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ABSTRACT 

This study outlines the general performance of two different simulation-optimization (S/O) models developed to 

examine the capabilities of the new proposed management scenario to control seawater intrusion (SWI) in 

coastal aquifers. In the first S/O model, a finite element (FE) simulation model is directly linked with a multi-

objective genetic model. In the second model a trained surrogate model is linked to the same optimization 

model. The simultaneous abstraction of saline water near the coast and artificial recharge of treated wastewater 

into the aquifer are the main principles used in the proposed management scenario. The recharge is implemented 

using a surface pond and therefore unsaturated flow theory is utilized in the simulation. The objective functions 

include minimization of the total economic cost of the management scenario and also the minimization of the 

total amount of salt in the aquifer. The results show that implementation of the surrogate model in the S/O 

framework results in a significant reduction in CPU time. 

 

Keywords: seawater intrusion; coastal aquifer; simulation-optimization; EPR 

 

1. Introduction  

Saltwater intrusion is a common contamination problem in developed and urbanized coastal areas 

especially in arid and semi-arid regions of the world. In critical cases SWI may be followed by 

abandonment of production wells of freshwater, human health problems and damage to natural 

ecosystem [1,5]. Therefore, appropriate management strategies should be implemented to control SWI 

with acceptable limits of economic and environmental costs. In parallel with raising awareness of the 

concerns on management of coastal groundwater resources, there has been a growing need to find 

optimal solutions for controlling the SWI problem. The problem is a multi-objective optimization 

problem that aims to find the trade-off relationship between conflicting objectives. In the early stages 

of this advancement, different linear/nonlinear programing optimization tools were incorporated with 

simulation models. However, the problematic features of the traditional optimization techniques in 

attaining the correct optimal solutions for multi-objective complex problems have triggered the 

demand for innovation and use of other types of optimization tools such as evolutionary algorithms 

[5]. In the S/O process the numerical simulation model is linked with a chosen optimization model. In 

cases with computational complexity some works have attempted to link surrogate models with the 

optimization algorithms. A recent review of the research efforts related to the application of S/O 

modelling in management of SWI in coastal aquifers has been presented in [2] and [4]. 

This paper presents the development and application of two S/O models to assess the efficiency of a 

new management method for controlling saltwater intrusion while satisfying water demands, and with 

acceptable limits of economic and environmental costs. The first S/O model (FE-GA) is developed by 

direct linking of a finite element (FE) simulation model with a multi-objective genetic algorithm. In 

order to reduce the computational burden the numerical simulation model is replaced by an 

Evolutionary Polynomial Regression (EPR) based surrogate model in the next S/O model (EPR-GA). 

A comparison is made between the capabilities of both schemes in capturing the optimal results in 

hypothetical coastal aquifers. 
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2. Evolutionary Polynomial Regression (EPR) 

EPR [7] is a relatively recent hybrid data mining method that integrates the best features of the 

conventional numerical regression with the effectiveness of genetic programming. In EPR, the created 

models are presented in the form of mathematical expressions which are easily accessible to the user. 

This important feature, however, is not available in other black box data driven methods such as 

artificial neural networks. The possibility of getting a set of models (not only one) for a complex 

phenomenon is the other important feature of EPR. The level of accuracy for each model is evaluated 

based on the coefficient of determination (COD): 

EPR

2( ))





2

a

N

a a

N

(y - y )

COD = 1 -
(y - avg y

                                                          (1) 

where ya is the actual output value; yEPR is the predicted value that is computed by the trained EPR 

model; and N is the number of data points on which COD is computed. Detailed explanation of the 

EPR methodology can be found in [7].  

 

3. Model Description 

The studied aquifer system is a 2D hypothetical unconfined aquifer with 200 m × 40 m dimensions. A 

density dependent FE model SUTRA (Saturated-Unsaturated TRAnsport) [3] is used for the 

numerical simulation of this flow system. The hydrostatic water heads of 31 m and 30 m are assigned 

to the left and right sides of the domain respectively to represent the freshwater and seawater pressure 

boundaries of the aquifer system (Figure 1). The aquifer is discretised into 2000 elements and 2091 

nodes. The presence of an unsaturated flow layer in the model requires simulating this layer with finer 

spatial and temporal discretization in order to limit the instability and oscillation resulting from 

calculated pressure and saturation values which may change drastically during wetting events [3]. To 

simulate a plan for future demand, a local production well screened at coordinates (40, 10) m is 

incorporated into the model (see Figure 1). It is assumed that 26 m3/day of groundwater is 

continuously pumped from this well. The total calculated mass of solute in the aquifer would be raised 

from 27 tons prior the pumping to 98 tons after pumping. Consequently, a management action is 

required to comply with the planned demand for water while protecting the aquifer against SWI.   

