation can then be iterated over n to obtain subsequent values of the fields for consecutive time steps.

This paper validates the proposed method against a transient wave problem on a 2D plane, where the
solution is such that the magnitude of Electric field E is defined as E = A/ where p=t- % Here
k is the wave number, w angular frequency, r length of the position vector, e the natural exponent and
i the imaginary number. Then the above constant ¢ becomes the phase velocity defined such as ¢ = ¢
while the function g(#, x, y) is defined on each domain edge according to the relevant normal direction.

The propagator function ff (defined in the appendix) provides a means to control the initial condition
of the problem, and can be used to manipulate the envelope of the moving wave, such that the solution
is a wave expanding symmetrically about the origin as it evolves in time.

The problem is initialized with the solution E° (i.e. at r = 0), and for the boundaries we use appropriate
derivatives.

To solve the weak form (6) using the finite element method we mesh the domain into a set of elements
where the field E over each element is approximated in terms of a set of nodal values E; and nodal shape
functions N; such as

E= Zn: E:N; (7)
i=1

Using the partition of unity [4] property one may further express the nodal values of the potential E; as
a combination of Q plane waves [5] such that

E =

n o
N;| B +ZA?ei(kxcosaq+kysin(lq) (8)

i=1 g=1

where a, is the angle of the gth plane wave. This ensures that we have the B term to capture variations
which vary slowly (or don’t vary at all, for example constants), and the plane wave enrichments that could
form the basis for wave type solutions in the computational domain. Now by solving the linear system
resulting from the above discrete representation we get the amplitudes A? of the plane waves which is
the gth plane wave contribution at the node i.

2. Analyses

A comparison of relative errors is conducted to study the behaviour of accuracy in solution obtained

from the suggested PUFEM and classical FEM (figure 1). We test the accuracy of our method with the L,
abs(E—-E)
abs(E)

norm, computed as the relative error percentage given by L = x 100, where E, E are numerical

and analytical solutions of the problem at hand.
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The problems parameters are wave number k = 8m, angular frequency w = 1, and amplitude A = 1.
The computational domain is a 2D unit square, with its bottom-left vertex shifted from the origin by
a distance of ¢ x 100A¢ in each direction. This facilitates the wave, originating at the origin, to enter
the computational domain by a 100 iterations in time, for the given step-size Atz. Note, the parameters
assumed here are strictly numerical.

Table 1: : Parameters for PUFEM vs. FEM

Type At A |DOF| QO | 7
PUFEM | 1072 | 1/4 | 300 | 12 | 43
FEM | 1072 | 1/4 | 3600 | n/a | 15

Table 1 shows the values of parameters studied. 7 is the total number of degrees of freedom per
wavelength, computed as 7 = Am+/Q for PUFEM, and for FEM was calculated as T = Am, where m is
the number of nodes per direction on the computational grid. The total number of degrees of freedom
(DOF) for PUFEM was computed as m>Q and for FEM it’s simply m?.

Figure 1 below shows the plots of errors obtained from the analyses. The FEM stands at 50% error at
the end of 5000 time steps (for a total time of 50 with Az = 1072), as compared to the proposed PUFEM
which showed less than 10% error with about one fourth the 7 used in case of FEM.
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Figure 1: Semilog plot of L norms in percentage to compare results from PUFEM and FEM for k = 8x. The wave
covers the whole of computational domain by time ¢ ~ 36.
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Figure 2: 2D Plots of the recovered wave (k = 8r), obtained using the proposed PUFEM. The computational

domain was meshed into 4 X 4 elements. The number of plane wave enrichments used Q(7) = 12(4.3), and
At = 1073, The final L; norm percentage at the end of the simulation was 3.6%

Even though we know that, in theory, a smaller Ar would lead to better results, however, it becomes
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increasingly impractical to use smaller Ar with FEM owing to the sheer computational costs to solve
bigger systems. To provide an idea (and by no means a rigourous comparison), the FEM results presented
here took multiple weeks to compute, compared to their PUFEM counter parts which finished all the
computations over a few hours.

Figure 2 shows 2D plots for numerical solution obtained with PUFEM when we used the same 7 = 4.3
but with a smaller Ar = 1073, and the final error was about 4%.

3. Conclusions

An enriched Finite Element Method, utilising the property of partition of unity to enrich the nodal values
in the classical FEM, is formulated for solution of Maxwell equations in the time domain. The proposed
PUFEM is validated against a progressive wave problem as demonstrated in section 2, wherein the
method is tested against analytical solution for the proposed problem, with the L; norm. A comparison
of the suggested method with classical FEM is carried, and it is observed that the former outperforms
the latter on the grounds of lesser computational cost (including the total simulation time) and accuracy.
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Appendix A. Definition for the propagator function

The function definition for f; for parameters a and b is given as

X b _x2
erf(—)x+ax+—e b2 A.l
e 3 ) 4D

The parameters a and b can be set to control the smoothness of the slope of the function near the origin.
The derivative of this function is given by

fr(x) =

1+a

erf (%) +a

d
7 VLl = ——

(A2)

That is, the derivative of the function is a shifted and normalised error funciton. The following notation
is used for the function

fL(p) =

b _p’
{erf(lf)p+ap+ 7 ,,2} = f7 (A3)

1+a b
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ABSTRACT

The aim of this work is to provide a promising way to improve the computational efficiency for BEM. This study
introduces an ’a priori’ model reduction method in BEM analysis aiming to enhance efficiency by approximating
the problem solution using the most appropriate set of basis functions, which depend on Karhunen-Loéve decom-
position. The calculation process will proceed making use of a precomputed basis function space if the norm of the
residual is small enough; if not, it need to enrich the approximation basis and compute again some of the previous
steps. Finally, an example is proposed which demonstrates fast resolution of BEM problem and illustrates the
potential of this numerical technique. This work is preliminary work in a larger programme leading to optimisation
using isogeometric BEM scheme accelerated with the Proper Orthogonal Decomposition.

Key Words: BEM; model reduction; Karhunen-Loéve decomposition

1. Introduction

The Boundary Element Method (BEM) [1] is a domain discretization technique for solving partial
differential equations; one major advantage of boundary integral equation approaches is to decrease the
dimension by one, i.e., only line integrals are required in 2D and surface integrals in 3D problems, from
which a smaller system of equations will be generated. Hence, this alleviates the burden of mesh generation
as a surface mesh generation is much easier, more rapid and (importantly) more robust than domain mesh.
In spite of teh advances in FE mesh generation, these advantages of BEM remain considerable when
the objective is to analyse many, similar geometries, such as in optimisation schemes, involving multiple
remeshing operations. The drawbacks of BEM include the fully populated matrix structure; it also dos
not lend itself as well as FEM to materially non-linear problems. In order to accelerate the solution
(specifically, the re-solution) of the dense linear system, model reduction techniques present a promising
strategy.

Model reduction techniques have been derived from some problems in random data processing, and
further used in image processing. They have been successfully applied in some finite element frameworks
[2, 3], the nonlinear mechanical problem [4, 5] and 2D BEM in fluid mechanics [6]. In the current work
we assess their suitability for the BEM analysis process in 3D elasticity, updating solutions following
geometric changes that might occur during an optimisation process. In the future this will be extended
into an isogeometric BEM context.

1.1. Boundary Element Discretization

For a linear elastic problem, the structure occupies a continuous domain €, having boundary I', with the
boundary conditions,
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where the domain boundary I' =T, + I';.

The Boundary Integral Equation (BIE) can be written as follows,

u,-(s)+le-j(s,x)uj(x)dF(x):fU,-j(s,x)tj(x)dF(x) 2)
r r

where s is the ‘source’ point and x the ‘field’ point. By using standard methods of discretisation of (2)
and taking s as all nodes in turn, we arrive at the matrix form

Hu=Gt 3)

where u contains the nodal displacements and ¢ the nodal tractions. Both u and ¢ include a combination
of unknown values and prescribed boundary conditions. Rearrangement of (3) leads to the final form

Ax=F

“4)

where the size of Ais N X N.

1.2. The Karhunen-Loéve Decomposition (KLD)

Also known as Proper Orthogonal Decomposition (POD), the KLD is a powerful and elegant method for
data analysis aimed at obtaining low-dimensional descriptions of a high-dimensional process.

For an arbitrary evolution process, a certain field could be defined by a discrete form as u” (x;), Vp €
[1,...,P],¥i € [1,..., N], describing the nodal displacement (x,) at the calculation step p. The main idea
of the KL.D is to obtain a low dimensional space containing the most typical or characteristic behaviour
among the displacement fields. This is equivalent to obtaining a function ¢(x) maximizing a defined by

SP BN, e )]
a =

L (B(x,))? )
Introducing a vector notation, Eq.(5) takes the following matrix form
k¢ = g (©6)
The two point correlation matrix k is given by
P
k=) u @) ™
p=1

which is symmetric and positive definite.

Here, the functions defining the characteristic structure of u” (x) are the eigenfunctions ¢y (x) = ¢k
associated with the highest eigenvalues.

2. Reduced Model Construction

If some direct simulations have been carried out previously, the nodal displacement can be defined as
u(x;, sp) = uf, Viell,...,N],V¥p €[l,..., P]. The eigenvalues are assumed ordered, if ax > 1070,
Yk € [1,...,n], (a; is the highest eigenvalue). Then, those n eigenvectors related to the eigenvalues
above could be used for generating an approximating basis for further solutions. The matrix B is defined
as

e R ®
¢}v ¢?V qyllv
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where N is the DOF of the system and we take eigenvectors 1,...,n. The nodal displacement vector in
Eq.(4) could be written as

n

x=>'4 =BL )
i=1
which could be substituted to Eq.(4) to obtain
AB{=F (10)
and we finally premultiply both sides by BT,
B'AB{ =B'F (1

This procedure provides a final n X n matrix in a low dimension. While the generation of matrix A is

still time consuming, it can be accelerated by er-use of matrix coefficients that are unchanged from a
previous design iteration. This process is likely to be made more powerful and general when the authors
implement their future plans of bringing POD to an isogeometric BEM context.

3. An ’a priori’ Model Reduction Strategy

As the geometry evolves during the design/optimisation process, the basis matrix B should be updated.
The basis matrix B is generated by the first P steps, and another § steps will be analysed with this basis.

After each § steps, the residual of the system should be evaluated as
R=Ax-F=AB{-F (12)

If the norm of residual is sufficiently small, || R ||< €, with € a threshold value, the next S steps will
be continued; otherwise, the approximation basis should be enriched and the last S steps recomputed to
ensure accuracy is maintained. The enrichment is built using the Krylov subspace, the new basis matrix
being defined as

B* = {BV.R AR A’R} (13)

where V is the combination of the most representative eigenvectors which is from the previous reduced

result £. A new solution vector could be written as

;= [B*Té*]_l BTB¢ (14)

4. Numerical Example

In this preliminary study, the problem is defined as a simple cube (Fig. 1) which is under a uniaxial
compressive pressure of 1MPa in the z-direction. The left, back and bottom surfaces have normal
displacement constraints. The material properties of steel are used. As a design evolution process, the
height /& will be continuously increased in 0.02m increments. This problem is solved first P = 25 steps
for generating the approximation matrix using the conventional BEM approach. The approximation is
performed using 54 elements, giving 168 degrees of freedom. The eigenvalues and eigenvectors are
derived from those pre-calculated displacements, and only 4 eigenvalues satisfy the selection criterion
(ax > 1070¢;). This means a 168 x 168 matrix will be reduced to a 4 x 4 matrix for solving the
remaining design iterations. The next calculation step will be divided to S = 35 parts, for each part,
including S;,» = 5 sub-calculation steps. In this case, the solution is performed starting from the reduced
basis which is obtained previously and after each 5 steps, the quality of the solution is checked and follows
the previous criterion for judging whether the basis should be enriched.