 

 
 

Figure 1: Model geometry and boundary conditions 

 

A new management scenario called ADRTWW [1,6] is proposed to restrict the negative impacts of 

the intruded saline wedge and the pumping of freshwater from production well. This methodology 

consists of three steps; Abstraction of brackish water from the saltwater wedge, Desalination of the 

abstracted brackish water to meet a part of the projected water demand, and artificial Recharge of the 

aquifer using Treated Waste Water [1,6]. A pond system with dimensions 15m×2m located 65 m from 

the shoreline is used to collect the reclaimed water and then recharge the aquifer. The calculated 

recharge rate under this pond system is 0.35 m/day. 
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4. Simulation-Optimization models: 

In order to investigate the cost-effectiveness of the ADRTWW management scenario in different 

arrangements of its recharge/abstraction components and also in a wider range of optimal solutions, 

two different S/O frameworks are developed. In the first S/O framework, so called FE-GA, the FE 

based numerical model (SUTRA code) is directly linked with non-dominated sorting genetic 

algorithm, NSGA-II [8]. NSGA-II is a popular, fast and elitist multi-objective genetic algorithm. In 

FE-GA, the numerical model (SUTRA) is repeatedly called by NSGA-II to calculate state variables 

(pressures and concentrations) in response to each set of generated design variables. After evaluating 

the corresponding fitness of the objective functions and passing through multiple elitism and 

evolutionary processes, the trade-off curve of optimal solutions is captured. In the second framework 

(EPR-GA) a suitably trained EPR is linked with the same multi-objective algorithm. Prior to its 

linking, the developed surrogate (EPR) model is trained and tested externally on the inputs/outputs of 

the SUTRA model describing the response of the aquifer system. The results of the EPR-GA model 

are compared with those obtained by direct integration of the numerical simulation model into the 

optimization (FE-GA) model.  In both FE-GA and EPR-GA, the S/O process aims to minimize the 

total mass of salt (f1) in the aquifer as well as minimizing the costs (f2) of construction and operation 

of the management process subjected to several side constraints.  

 

5. Results and Discussion 

The values of the main parameters adjusted for the optimization algorithm in both developed S/O 

models are the population size = 50, total number of generations=100, probability of crossover = 0.9 

and probability of mutation = 0.0025. Figure 2 shows the results of the trade-off between the two 

objectives of the management scenario using both FE-GA and EPR-GA models. It can be seen that 

the captured non-dominated fronts in both models are very close to each other.  In the FE-GA model, 

the optimal points on the Pareto front correspond to abstraction rates in the range of 9.7-25.50 m3/day 

and the location of the abstraction well at a distance of 10-20 m from the sea boundary and at the 

depth of 36-37 m. Figure 3 shows the final steady state distributions of salinity throughout the system 

for one of the optimal solutions selected based on engineering judgment in terms of the objective 

functions along the Pareto front (marked in Figure 2). In this selected solution, the optimal location of 

abstraction well, determined by FE-GA, is 15 m from the sea boundary abstracting the groundwater at 

the optimal rate of 15.5 m3/day. The optimal depth of the well is 37 m below the top boundary. The 

great performance of this optimal solution in controlling SWI is compared with the no-management 

scenario. The 10%, 50% and 90% salinity contours of the no-management scenario are illustrated as 

dashed lines.  

The total computational time of the analysis by FE-GA is 16 days on an Intel(R) Core(TM) i7-2600 

CPU @ 3.40GHz (8 CPUs) with 16 GB RAM in this small aquifer system. The application of fine 

spatial and temporal discretization of the unsaturated flow zone increased the computational 

complexity of the simulation process. Under this circumstance, the multiple calls of the SUTRA in the 

optimization framework make the S/O method by FE-GA computationally inefficient. Consequently 

in the second scheme of the S/O framework it has been replaced by a metamodel (EPR). Horizontal 

(Xa) and vertical (Ya) coordinates of the abstraction well, and also its pumping rate (Qa) are the input 

parameters considered in EPR-GA. A database of 500 cases of these input variables is randomly 

generated with a uniform probability distribution. Then, by multiple runs of the SUTRA code the 

outputs (total mass of salinity, f1) corresponding to each set of these data are calculated as the 

response of the system in each control scenario. The required database for training and validation of 

the EPR models is developed using the created sets of input and output. In each scenario 400 cases of 

data are used to train the EPR model and the remaining 100 cases (that are kept unseen to EPR during 

the model development process) are used for validation of the developed model. The following best 

EPR model (Equation 2) with high levels of fitness (COD values) is selected for prediction of total 

mass of solute (f1) in ADRTWW scenario. The COD values of this EPR model are 94.9% and 93.1 % 

in training and testing datasets respectively. The input data of this equation were used concurrently to 

evaluate the second objective function (cost function, f2) as well. The average time required to 

complete the analysis using EPR-GA (including the time to generate the database) is less that 10 % of 
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the time required by FE-GA on the same CPU core that can be considered as a very significant 

difference.  
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Figure 2: Optimal solutions obtained using 

both S/O models 

Figure 3: Steady state salinity map (%) of the system for the 

selected optimal solution compared with the case of no-

management scenario (dashed lines) 

 

6. Conclusions 

This paper presented the results of an investigation into the capabilities of two different S/O models to 

find the set of optimal solutions for a new management scenario for controlling saltwater intrusion in 

coastal aquifers. The results showed that the two S/O schemes were in excellent agreement in terms of 

capturing the Pareto front of the system in the management scenario. The application of EPR-

metamodel in the S/O framework (i.e linking of EPR with optimization tool) resulted in significant 

reduction of the overall computational complexity and CPU time compared with those obtained by 

direct linking of the numerical simulation model with the optimization tool. 
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ABSTRACT

This paper presents a topology optimisation approach that combines an adjoint-based sensitivity analysis [1] with
level set methods (LSM) [2] for front propagation, and the discontinuous Galerkin (DG) symmetric interior penalty
(SIP) method [3]. The problems considered in this paper will be limited to the minimum compliance design of
two-dimensional linear elastic structures.

Key Words: topology optimisation; level set methods; discontinuous Galerkin method; symmetric interior penalty
method.

1. Introduction
One of the most challenging aspects of structural design is finding the optimal layout, or topology of a
structure. Topology optimisation is the most general form of structural optimisation and is concerned
with finding the boundary of a given problem domain which is optimal in that it minimises an objective
functional while satisfying given constraints.

In this paper a topology optimisation is implemented by performing an adjoint-based sensitivity analysis
to compute the gradient of the objective functional as described in [1]. The level set function (LSF) which
defines the internal boundaries of the problem can then be advected along the steepest descent gradient
towards an optima. The LSM developed by Osher and Sethian [2] is a simple and efficient method for
computing the evolution of a moving interface. Since it was first used for structural optimisation in [4],
the LSM has been used for boundary tracking in many shape optimisation implementations and has
proven efficacy.

In this paper, the spatial domain of both the physical problem and the level set transport problem are
discretised using the DGSIP method [3]. The DG method differs from the continuous Galerkin (CG)
method in that it works over a trial space of functions which are only piecewise continuous. One of the
main advantages of DG finite elements is that they are trivially parallelisable. As such this work is a first
step towards exploiting parallel computing techniques to create an efficient shape optimisation method
for large-scale problems.

Following this introduction, Section 2 will present and explain an algorithm for finding the solution to
the minimum compliance problem for a cantilever beam. This will be followed by some numerical results
for the given problem and conclusions in Section 3.

2. Topology optimisation algorithm and problem formulation
For the general case the proposed optimisation algorithm is as follows:

1. Define the problem domain.
2. Initialise the LSF as a signed distance function (SDF).
3. Until the value of the objective functional converges:

(a) compute the current state and the adjoint state through the solution of the physical and adjoint
problems;
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(b) compute the advection velocity; and
(c) evolve the interface through the solution of the transport Hamilton-Jacobi equation.

i. Reinitialise the LSF to a SDF through a geometric redistancing method.

The algorithm will now be explained through the use of an example optimisation problem. The objective
of the optimisation process will be to determine the boundary, which for a given domain, load distribution
and boundary conditions, will minimise the compliance of the system whilst satisfying a given weight
constraint. Mathematically this can be stated as:

inf J (Ω) where: J (Ω) =
∫

∂ΩN

g · u ds + `
∫

Ω

dx (1)

Where J is the objective functional, Ω is the domain, ∂ΩN is the Neumann part of the boundary, g are
the surface tractions, u is the displacement field, and ` is a penalty term enforcing the weight constraint.

2.1. Step 1: Defining the problem domain
The problem to be discussed in this paper aims to find the optimal topology of a 2D cantilever beam
problem, the dimensions and the boundary/loading conditions are shown in Figure 1(a). The domain is
discretised into a mesh of 100 by 50 first order, piecewise continuous, square elements. The domain has
two sets of elastic properties which represent the material section and the void section. The material part
of the domain has Young’s modulus, E = 1Pa and Poisson’s ratio, ν = 0.3, and the void is modelled as a
much more compliant material section which has a Young’s modulus E = 10−3Pa and Poisson’s Ratio,
ν = 0.3. The value of Young’s modulus varies smoothly across the interface between the two materials
by applying a smoothed sign function to the LSF and using this as the input to a linear function which
varies between the two values of Young’s Modulus as the sign function varies between -1 and 1.

(a) Cantilever beam problem (b) Initial zero level set

Figure 1: Initialisation of the problem

2.2. Step 2: Initialisation of the LSF as an SDF
The interface between the material portion and the void portion of the domain is defined as the zero level
set of the LSF, φ. Where the level set function is greater than zero the domain is filled with material and
where the level set function is less than zero the domain is filled with the ersatz material which represents
the void as further described in Section 2.1.
There are two main reasons for initialising the LSF as an SDF. First of all, numerical inaccuracies will
occur during the transport process if there are large variations in the gradient of the LSF, especially in the
region close to the zero level set. Secondly, initialising the LSF as an SDF and maintaining this property
through frequent reinitialisation greatly simplifies the level set transport equation as discussed in Section
2.5.
When choosing the initial LSF, one must be sure to ensure that there are sufficient holes in the domain.
This is because for a two dimensional problem being evolvedwith a time stepping schemewhich satisfies a
strict CFL condition, no holes can be created during the optimisation process [1]. The initial configuration
can be seen in Figure 1(b), where black represents the material and white represents the voids.
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2.3. Step 3(a): Computation of the state and the adjoint state through DG solution of the physical model
In order to compute the gradient of the objective functional, an adjoint-based sensitivity analysis is
performed. The minimum compliance problem is self-adjoint and as such is simpler than the general
case in which an adjoint state would also have to be computed at each iteration. The author points the
reader towards [1] for the details of deriving the topological derivative and simply states the result that
for the objective functional stated in (1) the topological derivative yields a vector field, V :