Fig. 2 compares the displacement result of the top surface in the z-direction; as the figure shows, the
reduction model provides an accurate result with a lower dimensional computation, and the error is
within 0.14%.
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pression

5. Conclusions

In this article, the Karhunen-Lo¢ve decomposition model reduction approach is combined with the
Boundary Element Method for 3D elasticity. The size of linear system is dramatically decreased while
mainitaining appropriate accuracy. The numerical example proves the potential of this method. Fur-
ther work will demonstrate the extension of this method to isogeometric BEM, and linking with the
optimisation process for more complicated structural components.
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ABSTRACT

The present work develops a new isogeometric Boundary Element Method with subdivision surfaces for solving
Helmholtz problems. The work gives a brief overview of subdivision surfaces and their use in an analysis context
highlighting the pertinent points for boundary element analysis. We find that by adopting the high order (quartic)
basis functions of subdivision surfaces to perform Helmholtz analysis a higher accuracy per degree of freedom
is obtained over equivalent Lagrangian discretisations. We demonstrate this through a Helmholtz problem with a
closed-form solution in which a plane wave is impinged on a ‘hard’ sphere.

Key Words: Isogeometric analysis; boundary element method; Helmholtz; subdivision surfaces

1. Introduction

Isogeometric analysis (IGA) has rapidly expanded in recent years into a major research effort to link
Computer Aided Design (CAD) and numerical methods driven by the need for more effcient industrial
design tools. The central idea of IGA is that the same discretisation model is used for both design
and analysis which eliminates costly model conversion processes encountered in traditional engineering
design work flows. IGA was originally conceived by Hughes et al. [1] and has predominately focussed on
the use of the Finite Element Method, but work has also applied the approach to the Boundary Element
Method (BEM) where distinct advantages are found, stemming from the need for only a surface mesh. In
the majority of IGA implementations the most commonly used CAD discretisation is the Non-Uniform
Rational B-Spline (NURBS) due to its ubiquitous nature in CAD software. However, NURBS technology
has limitations due to its tensor-product nature and a number of researchers have developed alternative
CAD discretisations which overcome this limitation. One such example is T-spline technology which has
been employed in an IGA setting by Bazilevs et al. [2] in 2010. Subdivision surfaces provide another
alternative for overcoming the limitations of NURBS, initially introduced by Cirak [3] in 2000. The
present work have developed an isogeometric Boundary Element Method with subdivision surfaces for
solving acoustic problems.

2. Boundary Element Method for Helmholtz Problems

For time-harmonic acoustic problems, the governing equation is the Helmholtz equation which is ex-
pressed as
V2H(x) + K*p(x) = 0 (1)

where ¢(x) is the acoustic pressure and k is the wavenumber defined as k = < where w is the angular
frequency and c is the thermodynamic speed of sound. Several numerical methods can be used to solve
Eq. (1) but many suffer from problems including dispersion error and difficulties in handling infinite
domains (e.g. the finite element method). In contrast, the Boundary Element Method does not suffer
from dispersion error and naturally handles infinite domains. A core feature of the BEM is the use of
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fundamental solutions to arrive at a numerical solution, and in the case of 3D acoustic problems the

fundamental solution is giVCll by:
?ikr
G X, =

(@)
where x is the source point, y is the field point and r = |x — y|. The corresponding normal derivative of
this kernel can be expressed as:

aG(x,y) _ e'kr
on 42

(ikr - 1)%. 3)

The use of Eq. (2) and (3) allows a boundary integral equation to be formulated that relates acoustic
pressure and its normal derivative as:

) 45) + ine ) @)

G(xy)
c(R)P(x) + f Y o(y)ds(y) = GnT5
where S represents the boundary surface, ¢;,. denotes the acoustic pressure of a prescribed incident
wave (only applicable in the case of scattering problems) and c(x) is a coeflicient that depends on the
geometry of the surface at the source point. In the case of smooth boundaries, its value is given by
c(x) = %

For computer implementation purposes, the acoustic pressure and normal derivative are discretised
through an appropriate set of basis functions as:

5¢(X)

$(x) = ) ¢aNa(x) Z gaNA(X) 5)
A=1

where in the present study {Na (x)}} _, is a global set of subdivision basis functions, {¢ 4 (x)}’;_, is a set
of nodal acoustic pressure coefficients and {ga (x)}); _, is a set of nodal acoustic velocity coeﬁ101ents

3. Subdivision Surfaces

There exist a variety of subdivision schemes, but all are based on the idea of generating a smooth surface
from a coarse polygon mesh. Subdivision refinement schemes construct a smooth surface through a
limiting procedure of repeated refinement starting from an initial control mesh. Subdivision refinement
schemes can be classed as either an interpolating or approximation scheme where Figure 3 illustrates the
commonly used Catmull-Clark approximation scheme.

Figure 1: Successive levels of Catmull-Clark subdivision refinement applied to an initial cube control mesh.

Subdivision basis functions can be used as a basis for analysis [5] and have successfully been used in
variety of applications including thin-shell finite element analysis [3]. We extend the work of [3] by
adopting a Loop subdivision scheme and applying subdivision basis functions for acoustic boundary
element analysis.

The Loop subdivision scheme is based on a triangular tessellation with a typical element and its one-ring
neighbours shown in Figure 2 corresponding to a regular patch where each vertex has 6 connecting edges.

44



The shaded element in this patch contains 12 non-zero quartic basis functions as detailed in [5]. In the
present study these basis functions are used to dicretise the acoustic pressure and acoustic velocity. In
addition, we apply a collocation procedure whereby a set of global collocation points is generated through
interpolation of the limit surface at vertex locations allowing a system of equations to be constructed.

Figure 2: An element defined over a regular patch with 12 control points

4. Results

To validate the current subdivision BEM the approach was applied to the problem of a ‘hard’ sphere
impinged by a plane-wave, as illustrated in Figure 3. In this problem a dimensionless wavenumber of
k/a = 8 was chosen with the acoustic pressure sampled at a set of points surrounding the sphere.

.« ® *°. e sample point

plane wave °

Figure 3: Problem of a plane wave impinged on a ‘hard’ sphere [4]

Two sets of boundary element analysis were performed for this problem: the first applied a conventional
Lagrangian discretisation using quartic basis functions defined over triangular elements and the second
applied quartic subdivision discretisations. In the study, a Lagrangian mesh with 1152 degrees of freedom
(dof) and two subdivision meshes with 438 and 1746 dof were used.

The results for the three discretisations at each of the sampling points are shown in Figure 4 along with the
analytical solution. A a closeup view of this plot illustrates that both subdivision discretisations deliver
higher accuracies compared to the Lagrangian discretiation even with fewer degrees of freedom.
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Figure 4: A comparison between Lagrangian discretisations and subdivision surfaces (k = 8)

5. Conclusions and Future Research

The present work develops a new isogeometric Boundary Element Method with subdivision surfaces
for solving Helmholtz problems where it is found that higher accuracies are obtained over a Lagrangian
discretisation of the same order. There are several future research directions for the present work:

* Coupling the Boundary Element Method and the Finite Element Method for structural-acoustic
analysis

» Simulating electromagnetic scattering problems by developing suitable div- and curl-conforming
discretisations
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ABSTRACT

In this study, an incompressible mesh-less smoothed particle hydrodynamics (SPH) methodology has been
implemented to simulate the flow of self-compacting concrete (SCC) mixes in the J-ring test. A suitable
Bingham constitutive model has been coupled with the Lagrangian momentum and continuity equations to
model the flow. The capabilities of the SPH methodology are validated by comparing the simulation results with
the actual J-ring tests carried out in the laboratory. The comparison shows that this methodology is efficient to
predict precisely the behaviour of SCC in the sense that the simulated mixes meet the passing ability criterion
and the shapes and diameters of the flow spread are nearly the same as observed in the laboratory test.

Keywords: Self-compacting concrete (SCC); Smoothed particle hydrodynamics (SPH); Non-Newtonian fluid; J-
ring test; plastic viscosity.

1. Introduction

With the recent tendency towards the use of computer modelling in concrete technology, its
application in self-compacting concrete (SCC) is in demand and increasingly becoming an important
issue. In this regard, one of the important approaches offering considerable potential is the smoothed
particle hydrodynamics (SPH). It is able to simulate flows that contain particles of different sizes.
SPH is a particle-based method (it does not require re-meshing) to represent with an acceptable level
of accuracy the rheological behaviour of heterogeneous flow. This method has been examined and
proved to be efficient and accurate in modelling the flow of SCC in the cone slump flow and L-box
tests [1, 2]. The goal of this paper is to extend its application to simulating the flow of SCC in the J-
ring test. This methodology will provide a thorough understanding of whether or not an SCC mix can
satisfy the self-compatibility criteria. For this purpose, a series of SCC mixes differing in target plastic
viscosity and compressive strength were prepared in the laboratory. These mixes were designed
according to the rational mix design method proposed in [3].

2. Numerical modelling

Fresh SCC is a non—Newtonian fluid best described by a Bingham-type constitutive model. From a
practical computational perspective, it is expedient to approximate the bi-linear Bingham constitutive
model, which has a kink at zero shear strain rate, by a smooth continuous function in which m is a
very large number (e.g. m = 10°).

T =777+ry(1—e_m7) (1)
Here, 1,7,y andt, represent shear stress tensor, mix plastic viscosity, shear strain rate and mix yield

stress, respectively. The Bingham constitutive model of the mix is coupled with the Lagrangian
continuity equation (Eq.2) and momentum conservation equation (Eg.3) to model the flow of the SCC
mix:

1D Dv 1 1

2P ivN=0 , Y =_TVP+-Vi+g 2,3
p Dt Dt Yol Yol

20n leave from University of Al-Qadisiyah, Iraq
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where p, t, v, P and g represent the fluid particle density, time, particle velocity, pressure and
gravitational acceleration, respectively.

A projection method based on the predictor-corrector time stepping scheme has been adopted to track
the Lagrangian non-Newtonian flow. The prediction step is an explicit integration of the momentum
conservation equation (Eq.3) in time without enforcing incompressibility. Only the viscous stress and
gravity terms are considered in Eq.3 and an intermediate particle velocity v , is obtained as:

* 1
Vo, =V, + (g + —V.r}At (4)
Yo
Then the correction step is performed by considering the pressure term in Eq.3:
V., -V, 1
n+l n+l _vpnﬂ (5)
At Yol

where v, . is the corrected particle velocity at the time step n+1. Computing Eq.5 requires the

pressure P ., which is obtained by enforcing the incompressibility condition from the
continuity equation (Eq.2):
V.v,,,=0 (6)
Hence the intermediate velocity can be projected on the divergence-free space by writing the
divergence of Eq.5, using Eq.6, as:
1 VAYA
V| —=VP., |= n+l (7
Yo At
As the density of particles remains constant in this simulations, Eq.7 can be rewritten as:
2 P g\
\4 F)n+1 = Ktv'vnﬂ (8)

where V?is the Laplacian. Once the pressure is obtained from the Poisson equation (Eq.8), the
particle velocity is updated by Eq.5. Finally, the instantaneous particle position is updated as:

Xng =X, +V, At 9)

n+1

3. Boundary conditions

Three types of boundary conditions need to be considered in the simulation of the J-ring test when
solving the continuity and momentum conservation equations. These are: (1) a zero pressure condition
on the free surface; (2) Dirichlet boundary condition at the wall of the cone, J-ring bars and the
bottom plate, and (3) Neumann conditions on the pressure gradient (this zero pressure gradient is used
only for solving the pressure Poisson equation), as shown in Figure 1A.