V = bn with b = σ(u) · ε(u) − ` (2)

In order to compute this advection velocity field, it is necessary to first compute the displacement field
for the current state of the cantilever beam problem. For a linear elastic stress analysis problem, the DG
approximation for the displacement field, u, is given by:

∫

Ω

f vdΩ =
∫

Ω

vB · DBu dΩ −
∫

Γ

[[v]] · D{{Bu}} dΓ −
∫

Γ

{{Bv}} · D[[u]] dΓ +
∫

Γ

µ[[v]] · [[u]] dΓ (3)

Where Γ denotes the element face, f are the body forces, v is the test function, B is the strain-displacement
matrix, D is the elastic properties matrix, µ is a penalty parameter, [[q]] denotes the jump of q and {{q}}
denotes the average of q. For this problem, the boundary conditions are imposed strongly. Once again the
author directs the reader to [3], for the details on the discretisation of elliptic problems using the DGSIP
method.

2.4. Step 3(b): Computation of the advection velocity
The advection occurs only in the normal direction to the interface and so the advection velocity at each
node is given by, b, defined in (2). The stress, σ, and strain, ε, can be recovered from the displacement
solution of the linear elasticity problem described in Section 2.3. The ` term is a penalty term which
describes the volume ratio, i.e. the ratio of material to void, at convergence. It is prescribed during the
initial iteration, for the numerical example in this paper, ` = 150.

2.5. Step 3(c): Evolution of the interface
The evolution of the LSF occurs through the solution of a Hamilton-Jacobi equation. However, as
mentioned in Section 2.2, the maintenance of the LSF as an SDF ensures that the Euclidean norm of
the spatial derivatives is always equal to unity and as such the level set transport equation can be greatly
simplified as described in [5], which can be stated as follows:

∂φ

∂t
= b (4)

Equation (4) is solved explicitly in time using a forward Euler method. The time step is constrained by
the CFL condition and is inversely dependent on the maximum absolute value of the advection velocity
field at each iteration and the size of the elements in the mesh. (4) is solved in space using DG finite
elements once again. For this particular equation, both CG and DG formulations are the same, however,
the DG formulation of (4) can be solved independently for each element, allowing for a much more
efficient solution.

2.6. Step 3(c)i: Reinitialisation of the level set function
Maintaining the signed distance property of the LSF can be achieved through multiple methods. One
method is known as geometric redistancing (or the brute force method). For this Yamasaki et al. [5]
presented a method which involves discretising the zero level set and then computing the minimum
distance from each node to the discretised interface and multiplying this by the sign of the level set at
that node. When using a discontinuous LSF the multiplication by the sign can cause discontinuities at
the interface which results in the LSF not being reinitialised as an SDF. To remedy this a smoothing is
applied to the LSF prior to the reinitialisation whereby the value of the LSF at each node is taken to be
the average of the values at each of the degrees of freedom at that node.
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3. Numerical results and conclusions
The problem presented in the previous section was ran for 50 iterations. Figure 2(a) shows a smooth
convergence of the objective functional until it reaches a minimum. The final shape after 50 iterations is
shown in Figure 2(b).

(a) Convergence of the objective functional (b) Final topology after 50 iterations

Figure 2: Numerical results

To conclude, a topology optimisation algorithm using level set methods and the discontinuous Galerkin
method has been presented and explained. The algorithm was implemented to find the optimal topology
of a 2D linear elastic cantilever beam. The results show that the algorithm has good convergence and
stability properties, and the optimal design shown is similar to that published in the literature.
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ABSTRACT

We present a statistical method for recovering the material parameters of a heterogeneous hyperelastic body. Under
the Bayesian methodology for statistical inverse problems, the posterior distribution encodes the probability of
the material parameters given the available displacement observations and can be calculated by combining prior
knowledge with a finite element model of the likelihood.
In this study we concentrate on a case study where the observations of the body are limited to the displacements
on the surface of the domain. In this type of problem the Bayesian framework (in comparison with a classical
PDE-constrained optimisation framework) can give not only a point estimate of the parameters but also quantify
uncertainty on the parameter space induced by the limited observations and noisy measuring devices.
There are significant computational and mathematical challenges when solving a Bayesian inference problem in
the case that the parameter is a field (i.e. exists infinite-dimensional Banach space) and evaluating the likelihood
involves the solution of a large-scale system of non-linear PDEs. To overcome these problems we use dolfin-adjoint
to automatically derive adjoint and higher-order adjoint systems for efficient evaluation of gradients and Hessians,
develop scalable maximum aposteriori estimates, and use efficient low-rank update methods to approximate
posterior covariance matrices.