In this simulation, the technique based on arrays of rigid dummy particles was used to implement the
cone wall, J-ring bars and base plate boundary conditions, as shown in Figure 1B. For realistic
simulations, the friction between the SCC mix and the contacting surfaces should be taken into
consideration. Here, the coefficient of kinematic friction (Cs) for the horizontal plate and J-ring bars is
0.55 and 0.48 N s/m, respectively. The former was determined previously by matching the tseo (the
time when the mix spread reaches 500 mm) in slump cone test with the simulated results [2]. The
latter was chosen by matching the tsoo; in the J-ring test with the simulated results of Mix50 in the
present study.
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Figure 1: (A) boundary conditions, (B) Dummy particles for enforcing boundary conditions

4. Treatment of particles in the simulated mixes

In order to monitor the velocity vectors and positions of coarse aggregates of different representative
sizes, as well as those of the fluid particles representing the mortar, the particles were represented by
recognisable colours as shown in Figure 2. The volume of the mix in the cone was simulated by
23,581 particles. These particles were generated randomly in this simulation. Particles representing
the mortar as well as the coarse aggregate form a homogeneous mass and possess the same continuum
properties except for their assigned volumes. The masses of the SPH particles representing different
coarse aggregate particles in the mix were calculated according to their respective volume fractions in
the mix. Throughout the simulation, particles representing the coarse aggregates based on their
assigned volumes were tagged (Figure 2) in order to monitor their velocity vectors and positions.

o2 Particles representing large aggregates
9 @ >20 mm @ 16-20 mm
°
e

@ 12-16mm O 8-12mm

o . Particles representing paste
[ ]
@.°0
.0, . @99 o< 8mm

Figure 2: Schematic sketch of particle representation in the simulated mixes

5. Simulation results

To investigate how efficient the SPH is to predict the flow of SCC mixes through reinforcing bars,
different SCC mixes were three-dimensionally simulated using the J-ring test. The fundamental
parameters (plastic viscosity and yield stress) of these mixes have been determined to be used in the
present simulation. The plastic viscosity was estimated by a micromechanical procedure from the
known plastic viscosity of the paste and the SCC mix proportions [4] while the yield stress was
predicted in an inverse manner using the SPH simulation of slump flow test [1].

The results of a typical SCC mix (Mix50) regarding its shape and spread as well as its blockage
assessment are shown in Figures 3 and 4. From Figure 3A it can be noticed that the shape of the
simulated spread looks smooth as a ‘pan cake’ identical to that in the laboratory test (Figure 3B). It
can also be seen that the diameters of the flow spread of the simulated mix are nearly the same as that
observed in the laboratory test.

With the reference to the passing ability criterion, SCC should have the ability to flow and pass
through congested reinforcement and narrow openings while maintaining adequate suspension and
distribution of coarse particles in the matrix. This means that arching near obstacles and blockage
during flow have to be avoided. In this simulation, the SCC passing ability can be judged in terms of
the height difference between the concrete inside and outside the steel bars of the J-ring using the
following equation.

b - Ah,, +Ah,, + Ah, +Ah,,

J 4 o Aho (10)
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Here, P; is the blocking step, Ak is the height measurement at the centre of flow and Alxi, Ahx;,
Ahy1, Ahy> are the four measurement heights at positions just outside the J-ring. Taking the acceptance
criterion of SCC passing ability as the blocking step (P;) is no more than 10 mm [5], the simulated
mix did flow homogeneously without blockage, as it is clearly observed in Figure 4.

115
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a0}

>
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Figure 4: Diametrical cross-sections (A and B) of the simulated mix

6. Conclusions

This study reveals that the developed numerical methodology (SPH) is able to capture the flow
behaviour of SCC mixes in the J-ring test. This has been validated by benchmarking the results of the
numerical simulation against actual J-ring tests carried out in the laboratory. SPH simulation is
therefore an indispensable and cost-effective tool for understanding the behaviour of fresh SCC
replacing time-consuming laboratory tests, thereby saving time, effort and materials.
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ABSTRACT

We investigate discretization strategies of the conservation equation in VSIAM3 (volume/surface integrated average
based multi-moment method) which is a numerical framework for incompressible and compressible flows based
on a multi-moment concept. We investigate these strategies through the droplet splashing on a superhydrophobic
substrate. We find that the use of the CIP-CSLR (constrained interpolation profile-conservative semi-Lagrangian
with rational function) method as the conservation equation solver is critically important for the robustness of
incompressible flow simulations using VSIAM3 and that numerical results are sensitive to discretization techniques
of the divergence term in the conservation equation.

Key Words: multi-moment method; VSIAM3; CIP-CSL method; droplet splashing

1. Introduction

VSIAM3 [1, 2] is a numerical framework to simulate fluid flows, and employs a CIP-CSL method [4, 3]
as the conservation equation solver. VSIAM3 is a highly robust and efficient numerical framework [5].
However, a multi-moment framework which has been used in VSIAM3 (including the CIP-CSL method)
have increased some complexities in the implementation. Although several CIP-CSL methods such as
CSL2 (CSL with quadratic function) [4], and CSLR (CSL with rational function) [3] have been proposed,
little attention has been given to the formulation of the divergence term in the CIP-CSL methods.

In this study, we propose efficient formulations for the divergence term in the CIP-CSL schemes and we
identify reasons for robust implementation of VSIAM3.

2. The CIP-CSL and the Velocity Divergence Term

The CIP-CSL methods are used to solve the conservation equation

o [ eav+ [ o-mas=o ()
ot Ja r

here ¢ is a scalar value. In the CIP-CSL, an interpolation function ®;(x) is constructed using different
moments in one cell. For instance, in the CIP-CSL2 [4] method, a quadratic interpolation function ®; (x)

@;(x) = a;i(x — xi-172)* + bi (X = Xi_1/2) + $i_1/2, ()

is used to interpolate between x;_1,2 and x;,1/2 as shown in Fig. 1. By using the following constraints

D;(xi41/2) = div1/2, (3)
Xit1/2
b = f ®; (x)dx/Ax, 0
Xi1/2

the coeflicients, a; and b;, can be determined. In the CIP-CSLR [3] method which is characterised by
less numerical oscillations, the following interpolation function

@; Bi(x = xi—12)* + 2a;(x — xi-172) + $i—1)2
(1+ Bi(x = xi—12))?

Q;(x) = ; (&)
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with
a; = Pidi +(d; — di—1,2)/Ax, (6)
1 |(¢i—1/2_¢i)|+6+1)’ o

Fi= Ax \1(gi - Gi-172)| + €

is used. Here € is an infinitesimal number. Once the interpolation function ®; (x) is ready, the cell average
¢; is updated by a finite volume formulation

i1 Oir1

(I)i-3/2

Xi-3/2 Xi-1/2 Xi+1/2

Figure 1: Schematic figure of the CIP-CSL2 method. u;_1,2 < 0 is assumed. The moments which are indicated by
gray color (¢;—1,2, ¢; and ¢;+1/2) are used to construct the quadratic interpolation function.

0 Xi+1/2

1
2 = ——(Fij - Firya),
Y ¢dx Ax( +1/2 1/2) (8)

Xi-1.2

here F;_1,; is the flux

Xi-1/2

_ fxi—l/z—ui—l/zAt )

.  [rimee gy (dx i i =0
i—1/2 =
e O;(x)dx  if w12 <O0.

Xi-1/2
The boundary value ¢;_;,2 can be updated by the conservation equation of a differential form

9., 09 __ o

= —¢p—. 10
or " Max T Pox (10
(10) is solved using a splitting approach as follows
g  0¢
— +u— =0, 11
FTINT" (
¢ ou
o _p—. 12
ot ¢(9x (12)
A semi-Lagrangian approach is used for the advection equation (11)
o= { Q1 (xi—1/2 = ui-12A88) if wj—12 20 (13)
i-1/2 D;(xi-12 —ui—1pA) if w12 <O0.

(12) represents a correction due to the divergence term of the velocity and is solved by a finite difference
method. We propose the following approximations of the velocity divergence term of the 1D conservation
equation.

Simple upwind based on boundary value (UPW)

u o —u't )
@ — { ¢Z‘F—1/2(W) if Ui—1/2 > 0 14

ull o, —ult .
dx ¢;f_1/2(—””2Ax’ 2y if iy <0.
This is a simple upwind approximation based on the boundary values.
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Central difference based cell centre value (CDcc)

8u ﬁl?—l/t.

i v a9

This is a central difference approximation based on the cell center values (i;), where i; is the
velocity calculated at cell centre [2]

¢

1
u; = Eui - Z (ui+l/2 + ”i—1/2) . (16)

Mixed formulation of the simple upwind and a central difference (UPW-CDcc)

ou Dypw if Dypw Dcpee <0
¢a =4 Dypw celseif |Dypwl < [Depeel (17)
Dcpee  else,

0
here Dypw and Dcpee represent q’)a—u which are calculated by (14) and (15), respectively.

X
The mixed formulation is introduced to take advantages of both upwind and central difference
approximations.

3. Numerical results of the droplet splashing

We conducted numerical simulations of droplet splashing on a superhydrophobic substrate to study
the effects of these discretization strategies of the conservation equation in VSIAM3 through a highly
complicated free surface flow problem.For more detail see [5].

In the set of numerical simulations, quantitative parameters, the densities p;;4uiq = 1000 kg/m3, Pair =
1.25 kg/m3, viscosities py;guiq = 1.0X 1073 Pa-s, Uair = 1.82X 1073 Pa-s, surface tension o~ = 7.2x 1072
N/m, gravity 9.8 m/s?, initial droplet diameter D = 1.86 mm, impact speed 2.98 m/s and the equilibrium
contact angle 163° are used. A regular Cartesian grid system of 192 X 192 x 48 is used.

Fig. 2 shows the results. VSIAM3 with CSL2-UPW could not capture droplet splashing well as shown
in Fig. 2a. CSL2-UPW also was not stable after around 1.1 ms. VSIAM3 with CSL2 with any central
difference formulation was not stable for this problem. VSIAM3 with CSLR is stable when UPW was
used for the divergence term as shown in Fig. 2b. However if we use any central difference formulation for
the divergence term, VSIAM3 with CSLR was also unstable. If we use UPW-CDcc (mixed formulation),
VSIAM3 with CSLR could conduct stable numerical simulation of droplet splashing and capture droplet
splashing well as shown in Fig. 2c.

4. Conclusions

The numerical results showed that VSIAM3 with CSL2 is not robust enough and that VSIAM3 with
CSLR is highly robust (if an appropriate formulation is used for the divergence term). We also found
that the numerical results are sensitive depending on discretization formulations of the divergence term
in the conservation equation. The numerical results of droplet splashing showed that VSIAM3 with any
central difference formulation is not robust even though CSLR is used, while VSIAM3 with the simple
upwind formulation was highly robust and captures the droplet splashing well. These results indicates
that the use of the upwind formulation is suitable for robust numerical simulations, especially for highly
complicated flows like droplet splashing.

We also proposed the mixed formulation using both a central difference and the simple upwind formu-
lation for the divergence term. The mixed formulation can simulate the droplet splashing like the result
using the simple upwind. The mixed formulation can take advantages of both central difference and
upwind formulations.

In conclusion, employing the less oscillatory CSL scheme (i.e. CSLR) with an appropriate divergence
term formulation is critically important for robust implementation of VSIAM3.
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(c} CSLR-UPW-CDcc

Figure 2: Numerical results of droplet splashing by CSL2-UPW (a), CSLR-UPW (b) and CSLR-UPW-CDcc (c).
VSIAM3 with CSL2-UPW was not stable after around 1.1ms.

Acknowledgements

This work was partially supported by College of Engineering in University of Basrah. The numerical
simulations were partially conducted on computers at Earth Simulator Center in JAMSTEC, at Yukawa
Institute of Theoretical Physics in Kyoto University and at HPC Wales.

References

[1] F. Xiao, A. Ikebata, T. Hasegawa, Numerical simulations of free-interface fluids by a multi-
integrated moment method, Computers and Structures, 83, 409-423 (2005).

[2] F. Xiao, Unified formulation for compressible and incompressible flows by using multi-integrated
moments I: one-dimensional inviscid compressible flow, J. Comput. Phys., 195, 629-654 (2004) .

[3] F. Xiao, T. Yabe, X. Peng, H. Kobayashi, Conservative and oscillation-less atmospheric
transport schemes based on rational functions, J. Geophys. Res., 107 ( D22), 46009,
doi:10.1029/2001JD001532, (2002).

[4] T. Yabe, R. Tanaka, T. Nakamura, F. Xiao, An Exactly Conservative Semi-Lagrangian Scheme
(CIP-CSL) in One Dimension, Mon. Wea. Rev.,129, 332-344 (2001).

[5] K. Yokoi, A practical numerical framework for free surface flows based on CLSVOF method, multi-
moment methods and density-scaled CSF model20: Numerical simulations of droplet splashing, J.
Comput. Phys., 232, 252-271 (2013).

55



Proceedings of the 24™ UK Conference of the
Association for Computational Mechanics in Engineering
31 March— 01 April 2016, Cardiff University, Cardiff

SIMULATION OF THE FLOW OF SELF-COMPACTING CONCRETE
IN THE L-BOX USING SMOOTHED PARTICLE HYDRODYNAMICS
(SPH) METHOD

*Muna M Al-Rubaye! 2, Bhushan L Karihaloo* and Sivakumar Kulasegram?
1School School of Engineering, Cardiff University, Queen’s Buildings. The Parade, Cardiff, CF24 3AA

*AL-RubayeMM @cardiff.ac.uk

ABSTRACT

Self-compacting concrete (SCC) has been widely used in structures around the world because of its ability to
flow without external intervention. The ability of passing around and between obstacles and the filling of the
formwork are important properties of SCC; they determine how well the SCC mix can flow through confined
and limited zones. For this reason, it is essential to devise numerical tools aimed at the simulation of how SCC
fills formwork as a homogeneous mass without the segregation of mix components. The present study reports a
numerical investigation of the flow and the distribution of large coarse aggregates of SCC mixes in the L-box
using the three-dimensional Lagrangian particle based smooth particle hydrodynamics (SPH) method.

Keywords: Self-compacting concrete; Smooth particle hydrodynamics; yield stresS; plastic viscosity and L-box.

1. Introduction

Self-compacting concrete is described in its fresh state by high flow-ability, filling ability of the
formwork, passing ability through restricted reinforcement bars and resistance to segregation without
requiring any external vibration for compaction. The durability of concrete structures is affected by
many problems of compactness; these problems result from incomplete filling of formworks and
segregation of aggregates inside the structure. This problem is getting more acute as SCC is used in
structures with complex shape and denser reinforcements. It is therefore important to have a tool for
predicting the flow, filling and passing ability in order to save time, effort and materials.
Computational simulation of SCC flow can be a helpful tool for understanding the rheological
behaviour of SCC and can allow to identify a lower workability of fresh concrete that could ensure
proper filling of formwork [1]. For this purpose, the three-dimensional Lagrangian particle based
smoothed particle hydrodynamics (SPH) method is employed to simulate the flow of SCC in the L-
box configuration and to reveal the distribution of coarse aggregate particles larger than or equal to 8
mm in the mix and then to compare the numerical results with the corresponding experimental data.

2. Numerical implementations

SCC is treated as a non-Newtonian fluid best described by a Bingham-type model that contains two
material properties: the yield stress (ry)and the plastic viscosity (n) [2]. From a practical
computational point of view, it is expedient to approximate the bi-linear Bingham constitutive model
with a kink at by a smooth continuous function, where m is a very large number (m=10°) [3].
T=ny+7,(1-e"™) (1)

There are two basic equations solved in the SPH method together with the constitutive relation; the
incompressible mass and momentum conservation equations
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where p, t, vV, P, gand T represent the fluid particle density, time, particle velocity, pressure,
gravitational acceleration, and shear stress tensor, respectively. Below we shall consider flows in
which the density is constant, so that the first term in Equation (2) vanishes.

The solution procedure uses prediction-correction fractional steps with the temporal velocity field
integrated forward in time without enforcing incompressibility in the prediction step. Only the viscous
stress and gravity terms are considered in the momentum Equation (3) and an intermediate particle

velocity V n.1 is obtained as:

V=V, + (g + lV.rjAt (4)
Je)

Here, v, and V'na are the particle velocity and intermediate particle velocity at time t, and
t.,, respectively. Then the correction step is performed by considering the pressure term in Eq. (3):

Vi~V _ ] lvpm'l (5)
At yo,

Rearranging Equation (5) gives,
V= V*n+1 - (lvpn+l]At (6)
yo,

where Vv, is the corrected particle velocity at the time step t..1. By imposing the incompressibility
condition in the mass conservation Equation (2), the pressure P

.1 1N equation (6) will be obtained.
As the particle density remains constant during the flow, the velocity v, is divergence-free.
Enforcing the incompressibility condition as Equation (2) yields,

1 V.V s
Vv,,=0, V|=VP  |=—™ (7). (8)
yo, At
Since the density of particles remains constant in the present simulations, Equation (8) can be
rewritten as:
p *
VPP, = EV'V el (9)
where V? is the Laplacian operator. Once the pressure is obtained from the Poisson Equation (9), the
particle velocity is updated by the computed pressure gradient (see equation (6)). Finally, the
instantaneous particle position is updated using the corrected velocity:
Xng =X, +V, At (10)

where X, ., and X, is the particle position at t_,, and t, respectively.

n+1’

3. Modelling of the flow of SCC mix and the boundary conditions

The modelling of the flow of the SCC mix in the L-box has been done previously [4]. In the present
study, three additional aspects are taken into consideration. These aspects include; friction on the
sides of L-box and on the steel bars, the effect of the time delay in the lifting of the L-box gate
manually on the simulated flow times and the comparison between the simulated distribution of larger
coarse aggregates with the distribution in tests performed in the laboratory using colour coded
aggregates. The distribution of the aggregate particles equal or larger than 8 mm in size have been
modelled as separate particles suspended in the viscous paste containing the particles less than 8 mm
in size. Four ranges of size of the coarse aggregates have been used during the numerical simulation
size as follows; 8 <g< 12, 12 <g< 16, 16 <g< 20 and g>20 mm with a total number of particles 59,568
and these particles were represented by distinct colours as shown in Figure 1(a). When solving the
momentum and continuity equations, the boundary conditions need to be applied. Four arrays of rigid
dummy particles placed outside the sides and the base of the L-box were used to implement the
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boundary conditions as illustrated in Figure 1(b). Dirichlet and Neumann boundary conditions were
imposed on the sides and the base of the L-box. Friction between the boundaries and the SCC mix

was imposed on the L-box sides and the base with a dynamic coefficient of friction between the SCC
mix and steel equal to 0.55 Ns/m.

.o e o ° 4 .u . g220mm
v o @ e .. o ‘: @ 16<g=<20mm
@, __ " ® ‘s © 12<g<16mm
©0.9 00:9.00 O Iss
e _ o e o s ° @) <g<12 mm
® ®.0 @

Paste particles <8 mm

Material particles

ummy boundary

Figure 1 : (a) The aggregate particle representation (b) The boundary conditions of the L-box

4. Simulation results of the flow and the distribution of the coarse aggregates

The 3D simulation of the SCC flow and distribution of the large coarse aggregates has been
performed on the mix of strength 60 MPa, which was developed according to the rational mix design
method[5]. The results of the simulation when SCC mix reached 200 mm, 400 mm of horizontal
section of the L-box are illustrated in Figure 2(a), (b). These flow times differ from the corresponding
test results as a result to delay time in the lifting of the gate L-box manually. By cutting the simulated
L-box specimen after the mix reached the end of horizontal section of the L-box and flow stopped by
two longitudinal sections A-A and B-B Figure 2(c), it was found the modelled distribution patterns

are agreed with the distribution of coarse aggregates in the experimental test results as illustrated in
Figure 3.

Figure 2 : The 3D simulation of the flow in the L-box after SCC mix reached (a) 200 mm (b) 400mm (c) the end
of horizontal section of the L-box and the flow stopped
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Figure 3: The distribution of the coarse aggregates in the experimental test (a) section A-A (b) section
B-B and numerical simulation (c) section A-A (d) section B-B

5. Conclusions

The 3D simulation of the flow of the SCC mix in the L-box presents a prediction of the filling
behaviour similar to that observed in the laboratory test. With regard to the flow times needed for the
mix to reach 200 mm and 400 mm, there is a difference between the simulation flow times and that
the corresponding experimental data due to the delay time in the lifting of the gate L-box manually.
The 3D numerical simulations of the distribution of the coarse aggregates showed that the larger
aggregates remained homogeneously distributed in the mix exactly as in the L-box test in the
laboratory.
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ABSTRACT

Computational modelling of the flow for a viscous fluid such as self-compacting concrete (SCC) is a potential
tool for understanding its rheological behaviour and for mix proportioning as well. The present paper describes a
simple approach to simulate the flow of SCC mixes of different strengths and performances containing aggregate
particles of various sizes in the V-funnel test using 3-dimensional mesh-less smooth particle hydrodynamics
(SPH) computational technique. A comparison between the results of the numerical simulation with the
corresponding experimental observations has revealed the flow characteristics of SCC mixes and confirmed the
capability of SPH and the rheological model to predict SCC flow and mould filling behaviour.

Keywords: Self-compacting concrete; V-funnel; SPH; Bingham parameters; plastic viscosity; yield stress.

1. Introduction

In concrete construction, massive problems arise from the insufficient filling of formwork, inadequate
de-airing and concrete segregation. The impact of such problems has increased year after year since the
formwork is becoming continuously more complex and reinforcement is becoming denser. Self-
compacting concrete (SCC) has been developed to solve these engineering issues. It is a concrete that
flows under its own weight, without external vibration, while maintaining homogeneity. This ensures
proper filling of formwork and produces high quality finish in restricted areas and heavily reinforced
structural members. Various tests are implemented to evaluate the characteristics of SCC, including its
filling ability, passing ability, and segregation resistance [1].These tests can be avoided by using the
most cost-effective computational modelling to save time, effort and materials. Such modelling can also
provide an understanding of the SCC flow behaviour, which is crucial to achieving high quality. Indeed,
the employment of the modelling has brought insight into the significance of the rheology as a tool for
the optimization of mix composition, and the processing techniques to fulfil the levels of engineering
properties required for the intended civil applications.

The V-funnel test, which is one of the standard SCC tests, is designed to determine the filling ability of
SCC in which shorter flow time indicates greater flowability. The V- shape restricts the flow, and
prolonged flow times may give some indication of the susceptibility of the mix to blocking.The actual
time (tv-unnet) taken (the discharge time) when it is possible to see vertically through the V-funnel into
the container below is measured. A time delay of 10 £ 2 s from filling the VV-funnel to the release of the
gate at the bottom of the V-funnel is permissible. In this paper, SCC flow during the V-funnel test of
SCC mixes of various strengths and performances is modelled using the SPH method and the concrete
discharge time is determined. This will provide a tool for simulating the discharge time and its
comparison with the EFNARC guidelines.

2. Numerical simulation

Since SCC flow during the V-funnel test is typically a free surface flow with large deformations, the
Lagrangian mesh-less SPH numerical method is preferred to solve the governing SCC flow equations.
It is also able to treat naturally highly-varying density, deformable boundaries, propagation of
discontinuities, multi-phase flows and other physically complex flow situations. The SPH is a mesh-
less particle numerical approach based on an interpolation theory, in which the partial differential
equations of motion of continuum fluid dynamics are transformed into integral equations by using an
interpolation function.