Key Words: Bayesian inference, dolfin-adjoint, posterior, FEniCS, hyperelasticity.

1. Theoretical framework
Following the infinite-dimensional presentation of Stuart [1], we introduce the parameter-to-observable
map G :M → Y as a deterministic function that maps the parameters m ∈ M to the observables y ∈ Y,
whereM,Y are Banach spaces:

y = G(m). (1)
In our case, every evaluation of this map G will involve solving a PDE governing the behaviour of a
geometrically non-linear hyperelastic solid.
The parameter m we wish to infer is the (spatially-varying) shear-like parameter of the following Neo-
Hookean energy potential W :

W (X, IC, IIIC ) :=
m
2

(IC − 2) − m ln J +
λ

2
(ln J)2 (2)

where IC = tr(C) and IIIC = det(C) are the first and third invariants of the right Cauchy-Green tensor
C = FT F, F is the deformation gradient and J = det F = (IIIC )1/2. The displacement field u∗ ∈ V at
equilibrium can then be found through a standard minimisation problem of the following form:

u∗ = arg min
u∈V

{∫

Ω0

W (X, IC, IIIC ) dx0 −
∫

∂NΩ0

t · u ds
}
, (3)
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(a) Observed displacement fields yobs. (b) Shear-related parameter m.

Figure 1: (a) Three virtual experiments (shear and two friction-free compression tests) on a hyperelastic
body (b) with a parameter field m given by a circular inclusion in a softer matrix. Grey shape is the
square undeformed configuration of the body. Colour shows magnitude of displacement at equilibrium.
Note the warped deformation on the boundary - if we only have these limited observations, how much
can we tell about the parameters in the centre of the domain? This is the question we attempt to answer
with this work.

where ds and dx0 are measures on the undeformed configuration domain Ω0 and its boundary ∂NΩ0,
respectively and t are the external applied tractions on ∂NΩ0. Virtual experiments and the exact parameter
field used to create them are shown in Figure 1.

We state the Bayesian solution to the infinite-dimensional inference problem as follows: We describe
the observer’s prior beliefs about the parameter m through the prior probability measure µ0. Given the
likelihood model πlike, which gives the probability that we will observe y given the parameters m, the
goal of the inference problem is to find the posterior probability measure µpost (Stuart [1], Theorem 6.2)
as:

dµpost

dµprior
∝ πlike

(
yobs − G (u)

)
(4)

where the Radon-Nikodym derivative (Stuart [1], Theorem 6.29) dµpost

dµprior
is the derivative of the posterior

probability measure µpost with respect to the prior probability measure µ0.

We further assume that our prior knowledge can be expressed by a Gaussian distribution with mean m0
and covariance operator C0, or more compactly πprior ∼ N (m0, C0). Again, following the well-posedness
result of Stuart [1], we solve a Helmholtz-like PDE problem to generate actions of our prior covariance
on a vector.

Furthermore we assume that our noise model is white-noise Gaussian with mean zero and covariance
operator Γnoise. We can then re-write the posterior more concretely as:

πpost(m |yobs) ∝ exp
(
−1

2
| |yobs − G(m) | |2

Γ−1
noise
− 1

2
| |m − m0 | |2C−1

0

)
. (5)

Taking the logarithm of the above equation results in the following weighted least-squares functional:

Ĵ (m) := − ln πpost(m |yobs) =
1
2
| |yobs − G(m) | |2

Γ−1
noise
+

1
2
| |m − m0 | |2C−1

0
, (6)

We characterise the Bayesian posterior via extraction of two pieces of information. The maximum a
posteriori point mMAP is characterised by the maximum of the above functional:

mMAP := arg max
m∈M

πpost = arg min
m∈M

(− ln πpost) (7)
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This is a classical point estimate similar to those found in the PDE-constrained optimisation literature, but
in that case the norms used are usually somewhat arbitrary. By formulating out problem in the Bayesian
seting, our problem has rigorous statistical meaning [1].

An effective simplification in the case that the parameter-to-observable map G is a linear operator
A :M → Y we can write the following semi-analytical expressions for the MAP point and the posterior
covariance:

mMAP = C(A∗Γ−1
noisey

obs + C−1
0 m0), (8)

C = (A∗Γ−1
noise A + C−1

0 )−1. (9)

where ∗ denotes the usual adjoint operation. After some some algebraic manipulation we can show that
the posterior distribution is infact Gaussian and can be written:

πpost ∼ N (mMAP,H −1). (10)

where the Hessian operator H = C−1 is the second Fréchét derivative of the weighted least-squares
functional Ĵ (m) defined above. It is worth pointing out at this stage that our hyperelastic forward problem
does not lead to a linear parameter-to-observable map G. Thus, the above result does not for our problem
hold because the map G induces non-Gaussianity into the posterior.

However, a useful approximation, as long as the posterior is not too non-Gaussian, is to evaluate the
Hessian of the functional around the MAP point and use it as an approximation to the true second moment
of the distribution about the MAP point.

2. Solution approach
We implement our solver within the dolfin-adjoint package [3], which is based on the finite element solver
DOLFIN from the FEniCS Project [4]. We express the forward model in the high-level Unified Form
Language (UFL) before automatically deriving finite element cell tensors for the adjoint and higher-order
adjoint equations using symbolic manipulations.

We first solve the problem of finding the MAP point using a mesh-independent bound-constrained
quasi-Newton optimisation algorithm that uses the gradients from dolfin-adjoint to efficiently drive the
optimisation.

Then once we have found the MAP point, we evaluate likelihood Hessian actions from dolfin-adjoint
within a Krylov-Schur type eigenvalue solver to extract information about the directions in parameter
space that are most constrained by the observations, with respect to the prior. We use an efficient low-rank
update procedure from Spantini et al. [2] to construct an approximation to the posterior covariance.

Figure 2: Maximum a posteriori (MAP) point of the Bayesian inference problem. We can detect the
stiffness in the centre of the body, but the maximum value and precise radius are not recovered particularly
well. This uncertainty is quantified by the information in the posterior covariance fig. 3.
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73

Matches trends from Flath et al. p424 for linear parameter to observable maps.

Γprior

Γpost

(a) Spectrum of the inverse of the posterior
covariance.

(b) Trailing eigenvector.

(c) Leading eigenvector.

Figure 3: (a) The leading eigenvalues λi ≫ 1 (green) correspond to the directions in parameter space
most informed by the observations via the likelihood. Conversely, the trailing eigenvalues λi ≪ 1 (red)
correspond to the directions in parameter space least informed, and thus correspond to the information
originally contained in our prior. Plots of (b) trailing and (c) leading eigenvectors. The least constrained
direction points towards the parameters in the centre. The most constrained direction points towards
the parameters at the corner where in effect we have two independent ‘sensors’ touching one piece of
material.

3. Results
We show our results along with full descriptions in Figures 2 and 3.
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Abstract 
This paper presents the development of an automation process for the self-learning finite element method (FEM) 

and its application to a number of engineering problems. The self-learning FEM involves the integration of a 

suitably trained Evolutionary Polynomial Regression (EPR) model that represents the material constitutive 

behaviour in the framework of the finite element method. The automation algorithm was coded in Matlab 

environment using a new bespoke version of EPR.  Two numerical examples are presented to illustrate the 

proposed methodology. The results show that using EPR in the self-learning finite element method provides 

very accurate predictions, simplifies the training of EPR and reduces the time required for analysis. 

1 –Introduction 

The self-learning simulation is an extension of the autoprogressive algorithm originally introduced by 

Ghaboussi et al. [1]. Hashash et al. [2] proposed a self-learning simulation methodology, also called 

inverse analysis technique. This methodology employs the auto-progressive algorithm that extracts 

material’s constitutive behaviour (stress-strain relationship) using global load-displacement 

measurements. The self-learning finite element method introduced by Hashash [2] utilizes a neural 

network (ANN) based constitutive model to extract the materials behaviour [2]. Although there has 

been valuable research on the self-learning FEM using ANN, and demonstration of the advantages 

that ANN offers in constitutive modelling, however, it is also known that ANNs also suffer from a 

number of drawbacks. For example, the number of neurons, number of hidden layers, transfer 

function, etc. must be determined a priori, requiring a time-consuming trial and error procedure [3]. 

Faramarzi et al. [4] proposed an algorithm for training EPR models and their incorporation in the self-

learning procedure and highlighted the advantages of EPR over ANN. In this paper the process of 

EPR based self-learning FEM has been applied to overcome the problems with the ANN approach 

and improve the way of EPR training. 

 

2 – Evolutionary polynomial regression (EPR) 
In recent years, by rapid developments in computational software and hardware alternative computer 

aided pattern recognition approaches have been extended beyond classical plasticity theories to 

modelling many engineering problems. Evolutionary polynomial regression (EPR) is a new hybrid 

technique based on evolutionary computing, aimed to search for polynomial structures representing 

the behaviour of a system [4]. EPR is a combination of genetic algorithm (GA) which searches for 

symbolic structures and least square (LS) regression which is used to estimate the constants values 

[5].  A typical formulation of EPR expression can be stated as: 

 𝑦 =  ∑ 𝐹(𝐗, 𝑓(𝐗), 𝑎𝑗)

𝑚

𝑗=1

+ 𝑎0 

 

(1) 

where 𝑦 is the estimated output of the system; 𝑎𝑗 is a constant value; 𝐹 is a function constructed by 

the process; 𝐗 is the matrix of input variables; 𝑓 is a function defined by the user; and 𝑚 is the 

number of terms of the expression excluding bias 𝑎0.  
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3 – EPR based self-learning finite element method 

The methodology of incorporating an EPR in finite element analysis was first presented by Javadi and 

Rezania [3]. They showed that a properly trained EPR on experimental data can be implemented in a 

finite element model with more simplicity compared with a conventional constitutive model [3]. 