2 On leave from University of Karbala, Iraq
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This interpolation is carried out by ‘‘kernel estimate’’ of the field variable at any point. The basic
equations solved in the SPH are the incompressible mass and momentum conservation equations [2],
together with the Bingham-type constitutive relation. In this approach, the flow continuum is discretized
into a limited number of particles, N. The particles, which behave as Lagrangian fluid elements, carry
all the necessary information needed about the flow variables; this feature is the principal strength of
the method. The field variables and their gradients are approximately calculated and interpolated from
values at a discrete set of particles in a domain of influence. All randomly generated particles, which
represent the paste and the large aggregates, form a homogeneous mass with the same properties as the
continuum except their assigned volumes.

3. Governing equations

Given its shear rate-dependent response, SCC can be regarded as a non-Newtonian incompressible
fluid. Its rheology is best described by a Bingham-type model which contains two material properties,
the yield stress, 7,, and the plastic viscosity, 7. From a computational perspective, it is expedient to
approximate the bi-linear Bingham constitutive model with a kink at y= 0 by a continuous function:
T=ny +1,(1—e™) (1)
in which mis a very large number, m = 10°. Suitable numerical schemes, which integrate the Lagrangian
SPH approximations of the governing equations (i.e. mass and momentum conservation equations) with
the rheological Bingham type model for SCC, have been developed. These schemes have been exploited
to understand the flow behaviour of SCC containing coarse aggregate particles of various sizes. The
isothermal, Lagrangian form of mass and momentum conservation equations are:
1Dp Dv 1

1
——+V.v=0 2 — =—-VP+-V. 3
ootV (2) Dr- p P tovTts 3)

where p, t, v, P,  and g represent the fluid particle density, time, particle velocity, pressure,
shear stress tensor and gravitational acceleration, respectively. The first term in Eq.(2) vanishes
since the density is constant due to the incompressible flow assumption. A projection method
based on the predictor-corrector time stepping scheme has been adopted to implement the
incompressible SPH approach. The prediction step is an explicit integration in time without
enforcing incompressibility. Only the viscous and gravity terms (second and third terms,
respectively) in Eq. 3 are initially considered to obtain temporal velocity for particles (v;,,,). Then,
the correction step is performed by considering the pressure term (first term) in Eq.3, which will
be obtained by imposing the incompressibility condition using Eg.2. Once the pressure is
obtained from Poisson’s Equation, the particle velocity and position are updated by the computed
pressure gradient. Figure 1 illustrates the time stepping scheme [3].

| Input parameters
=~ Obtain temporal velocity
7 . -
Vi =v, 4| Vg |a Prediction Step
| P
=~ consider pressure term
Vas1 — Viei :( 1 \va = Correction Step
| At P n+l
| Vo, , =0 Imposing incompressibility
v ~ "
1 Vo
v]| v R.ﬂ — ned
| P Ar
~ 7 P .
VB, = Vo, Poisson Equation
| At
~ N 1 . .
Vo =V — VP, |4t Corrected particle velocity
| P
X, =X, +v,, Ar Updated particle position

= { =1+ At
Figure 1: The predictor-corrector time stepping scheme of the incompressible SCC flow [
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4. Initial configuration and treatment of large aggregates

It is necessary to impose appropriate initial boundary conditions to solve the mass and momentum
conservation equations. Three sorts of boundary conditions have been applied in the modelling of the
V-funnel test: zero pressure condition on the free surface (P=0), Dirichlet boundary condition at the
walls of the V-funnel (v,, = 0), and Neumann conditions on the pressure gradient (dP/dn = 0) (zero
pressure gradient is used only for solving the Poisson equation to find the pressure), as illustrated in
Figure 2, where the geometry of the V-funnel apparatus is also shown. Rigid dummy particles of four
arrays placed outside the walls of the V-funnel were used to implement the wall boundary conditions.
To reveal the positions and velocity vectors of aggregates of various sizes, and those of the fluid
particles representing the paste, the particles are represented by distinct colours and generated
randomly. In order to get reliable simulation results, the kinematic coefficient of friction (c;) between
the V-funnel wall and the SCC mix has been altered to get the best fit between the experiment and
simulated results for one mix. The same coefficient was then used for all other mixes.

Dimensions
inmm Y

0s¥

»

Cose

Figure 2: Boundary conditions and geometry of the VV-funnel apparatus

5. Preliminary simulation results

A range of SCC mixes with 28-day cube compressive strength between 30 and 80 MPa has been
developed following the rational mix design procedure described in [4].The plastic viscosities of these
mixes were estimated following the micromechanical procedure described in [5]. This procedure is
based on the rheology of concentrated suspensions, and it can predict accurately in a stepwise way the
plastic viscosity of heterogeneous SCC mixtures beginning with the plastic viscosity of the
homogeneous paste. On the other hand, the yield stress of a mix was estimated in an inverse manner
from the measured time, tsoo to reach 500 mm spread of the SCC mixes in a cone flow test using the
three-dimensional SPH [6]. Details of the SCC mixes and their plastic viscosities are given in [7].The
3D numerical simulation of the V-funnel test for a typical SCC mix (Mix 50B) has been represented by
53,846 particles to investigate its flow characteristics and compare with the corresponding experimental
results. The simulation has revealed the distribution of the large aggregates in the SCC mix (coarse
aggregate size (g) >8 mm) to check whether these heavier aggregates remain homogenously distributed
in the viscous mix during the flow.

It can be noticed from Figure 3 that the flow patterns obtained from the numerical simulation at various
time step are very similar to those observed in the laboratory test. The slight difference in the discharge
time, ty-uner May be due to two possible reasons: firstly, the assumption that the SCC particles are
spherical in shape and secondly, the slight time delay in opening the bottom gate. Importantly however,
it can be observed from the simulated flow illustrated in Figure 3 that the larger aggregates (g) do indeed
stay homogeneously distributed in the mix at various times during the flow.
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3D simulation of 50MPa SCC mix in V-funnel (2.0 s) 3D simulation of 50MPa SCC mix in V-funnel (2.5 s)

Large agpregates particles
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Viscous paste particles

Particle <8mm

Figure 3: 3D simulation of 50MPa SCC mix in V-funnel after 2.0 s and 2.5 s showing the larger aggregates (g)

6. Conclusions

A 3D Lagrangian SPH numerical model has been developed to simulate the flow of SCC mixes of
varying strengths and performances and to estimate the discharge time in the V-funnel test. Concrete is
assumed as a heterogeneous, non-Newtonian fluid whose relation between shear stress and strain rate
is of the Bingham type. This relation has been coupled with the Lagrangian mass and momentum
conservation equations to simulate the SCC mixes of different viscosities and yield stresses in the V-
funnel test after determining the proper number of particles for simulations. The predicted discharge
time result is generally in good agreement with the test data. The numerical methodology also shows
that it can conceptualise the flow behaviour of SCC mixes and provide insight into the distribution of
larger aggregates during the flow. It can be concluded that without performing the V-funnel test,
concrete discharge time, and consequently its suitability for application as SCC can be established when
the plastic viscosity and yield stress are known.
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ABSTRACT

This paper describes new software based on a partitioned, black box approach for solving fluid structure
interaction (FSI) problems. It couples the open source finite volume solver OpenFOAM, to the open
source finite element solver ParaFEM [1]. This coupling is done using a conventional serially staggered
scheme, that is first order accurate in time. The software has been tested using benchmark FSI problems,
with long term goals to investigate the broad range of large scale FSI cases relevant to the wind energy
industry. The aim is to demonstrate the potential benefits of such a tool, by delivering a unique capability
to investigate novel concepts, to levels of physical realism not yet achieved.

Key Words: Fluid-Structure Interaction;, High Performance Computing;, Computational Fluid Dynamics;
Finite Element Analysis, Partitioned Coupling

1. Introduction

Over the past thirty years the average size of offshore wind turbines has increased, with rotor diame-
ters growing from 10m to 160m. It therefore becomes increasingly important to simulate the complex
dynamics involved with unsteady and turbulent flow through rotating blades, and the large structural
deformations of blades, in order to optimise their design.

The motivation is to produce software capable of solving coupled FSI problems to investigate the dy-
namics of wind turbines; both individually and ultimately in arrays relevant to farm configurations. The
project will focus on coupling OpenFOAM to ParaFEM [1] in such a way as to minimise communication
bottleneck and to maximise performance of the software.

The developed software uses a partitioned approach, with OpenFOAM and ParaFEM acting as blackbox
fluid and structural solvers respectively. Using this approach makes use of already existing models and
solution algorithms that have been previously validated, and the user has the versatility to select the type
of CFD and FEM simulations independently from the coupling strategy. The coupling is achieved using
a conventional serially staggered (CSS) scheme to solve the governing equations. The software will be
highly parallel allowing large complex problems to be run with sufficient accuracy in a reasonable time
on High Performance Computers.

FSI modelling offers the potential to accurately predict the deforming blade shape across a range of
load conditions and thus improve the prediction of blade efficiency and noise production. FSI with
ParaFEM not only provides fast stress analysis through parallel processing, but also the capability to in-
corporate more heavy weight structural integrity assessment through stochastic simulations [2], thermo-
mechanical analysis [3] and multi-scale modelling of fracture [4].

2. Method

This section will give a brief description of the governing equations associated with the fluid and solid,
and the interface conditions. Finally the system architecture and coupling algorithm between Open-
FOAM and ParaFEM is described.
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2.1. Fluid/OpenFOAM

The flow variables are described by the Navier-Stokes equations (1,2). The subscripts s and f represent
the solid and fluid respectively.

0
—+ V- (pUr) =0 1
5 7V (PUp) (1
aU;
p—g +PUs VU=V 0oy =f 2)

Where U represents the velocity vector [u,v,w], p the density, ¢ the time and o the stress tensor. The
governing equations are discretised using the finite volume method (FVM).

2.2. Solid/ParaFEM

The solid is solved using an element by element variant of the finite element method (FEM), through the

linear equation:
nels

DAt = [Kellxe) 3)

1

Where f, and x. are the elements nodal forces and displacements respectively, and K, represents the
element stiffness matrix which is computed from the material properties and shape functions. nels is the
total number of elements in the mesh.

2.3. Interface

The interface between the fluid and solid is described by kinematic (4) and dynamic (5) equilibrium.
Where n represents the unit normal.

dU;
Ur = — 4
= 4)
O'f.nf = —0Ogs.Ng (5)

The kinematic condition ensures the spatial variables, velocity and displacement, at the interface between
the fluid and structure are in equilibrium. The dynamic condition states that the force/stress exerted by
the fluid and solid at the interface are equal and opposite.

2.4. System Architecture

The software considers OpenFOAM and ParaFEM as two black box solvers. This partitioned approach
means the numerical schemes and discretisation methods, for the structure and flow, can be chosen inde-
pendently. The modular approach makes the software robust and flexible for different types of problems.
However if a dynamic structural model is used, care must be taken with the choice of time step so as to
avoid spurious oscillations in the acceleration and traction at the interface [5].

The algorithm used in solving the FSI problem is shown in Figure 1a. The algorithm currently used
is the most basic coupling technique, the conventional serially staggered scheme, developed in [6]. The
coupling between the two programs is in its most simplistic form, a transfer of data. The difficulty comes
from two sources. Moving data from an object orientated language (C++) to a procedural language (For-
tran) and from a FVM to FEM. The quasi standard coupling interface MpCCI has been used for a similar
problem in [7]. OpenFOAM contains good interpolation libraries, making the use of external packages
unnecessary. OpenFOAM acts as the master program with ParaFEM being called as a subroutine at run-
time. Figure 1b shows the data coupling, interpolation and data transfer between the two programs. This
is described more comprehensively below.