However, this approach of training EPR needs a large number of experiments which is costly and may 

not be available in all cases. Therefore, training EPR within the self-learning FEM seems to be much 

more efficient. The framework of the self-learning FEM consists of two steps. In step 1, the applied 

load and constrained boundary conditions are implemented and the boundary forces and 

displacements are measured for each loading increment. Two finite elements analyses are considered 

in parallel (FEA and FEB) and an EPR model which represents the stress-strain relationship is trained. 

The FE model (A) simulates a structure and applies the forces while in parallel, the FE model (B) 

applies the corresponding displacements. The stresses and strains are determined at each integration 

point for both FE models. The methodology assumes that the stresses of FE (A) are accurate and 

strains of FE (B) are accurate and they are used to train the EPR model. Each cycle of self-learning 

that accomplishes the entire applied load is called a pass. Several passes may be required to complete 

the analysis. The flowchart of the EPR-based self-learning FEM is shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

4 – Numerical examples  

4 – 1 Example 1  
A 2D plane stress panel subjected to in-plane compression is considered. The geometry of the plate, 

boundary conditions and loading are shown in Figure 2. Due to the symmetry, only a quarter of the 

plate is simulated. The material of the plate is linear elastic with Young’s modulus E = 500 pa and 

poison’s ratio µ = 0.3 and the pressure applied is 10 pa. This example has been deliberately kept 

simple in order to verify the process of EPR based self-learning simulation.            

The measurements are generated synthetically from a FE model using ABAQUS. It is assumed that 

during the experiment the displacements at the node on the right corner (node1) are recorded. Two 

finite elements models are created and three EPR models are used for the training process. Figure 3 

shows the prediction of EPR-based self-learning FE model for the displacement at node (1) from one 

pass. Comparison is made between the results of the actual (linear elastic) model and the EPR based 

FEM (B) Apply 

measurements  

Figure 1. The flow chart of the proposed automation process of EPR-based self-learning FEM 
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self-learning FEM. It can be seen that the EPR-based FEM is able to provide an excellent agreement 

with the actual data.  

                       

     

4 - 2 Example Two 
A 2D truss structure with 13 axial force elements is considered in the second example. The geometry, 

boundary conditions and loading are illustrated in Figure 4. The truss is subjected to a concentrated 

load (100 KN) at node 3. The load–displacement data were generated using FE simulation with 

ABAQUS using the nonlinear Ramberg-Osgood model. The load and the corresponding displacement 

at node 3 are considered as the experimental measurements used in the self-learning process. The 

general form of the Ramberg-Osgood model is [6]: 

𝜎

𝐸
+

2𝛽𝜎𝜊

3𝐸
(

𝜎

𝜎𝜊
)𝑛 = ɛ                                                                                                                            (2) 

Where E = 20.0x109 pa, σο = 1.0x107 pa, β = 2.34, n = 3.  

The values of stresses were considered as input and strains as output. After training, in each run, an 

EPR model with the highest COD was chosen. It can be seen from Figure 5 that the EPR-based self–

learning method is able to accurately capture the nonlinear behaviour of the truss from the first pass. 
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5 – Conclusion  
The conventional approach to constitutive modelling using data mining techniques requires a 

significant amount of data which could be costly and not available at all cases. Furthermore, obtaining 

a homogenous stress-strain state in experiments could be very challenging, especially for complex 

loading conditions. In this paper an EPR-based self-learning FE simulation model has been developed 

as an efficient approach for learning the constitutive behaviour of materials. The main advantage of 

using EPR in the self-learning FEM is that it gives transparent and structure equations representing 

the constitutive behaviour of material which can be readily implemented in FE code. The 

implementation EPR in the FE procedure is straightforward. In the self-learning FEM, there is no 

need to check yielding, to compute the gradients of plastic potential curve, to update the yield surface, 

etc.  

The developed approach takes the advantages of the rich data buried in non-homogenous materials. It 

was shown that the EPR-based self-learning FEM is able to capture the material behaviour from one 

pass, reducing the overall computational time. In the two examples presented, the automation process 

was run only once and the EPR model captured the complete behaviour with very high accuracy. It 

should be noted that in more complex problems, more passes may be required to capture the more 

complex material behaviour. The proposed approach can be used in different boundary value 

problems. 
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ABSTRACT

The development of an automated aerodynamic optimisation algorithm using a novel method of param-
eterising a computational mesh by employing userdefined control nodes will be presented. The shape
boundary movement is coupled to the movement of the novel concept of control nodes via a quasi-1D-
linear deformation. Additionally, a discrete third order smoothing step has been integrated to act on the
boundary during the mesh movement based on the change in its second derivative. By implementing the
discrete boundary smoothing both linear and non-linear shape deformation is achievable dependent on
the preference of the user. The domain mesh movement is then coupled to the shape boundary movement
via a Delaunay graph mapping. An optimisation algorithm called Modified Cuckoo Search (MCS) is used
acting within the prescribed design space defined by the allowed range of control node displacement. In
order to obtain the aerodynamic design fitness a finite volume compressible Navier-Stokes solver is uti-
lized. The resulting coupled algorithm is applied to a range of case studies in two dimensional space
including the design of a race car diffuser and a subsonic, transonic and supersonic intake.