1. Geometry : The initial geometry data (nodal coordinates and connectivity matrix) of the solid
mesh are passed to ParaFEM, before the time loop begins.
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(a) Conventional Serially Staggered Scheme (b) Interpolation between FEM and FVM

Figure 1: High level diagrams of the 1a Solution Algorithm & 1b Data Transfer

2. Dynamics : The pressure on each face, at the interface, is interpolated to a point force and a
direction vector. This force is then distributed over the nodes of the FE element according to [1].

3. Kinematics : The nodal displacements are passed back to OpenFOAM that interpolates the nodal
values into patch/face displacements.

3. Test Problems and Results

The software has been checked using the FSI benchmark problem proposed by Stefan Turek and Jaroslav
Hron in [8]. This test involves the 2D laminar flow of an incompressible, Newtonian fluid, through a
channel and around an elastic object (Figure 2). The values for the geometric parameters are shown in
Table 1. The test involves fixing the elastic solid until the flow is fully developed before allowing the
solid to move under the force of the fluid. The displacement at position A, is compared to the benchmark
results over one full cycle.

l

H‘ O

L

(a) Fluid Domain

(b) Solid Domain

Figure 2: Schematic of the Hron and Turek benchmark case, taken from [8]

During the conference, the implementation of the software will be described before presenting the re-
sults and performance of the code for the FSI benchmark problem described earlier. Figure 3 shows an
example of the problem run using the current FSI solver in OpenFOAM. This uses a finite volume solver

for both the fluid and the solid.



Parameter Value(m)
2.5
0.41
(0.2,0.2)
0.05
0.35
0.02
(0.6,0.2)
(0.2,0.2)

—

;———"

W E >~ O~

Figure 3: An example of Hron Turek Test case Table 1: Geometric Parameters from [8]

Scaling tests for both OpenFOAM and ParaFEM have been performed in the literature. Smith et al [1]
has shown that ParaFEM scales well on up to 32,000 cores. while the HPC Advisory Council [9] have
shown that OpenFOAM can scale well to 1024 cores.

4. Conclusions

This paper has described new software that couples the finite volume CFD solver, OpenFOAM with the
finite element structural solver, ParaFEM. OpenFOAM has acted as the master, calling ParaFEM as a
subroutine each time step.The modular set up of the software makes it flexible and robust. The code
will be able to tackle larger and more complex problems, with good fidelity in the results, specifically to
investigate physical phenomena that occur in wind turbines and ultimately arrays/farms.
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ABSTRACT

Modern replacement of deteriorated timber transom sleepers by steel-concrete composite slabs can significantly
improve asset management strategy for railway bridges over their life cycle. Track engineers can take advantage
of steel-concrete composite technology over traditional concrete slabs. The design of such steel-composite track
slabs has shown 10-20% reduction in the component depth and thus the weight. These benefits enable the
composite slabs to fit brown-field maintenance project where merely aging transoms can be renewed and the
new composite slabs can be installed over existing girders and support systems. In practice, railway bridge
structure is designed to embrace redundancy assuring public safety. The risk and consequences of train
derailment over the bridge has prompted railway authority to investigate the vulnerability of railway bridge
system. Therefore, the design and modelling of this composite slab has been verified by previous work of the
authors. This paper presents the dynamic responses and vulnerability of the composite track slabs to train
derailments. A nonlinear finite element model of integrated train-track-bridge has been developed and validated
using field data. The impact analysis has then been carried out using ABAQUS Explicit to evaluate the dynamic
responses of the composite railway track slabs, benchmarked with quasi-static code-based design method. This
study enhances the insight into the dynamic behaviour of vulnerable track slabs so that track engineers can
predict the damage arisen from a train derailment.

Keywords: Railway bridge; steel-concrete composite; transom; railway bridge sleeper; track slab, train
derailment; failure analysis; dynamic finite elements

1. Introduction

Over 90% of Australia’s railway bridges are using timber transoms. Similar percentages of aged
railway bridges in the UK and Europe have also utilised timber transoms (or commonly known as
‘railway bridge sleepers’). At present, railway infrastructure managers require to renew around 3.5
million of aging and failing timber transoms around the world in order to upgrade the railway lines
and to maintain existing rail lines. Griffin et al. [1-2] found that timber transoms are generally
replaced within 10 to 20 years’ period of time, resulting in a shorter turnover period and additional
costs for track maintenance [3-4]. This research was undertaken to explore the replacement of timber
transoms based on a case study for the iconic Sydney Harbour Bridge using new composite materials.
Composite transoms are a good alternative to timber transoms due to the production of greenhouse
gas emission for timber transoms are 6 times higher than in the concrete and composite transom [5].
However, an alternative material for the replacement of timber transoms shall be compatible with the
existing structural system. Furthermore, it should also be able to be replaced without much effort in
order to enhance resilience and maintainability [6-7]. Therefore, composite precast concrete retrofitted
on the existing steel girder would be a good alternative.

It is interesting to find that train derailments keep presenting challenges to the railways system around
the world. Indeed, not only can the derailments occur on turnouts and curved tracks, but they could
also occur on a straight rail viaduct such as those due to broken bogie axles [8]. The aim of this study
is to investigate the complex and unprecedented behaviour of composite transoms acting as track
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slabs caused by train derailments. Failure modes of the rail transoms due to train derailments need to
be well understood for public safety protection and fail-safe design principle of critical infrastructures.
This outcome of this study will improve a performance-based design methodology for railway bridge
transoms using steel-precast concrete composite members. Possible failure modes can be identified by
previous failure investigations of railway bridges. Grayrigg train derailment in the UK [9] is a good
example for progressive failure of railway structures triggered by derailments. Therefore, train
derailment is a scenario, which cannot be ignored in designing structural components that enable a
fail-safe railway system.

The steel-concrete composite transoms are being tested using full-scale specimens in the laboratory at
Western Sydney University. However, in order to carry out experimental investigations, numerical
analysis is required for a better insight into its dynamic behaviour so that test setup arrangement could
be safely managed. Also, experiments are generally very expensive and time consuming. Therefore,
this study is aimed at using numerical analysis to investigate the failure modes and behaviour of
composite transoms caused by train derailment. Based on critical literature review, Brabie and
Andersson [10] have investigated high speed derailments through various computer models. This
simulation has been done on the wheel — sleeper impact when derailments occurred. They have
further enhanced the model to simulate a post derailment scenario. Gu and Franklin [11] then created
a model to analyse dynamic impact loading accurately. They considered the response of the railway
bridge over the travelling speed of the train. Ju [12] studied non-linear behaviour of the wheel rail
interaction. Effects of the profile of the track on derailment failure were later studied [13]. Fang and
Zhang [14] developed a model to investigate the feasibility of using fiber concrete in transoms. In his
study, a detailed parametric study was carried out by changing selected material properties of the fiber
concrete to simulate different test models. However, all the above literatures did not considered the
newly retrofitting precast steel-concrete composite slab into existing steel girders. The paper here is
the first to look at the behaviour and failure modes of composite track slabs subjected to train
derailment loads.

2. Structural track system, design load actions and derailment

Transoms are simply supported on stringers and the walk-way has been designed as a cantilever, as
shown in Figure 1. The designed composite transoms are connected to the existing steel stringers
using headed shear stud connectors. Existing rails then be fastened to the composite transoms using
rail pads installed on steel baseplates. Actions of the design loads on transoms shall either be
considered in their serviceability and ultimate limit states. LC1, LC2, LC5 and LC10, which will be
described later, are considered as the most unfavorable load combinations or the set of worst case
scenarios for design according to precedent research [1-2, 13]. The maximum static axle load acting
on a transom during a train derailment has been taken as 20 tons, and its derailment impact can be
calculated as per the guide lines established by the transport for New South Wales [2].

< Wheel set

L "« Rail

| | ‘ ‘4_\_ Proposed extension to

transoms (walkway)

Figure 1: Structural system
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3. Finite element model and its validation

Numerical model was developed using ABAQUS Explicit to simulate the impact of derailment
loadings on the proposed steel-concrete composite panel [1-2]. For design purpose, the maximum
influences on the composite transoms of single wheel derailment have been considered in the
derailment model as is illustrated in Figure 2. Due to the nature of loading, which is applied on the
stringer not being of importance, the model has been simplified using symmetry. The concrete slab
and steel components were modelled using the eight-node linear hexahedral solid elements with
reduced integration and hourglass control (C3D8R). Elements with reduced-integration have been
adopted as they could reduce computing run time. These elements were incorporated in a reasonably
fine mesh in order to improve the accuracy of these models. The mesh sizes were also verified by
carrying out a sensitivity analysis to develop a convergence chart. The shear connectors were
modelled using second order three-dimensional twenty-node quadratic brick elements with reduced
integration (C3D20R). The connectors were modelled to represent the actual geometric size and shape
within the limitations of the application. The reinforcing bars were modelled with two-node linear
three-dimensional truss elements (T3D2). The track stiffness of 40 MPa (or rail displacement of
4.5mm specified by the rail authority) was used to validate the finite element model [2].

a)
v b)
2 9d)
Figure 2: Finite element model Figure 3: Finite element results
4. Results

The stress distribution in Figure 3(a) displays the resulting stress levels carried by the Bondek Il at
impact caused by derailment. The derailment relationship of the Bondek Il is shown as stress versus
time. From initial impact at time 0, the graph displays a linear curve up until about time 0.004, this is
due to the combination of concrete and steel taking load. The maximum stress is reached at time 0.005
with a value of 550 MPa and fluctuates up until time 0.015. Beyond time 0.02 the stress level is
reached and is maintained constant. Figure 3(b) displays the deformed model of the Bondek Il caused
at the impact once the wheel interacts with the panel. Figure 4 shows the parametric effects on the
dynamic responses of the steel-composite composite track slab components.
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Figure 4: Parametric studies
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5. Conclusions

Composite panels can be effectively used as a replacement of timber transoms in a railway bridge. In
this study, the provisions given in the Australian standards was utilised for the composite steel-
concrete transoms. A finite element model (FEM) was used to simulate the behavior of the composite
transom under derailment loads. Impact loads were applied within a selected period of time.
Allowable stresses in components of the composite transom could also be determined experimentally
in the simulation. Stresses developed in various components were observed for deferent characteristic
strength of the materials. The maximum allowable stress in concrete increased with increasing
characteristic compressive strength of concrete. Defection control test simulation was done to find out
the relationship between strength of Bondek sheet (yield strength) and the allowable stress. The
allowable stress increased linearly until the yield strength of bondek sheet increased to 700MPa.
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ABSTRACT

The aim of this study is to identify different populations for rock characteristics based on uniaxial compressive
strength (UCS) and density within limestones of Karoun-4 Dam, SW Iran. The results from a Number-Size (N-
S) fractal model log-log plots for UCS and rocks’ densities reveal that there are four populations for the studied
variables. The last populations for UCS and density commence from 87 MPa and 2.65 t/m°, respectively.
Finally, a log-ratio matrix is applied to validate and determine the overlaps between the N-S fractal model for
UCS and density values within the main rock type. The overall accuracy (OA) is 85% which shows that there
are positive correlations between UCS and rock density in the Karoun-4 Dam.

Keywords: number size fractal modelling; uniaxial compressive strength (UCS); logratio matrix; karoun-4

1. Introduction

Outlining of host rock characterisation in terms of uniaxial compressive strength (UCS) and density is
one of the fundamental aspects in a reservoir dam planning and design. Main host rocks of Iranian
dams are carbonate rocks especially limestones and dolomites. Numerical models specifically based
on geostatistics and fractal have been utilised to define various phenomena for better interpretation of
the parameters’ variability for rock mass characteristics in rock mechanics [1, 2, 3, 4].
Fractal/multifractal modelling, established by Mandelbrot (1983), has been used for delineation and
classification of various parameters in mining engineering and geomechanical modelling such as ore
grades, geophysical parameters and rock characteristics since the 1980s [5]. Consequently, several
fractal models have been proposed and developed for a wide application from rock 1980s to mineral
exploration [5, 6, 7, 8].

The purpose of this study is to recognise different populations for rock characteristics with respect to
UCS and density within limestones as the main lithological unit of Karoun-4 dam, SW Iran according
to the Number-Size (N-S) fractal modelling proposed by Mandelbrot (1983) [5]. Furthermore, a log-
ratio matrix is used to determine the intersections between the N-S fractal model for UCS and density
values within the limestones.

2. Studied area characteristics

The Karun 4 reservoir dam is an arch dam on the Karun River located in Charmahal and Bakhtyari
Province, SW lIran (Fig. 1). Marginal part of Zagros orogeny has a high amounts of carbonate rocks
especially limestones and dolomites. Main rock type of the studied area is limestones and minor
lithological units are sandstones, marls and shales.

3. Methodology

In this study, 70 rock samples were collected from limestones in different situations within the dam
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area and also, their UCS and density values were measured. Moreover, the main parts of the
limestones were determined using N-S fractal modelling in terms of the above-mentioned variables.
Finally, the main populations for these parameters were correlated and compared by the logratio
matrix as proposed by Carranza (2011) [9].

Fig. 1: The location of Karoun-4 dam in Iran

4. N-S Fractal Modelling

The N-S fractal model can be utilised to describe the distribution of geomechanical populations
without pre-processing of data. The N-S log-log plot describes the power law relationship according
to the frequency distribution of size, which is UCS and density values in this study, and cumulative
number of samples [5, 10]. This model is expressed by following equation [2, 5, 10]:

N(p)=F p® 1)

Which in this equation p and N(>p) denote elemental values (UCS and density) and samples
cumulative number with values greater than or equal to p respectively, F is a constant and also, D is
fractal dimension. The N-S log-log plots show straight lines segments, with different slopes (-D)
corresponding to different intervals [10].

There are four populations based on the N-S log-log plot which indicate that the main UCS and
density populations have the USC and density values higher than 87 MPa and 2.65 t/m®, respectively
(last populations: Fig. 2). The background parts for USC and density values are lower than 60 MPa
and 2.45 t/m?, respectively, as depicted in Table 1.
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Fig. 2: The N-S log-log plots for (a) Density for (b) UCS

Table 1: The UCS and density thresholds derived via the fractal modelling
UCS(MPa)  Density (g/cm3)

60 2.45
76 2.57
87 2.65
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5. Correlation between the UCS and density

Based on the N-S fractal modelling, the main populations of UCS and density for limestones were
compared and correlated by the logratio matrix proposed by Carranza (2011) [9]. An intersection
operation between major parts of UCS and density derived via the fractal modelling was performed to
obtain the number of samples according to each of the four classes, as indicated in Table 2. Overall
accuracy (OA) of the populations was calculated which shows that the OA is 0.85. This reveals that
there is a direct relationship between high intensity populations of UCS and density within limestones.

Table 2: The correlation between main UCS and density populations

Main density population (> 2.65 t/m°)

Inside zone Outside zone
Inside zone True positive (A) =2 False positive (B) =8
Main UCS population I(> 87 MPa)
Outside zone False negative (C) =4 True negative (D) = 68

Overall accuracy = (A+D)/(A+B+C+D) = 0.85

6. Conclusions

Results obtained by the N-S fractal modelling show that there is a positive and direct relationship
between two important parameters of rock characteristics including UCS and density in the Karoun-4
dam, SW Iran. The major populations of these characteristics obtained by fractal modelling have a
good correlation based on the high value for OA resulted via the logratio matrix. As a result, the
limestones contain high density with large values of UCS.
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ABSTRACT

A modified cohesive zone model (CZM) has been developed to simulate damage initiation and evolution in
Glare™ Fibre-Metal Laminate (FML) specimens containing both splice and doubler features under high-cycle
fatigue loading. The model computes the cohesive stiffness degradation under mixed-mode loading based on
user-defined crack growth rate data and is implemented in a VUMAT subroutine for the FEA software
Abaqus/Explicit. To validate the model experimental data has been obtained for a number of Glare 4B
specimens containing splice and doubler features monitored using digital image correlation (DIC) to provide
full-field displacement and strain data and Acoustic Emission (AE) monitoring to detect damage initiation and
propagation. The model was used to predict the initiation and growth of damage in splice joints under quasi-
static loading. The results were verified against the cohesive zone model available in Abaqus and then validated
against experimental data on Glare specimens. The codes are currently being extended to incorporate a mixed-
mode fatigue damage evolution model based on input Paris laws, which have been extracted from high cycle
fatigue experiments on Glare specimens containing both splice and doubler joints.

Keywords: Fibre Metal Laminates, Fatigue, Cohesive Zone Model, DIC, AE

1. Introduction

FMLs including Glare are manufactured from alternating metallic sheets bonded with fibre reinforced
composite layers. Where large panels are required joints including splices (where metallic sheets are
positioned side by side with a gap in between, with the gaps staggered to prevent loss of strength and
the fibre layers providing load transfer) and doublers (additional external or internal layers introduced
to reduce stresses) are used. One of the most common failure modes for FML structures is
delamination in these joints [1]. Delamination in fibre composites has been modelled by researchers
using a number of different approaches. These include the cohesive zone model (CZM) which
incorporates both continuum damage and fracture mechanics concepts [2] and which has been used to
model delamination initiation and propagation under high cycle fatigue [3-7]. This paper describes
work done to extend this application to FMLSs.

2. Experimental work

Fatigue tests were conducted on a series of Glare specimens containing splice and doubler features.
Specimens had dimensions 153 mm x 13.5 mm and were manufactured from GLARE 4B which
consists of 2024-T3 aluminium alloy sheets 0.4 mm thick and UD-S2 glass fibre reinforced epoxy
(GFRP) layers each having 3 plies with the layup [90°0°%90°] and a cured ply thickness of 0.125 mm
(Figure 1). They were tested in an MTS servo-Hydraulic (50 kN) machine using the setup shown in
Figure 2 with a constant load ratio (trough/peak) of R= 0.1 and a frequency 5 Hz.
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3. FE model
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created to analyse the o ) \ ,
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joints. Initially a simplified
model was generated as
shown in Figure 3 in order to

validate the cohesive zone

1 pre-cracked
element

2 GFRP
plies

approach for static loading.
Following this a more
accurate  model of the
specimens was created to
explore the effect of fatigue
loading.  This involved
extracting the geometry and
thickness of each layer from scans
of the actual specimens, as shown
in Figure 4, and then meshing them
using linear continuum elements
(CPS4R). The interfaces were then
meshed using two dimensional Discontinuous outer
cohesive elements (COH2D4). In aluminium layer

both cases a mixed mode cohesive
zone model (CZM) (Figure 5) was
assumed using a quadratic nominal
stress  criterion  for  damage
initiation (equation 1) and a power
law failure criterion (equation 2)
for damage evolution. Strain

layer

Splice joint

energy release rates G, and G, Doubler joint
where calculated using equations 3 b-
and 4 and the power law parameter Figure4. 2D mesh for Glare4B specimens a) Splice b) Doubler

¢ was determined by the best fit to
mixed-mode delamination data from the literature [8]. Finally the model was implemented in the FEA
software Abaqus/Explicit using a VUMAT subroutine.
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The simplified model was loaded statically as shown in Figure 3. Fatigue loading on the other hand
can be represented by a constant amplitude load equal to the maximum load level in the actual fatigue
cycle. Only the envelopes of loads and displacements are then analysed following a ‘cycle-jump’
strategy [3-7] .As shown in Figure 6, the force applied to the model is increased gradually from zero
to the peak load (Fnax), and a fatigue degradation law is then activated to model fatigue crack growth
and the corresponding reduction in overall stiffness and increase in axial displacement. Future results
of fatigue tests will use this approach to calculate crack growth rate using a normalised Paris law:

3_1‘\1] _c (%)m . (5)

Where da/dN is the crack growth rate (increment in crack area with increasing number of cycles) and
C and m are best fit coefficients to experimental data in a log-log plot.
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Figure 6. Schematic of fatigue modelling envelope load
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4. Results and conclusions

The experimental results illustrated in Figure 7 show that the fatigue life for the doubler specimens
was higher than for the splice specimens, as the doubler joint exhibited high fatigue damage tolerance
compared with the splice joint. The results also showed that delamination onset and growth occured in
the external discontinuous Aluminium/ GFRP interface for the splice specimens, while the doubler
specimens did not show any delamination. The FE results for the simplified model in Figure 8 show
good correlation with the ABAQUS cohesive zone model as expected. Although there is a small
difference in simulation time (pseudo-time) for damage initiation, the damage evolution parameter is
identical and the small differences are attributed to small oscillations in stresses in the VUMAT
subroutine which is currently free of any viscous regularisation or damping. Ongoing work focuses on
adding a Paris law-based fatigue damage evolution rule as described above.
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ABSTRACT

Acoustic emission (AE) provides engineers with a powerful tool by allowing the location of damage sources as
they occur. Damage localisation using traditional time of arrival approaches is inadequate in complex structure
components. Cardiff University presented a novel approach known as Delta T mapping which overcame these
limitations but it was considered as time consuming and an operator dependent approach. This paper presents
new full automatic Delta T mapping technique overcomes these remaining limitations.

Keywords: acoustic emission; source location; complex structure; unsupervised clustering; Delta T technique

1. Introduction

Damage localisation in complex structures, such as those found in aerospace applications, is a
difficult problem in the field of structural health monitoring (SHM). The development of an easy to
use, fast to apply, cost-effective and very accurate technique is key for the uptake of SHM. The use of
Acoustic Emission (AE) [1] is important for SHM as it offers the potential for the real time
monitoring of the health of a structure. Acoustic emission (AE) arising from damage mechanisms and
propagating through the structure in the form of Lamb waves can be detected using piezoelectric
sensors mounted on the surface of the structure. The ability to track the early onset of damage and
hence determine the structure's integrity will enable the switch from periodic inspections to a more
condition based approach, therefore enabling increased inspection intervals, reducing structure
downtime and maintenance costs.

The time of arrival (TOA) technique is traditionally used to locate these sources, and relies on the
assumption of constant wave speed within the material and uninterrupted wave propagation path
between the damage and the sensor. In reality, structural complexities such as holes and thickness
changes that may be present, which alter the wave propagation path and velocity. In order to
overcome these limitations, Cardiff University developed a technique (called Delta T Mapping [2]) to
locate damage in complex structures with high accuracy [3-5] by using artificial sources on an area of
interest to create training maps. These maps are used to locate subsequent AE events arising from
damage events. However, this technique needs high operator expertise to deal with the training map
data (e.g. selecting the correct data) which can be a time consuming process as well as it requires the
cluster diameter value to be identified in advance to be able to calculate the source location (only the
convergence points inside a specific cluster diameter are used to calculate the probable AE source
location). The most recent version of Delta T technique is known as the AIC Delta T Mapping
technique and was developed by Pearson et al [6, 7] and overcame the limitation of arrival time
calculation, another source of error in the traditional approach.

In this paper, a new and improved fully automatic Delta T Mapping technique is present. Here the
correct data in the training maps were identified and selected automatically using a clustering
algorithm and a new approach (Minimum Difference approach) is used to determine the damage
location. This paper reports experimental validation of the advantages of the new techniques
achievements. The results showed excellent reduction in running time (from 7 hours to only 11
seconds) as well as improved accuracy (location error improved from 4.96mm to 3.88mm in a
complex geometry).
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2. Automatic Delta T mapping technique Methodology

This approach can be divided into two parts; firstly, selecting the valid events (to be used for creating
the initial maps) at each grid point using an unsupervised clustering technique and secondly,
calculating the AE source location using the Minimum Difference approach [1].

In the first part, after collection of the training data by applying H-N sources [8] (an artificial AE
source) on each node position in the grid the time of arrival to each sensor is obtained using the AIC
approach [9]. The classification process is applied at each grid position to select AE events which are
highly similar to each other, where the input data vector for the clustering process is the time
difference between sensors pairs and will be used for the similarity criteria by following these steps:

o In each point of the Delta T grid, the recorded hits were separated automatically to create AE
events using a time based approach. Simultaneously, the incorrect erroneous data were
automatically removed.

e The AE hits from each point within the delta grid are correlated with the point coordinates (X,
y) automatically, using time stamps placed by the operator within the collected data. Where
the time stamps are placed in the data following acquisition from each grid node and are then
used to automatically identify which hits are associated with each grid node.

e Each event is identified by the calculated difference in time of arrival for each sensor pair
(e.g. the case of four sensors creates six sensor pairs 1-2, 1-3, 1-4, 2-3, 2-4 and 3-4).

e A complete link hierarchical clustering algorithm [10] is then used to group events based on
their similarity, or correlation coefficient. In this work the 0.99 correlation coefficient level
from the largest group was selected and all events in this group were used (correlation
coefficient of 1 means total correlation).

e Delta T maps from the average values of the difference in time of arrival for each sensor pair
are calculated for the selected highly correlated events at each grid point.

e Calculate location of real AE data: the Minimum Difference approach is a numerical
approach, which is dependent on finding the point at which the difference between the source
data and the training map data is minimised.

3. Experimental Procedure

An aerospace grade 2024-T3 aluminium plate, with dimensions of 370 x 200mm with a thickness of
3.18mm was used to assess the performance of the new technique. The specimen contained a series of
differing diameter circular holes as shown in Figure 1la. A MISTRAS PCI-2 system was used to
record all AE data at 40 dB threshold and 2MHz sampling rate. Four MISTRAS Nano-30s were
adhered on the front face of the specimen (Figure 1a) using silicon RTV (Loctite 595). All transducers
were connected to MISTRAS 0/2/4 pre-amps which had a frequency filter of 20 kHz to 1MHz. The
Delta T Mapping grid on the specimen covered an area of interest of 200mm x160mm and had a
resolution of 10mm (Figure 1a). Five H-N sources were used at each node position within the grid. In
order to assess the performance of the new Delta T mapping technique in a more complex structure,
six arbitrary positions were selected within the Delta T grid and three H-N sources were conducted at
each position. The average wave speed was calculated as 5400 m/s. Source locations were calculated
using all four sensors using the traditional approach, Time of Arrival (TOA), AIC Delta T and the
new Automatic Delta T for comparison.

4. Results and Discussion

Source location calculations using the AIC Delta T were conducted using 20mm cluster diameter
(calculated using a trial and error procedure) and the training maps were filtered manually. For the
Automatic Delta T source location calculations, the training maps are constructed automatically using
the unsupervised clustering procedure. The source locations are then calculated using the Minimum
Difference approach. Finally, the TOA location results were exported directly from the MISTRAS
AEwin software. Figure 1b shows the source locations on the specimen from the three location
methods.
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Figure 1: (a) Specimen Configuration (b) Calculated source location by three techniques

A comparison between the three methods results are provided in Table 1. From the table it’s clear that
the average error of the Delta T techniques is considerably lower than the TOA and offers an
improvement in accuracy from 222 mm to approximately 5mm. As well as the automatic Delta T
shows an improvement in accuracy over the AIC Delta T results by reducing the error from 4.96mm
to 3.88mm.

Furthermore, there is significantly reduces the time invested in implementing the technique. The most
time consuming step in the AIC Delta T is represented by the selection and preparing of the AE data
to construct the training maps which takes approximately 7 hours. On the other hand, the Automatic
Delta T mapping is very fast and reduces the running time for constructing the training maps to
approximately 11 seconds which is a significant improvement. Moreover, the new Delta T does not
require the trial and error process of determining the optimal cluster diameter when compared with the
AIC Delta T the cost is approximately 3.6 hours.

Table 1 Techniques performance comparison

TOA AIC Delta T Automatic Delta T
Average location error 222.18mm 4.96mm 3.88mm
One standard deviation of the average +177.75mm +3.14mm +3.19mm
Prepare the AE data to construct training maps - 25200 sec (7 hours) 10.88 sec
Calculate the optimal Cluster size - 13089 0

5. Conclusions

A new fully Automatic Delta T technique is introduced and verified experimentally using a complex
structure. The results obtained are excellent and demonstrate the success of the adopted methodology.
The AIC Delta T technique has been improved, with this approach, considerably and has increased in
processing speed, increased reliability, efficiency, more accurate, increased simplicity and more
capability to apply in large scale structures.

The results of this study highlight the potential for the use of AE monitoring as a tool of SHM for
damage localisation tasks; a high simplicity, fast, reliable, cheap and accurate technique has been
presented. If this technique is integrated with commercial AE monitoring systems, it will be a
powerful tool to provide real time highly accurate source location within complex large-scale
components.
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ABSTRACT

Due to new technologies, the improvement of industrial systems is progressively complex. Accordingly, it has
become difficult to manage and predict the behaviour of these systems, particularly when they will be exposed to
failures. An identical dynamic model should reflect all characteristics of a planned integrated mechatronic system.
Health monitoring of any system is essential in guaranteeing the safe, efficient, and correct operation of complex
engineering systems. This paper presents a simulation of a non-linear, experimental based model of a coupled
tank apparatus CE 105 by using LabVIEW 2014. In this study, a common modelling paradigm with several
sources of fault was used to simulate both nominal and faulty behaviour. It is concluded that the liquid level, in
the presence of a PID controller, will not be affected by the fault value until it reaches a certain threshold. Hence,
the end of the useful life could be predicted by monitoring the PID voltage.

Keywords: nonlinear system; health monitoring; liquid level system; model based simulation

1. Introduction

Liquid level systems have an extensive variety of industrial process applications, such as petrochemical
industries, papermaking, water treatment industries, and power plants. For example, controlling a liquid
level in a tank and consequently the free outflow rate by using Proportional- Integral- Derivative (PID)
controller is of crucial importance for mixing reactant processes [4]. A liquid level system is commonly
controlled by using a conventional PID controller. This feedback controller minimises error through
regulating the process-controlled inputs, the pump voltage for example [6]. Ogata [7] stated that a liquid
level system can be considered linear if the liquid outflow is laminar; Q = K h, where Qis a steady-
state liquid outflow rate, [m3/sec], K'is a coefficient [m? /sec] and h is a steady-state head, [m]. If the

flow through the outlet valve is turbulent, the steady-state outflow rate is: Q = K~+/h. Ogata [7] also
stated that if the flow is turbulent, the system can be linearized when the change in the variables are
kept small. The square root characteristic is widely used to model the flow through hydraulic orifices.
This may cause numerical problems because the derivative of the flow with respect to the pressure drop
tends to infinity when the pressure drop approaches zero. Furthermore, it is more reasonable to assume
that the relationship between the free outflow rate and the pressure drop is linear for small values of
pressure drop [2]. Non-linearity is the nature of all real systems [5].

PID controller is a widely recognisable type of feedback controller. A PID controller calculates an
"error" value as a difference between the required demand and the measured process or plant variable.
The purpose of the controller is to minimise the error through regulating the process-controlled inputs
as each element of the PID controller assigns a specific activity taken on the error [6]. The liquid level
system is commonly controlled by using a conventional PID. The main reason for using a PID controller
is on account of its simple structure and application.

The contribution reported in this paper relates to the simulation and experimental validation of a CE
105 coupled-tank liquid level control system. The consideration of this system is extended via the
inclusion of non-linear elements in the simulation created using a real-time control toolbox within
LabVIEW 2014. The simulation is used to accelerate the timescales of monitoring in order to have a
prior knowledge of the system behaviour and track different operational scenarios. Furthermore, faults
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diagnosis and the remaining useful life prediction could be achieved in advance. Results are reported
and discussed for a leakage and reduced pump performance faults.

2. Description of the coupled tank system

The coupled tank apparatus CE 105 was selected to study its nominal and faulty behaviour. In this set-
up, a PC with NI USB- 6008 DAQ and LabVIEW 2014 programme serves to control and manage the
system, as shown in Figure 1.

L)
PC with LabVIEW control application

(N oo oEror— | [wm
.I Set point D:i(;

\'"———— - ; CE 105 Coupled
* — ; \ Tank System
. = \ - B
@ Read . :
\ . DAQ - i oy, |
- \ ) : / :‘ -

USB — NI 6008 DAQ
Figure 1: Schematic diagram of the system

3. Calibration equations

Open loop experimental tests were done on the CE105 apparatus in order to estimate the calibration
equation of each single element of the system; the results are as shown in Figure 2.
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Figure 2: Calibration equations of the system elements
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Calibration equations of liquid level and flow rate sensors are linear functions companion an offset
terms as shown in equations 1 and 2 respectively.

y=0.0386 x + 0.3231 1)

y = 2.0954 x + 0.2377 (2)
Laplace transformation of the liquid pump calibration equation is:

_ 0515V, +0.0135

%= T15+02952 @)
Free outflow rate equation is a non-linear equation as shown below:
q, = 0.2383 h%51* + 0.003 (4)

These equations were used to build a closed loop simulation under LabVIEW 2014 environment in
order to study the system behaviour when some faults may occur.

4. Case Study

In this study, a PID controller under LabVIEW 2014 environment was used to preserve the desired
liquid height and hence the required discharge. Liquid level and outlet valve opening have a direct
impact on the free outflow rate. The specifications of the coupled tank apparatus CE 105 were used to
build a closed loop simulation incorporated with the system elements’ calibration equations (1- 4) and
the parameters shown in Table 1. This simulation shows a response as similar as the test rig does at the
same system parameters.

Table 1: The parameters were used for the simulation purpose

The liquid level set point 125 mm
Proportional gain (K¢) 1
PID Integral time (Ti, min) 0.01min
parameters | Derivative time (T, min) | 0 min
Output high and low 10 volt and 0 volt respectively
Nominal pumping efficiency 100%
Nominal outflow rate According to the free outflow rate Equation (4)

5. Fault Modelling

As a result of ageing or long-term use, the system behaviour could change due to one or more abrupt
and/ or incipient faults in some parts. The liquid level system can be divided into two main sides, a
high-pressure and a low-pressure side.

A. The high-pressure side contains the system pump and the tank inlet pipe. Faults in this portion can
be divided into two categories. A leakage in the tank inlet pipe is assumed to be an abrupt fault,
this is the first category while the second is incipient faults that progress slowly with time. The
latter includes a pump internal leakage or impeller wear, represented as a progressive degradation
in the impeller area [1]; [3]. Bearings wear fault can be considered as an incipient fault progression
in any type of bearings have been used, e.g. radial bearing or thrust bearing [3]. Degradation in the
mechanical and/ or electrical efficiency has been represented in this research as a percentage of the
nominal pumping efficiency.

B. It is assumed that a fault in the low-pressure side, i.e. tank and drain line, occurs in two different
ways. The first occurs when the outlet valve setting is abruptly changed to a new significant value
and/ or a breakdown leads to massive leakage. Such fault usually settles at this value for a period
of time. The second fault is assumed to be a time variant function and hence, the fault value has a
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slow progression. For the purpose of this paper, this fault was represented as a percentage of the
nominal outflow rate.

6. Results and Discussion

For the system parameters stated in the case study of a closed loop system and in presence of a PID
controller, the liquid level will not be affected by a fault value if:

» The pumping efficiency reduces by up to 55.2%, as shown in Figure 3-a.
» The drainage from the tank increases by up to 81% from its designed value, as it can be seen in
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