Key Words: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation,
computational fluid dynamics

1. Motivation

During the last 30 years, Computational Fluid Dynamics (CFD) has become a very mature field now
being the primary tool for aerodynamic design [1]. In light of this, computational aerodynamic shape
optimisation has emerged aiming to replace the resource intensive manual optimisation process based on
human expertise and intuition.

Despite these advancements, significant challenges for the modelling community remain in the param-
eterisation approach, the efficient transfer between CAD and CFD systems and improvements in the
computationally expensive mesh re-generation process and CFD evaluation during optimisation [2, 1].

Aerodynamic designers have a clear preference towards tools that are intuitive, efficient and allow a
wide ranging applicability. This paper presents a novel implementation of computational aerodynamic
shape optimisation in which the parameterisation approach makes use of user–defined ‘control nodes’
in the mesh as the method for both defining the geometry movements and as the design parameters for
the optimisation process. The ‘control nodes’ are linked to the rest of the discrete shape boundary via
a a quasi-1D-linear boundary deformation. This is coupled to a ‘discrete boundary smoothing’. The
Fast Dynamic Grid Deformation (FDGD) approach [24] has been applied to move the domain mesh and
results in a self-contained algorithm formulated to propagate the effect of the ‘control node’ displace-
ment throughout the discrete shape boundary and computational mesh making a mesh regeneration step
redundant and allowing a flexible yet small design space. Also, there is no requirement to convert the
geometry definition ‘stored’ in the mesh into any other format during the optimisation processs.
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2. Methodology

2.1. Geometry Shape Parameterisation

The developed approach is a discrete parameterisation acting directly on the boundary mesh. Once the
initial computational mesh has been created (which could have originated as a CAD geometry), the
geometry is then parameterised by choosing ‘control nodes’ at critical positions defined by the user
on the geometry. An important feature of the parameterisation is the dimensionality of the explorable
design space which can be adjusted through the number of control nodes and the designers settings. The
number and position of these control nodes is crucial in the evolution of the geometry. The total degrees

of freedom are defined as d =
NCN∑
k=1

fcn with fCN being the degrees of freedom on each ‘control node’ [3].

2.2. Mesh Movement

A methodology involving three steps has been defined starting with the displacement of the ‘control
nodes’ based on the fitness that has been evaluated by the optimization algorithm. In a second step,
the boundary of the geometry is deformed given the ‘control nodes’ displacement. A new scheme was
developed to propagate the displacement of the ‘control nodes’ throughout the boundary and was termed
‘discrete boundary smoothing. Finally, the domain nodes are moved utilizing the FDGD method [5].

The ‘discrete boundary smoothing’ is inspired by the idea of artificial dissipation, a scheme applied to
stabilize numerical solutions containing high gradients. The most common JST scheme applies a second
and fourth order term for stabilisation. A modified approach applies a term TΩ = −(D1−D3)Ω exhibiting
a third order and first order biharmonic and harmonic operator of the form D3Ω = ∇[λβ(3)∇2]Ω and
D1Ω = λβ(1)∇Ω with λ and β being coefficients to scale and sense sharp gradients in the solution field
[6]. This idea has been adapted. Let Ω be the discrete boundary so that TΩ may be discretized for a
number of smoothing iterations i = 2, 3, ...,Ns and yields

Ωi+1 = Ωi + βiλ
(
‖∇2Ωi‖ − ‖∇2Ωi=0‖

)
(1)

‖ ‖ is defining the norm operator in this paper. The smoothing iterations propagate the deformation of a
boundary node and its respective change in ∇2Ω throughout the boundary. The first step i = 1 is reserved
to perform an initial linear deformation step. β is applied to achieve mesh independence and is given as

β =
∆s2

min
2 .

A great advantage of the ‘discrete boundary smoothing’ is its flexible design space definition. This is
greatly enhanced through the introduction of the scaling factor λ. In order to allow both linear and
non–linear deformation along the same boundary , λ is set to be variable so equation 1 becomes

Ωi+1
j = Ωi

j + βiλ j[‖∇2Ωi
j‖ − ‖∇2Ωi=0

j ‖] (2)

with j = 1, 2, ...,NB whereas λ is selected by the user individually for each ‘control node’ and then
linearly interpolated for the remaining boundary nodes. For λ = 0 the smoothing is disabled and only the
linear deformation step occurred, for λ > 0 smoothing is applied resulting in a non–linear deformation.
It also allows great local control and shape preservation capabilities when used in conjunction with the
range of motion defined per ‘control node’.

2.3. Computational Fluid Dynamics

The applied FLITE CFD system fluid solver is an edge–based, node–centred finite volume discretisation
for solution of the compressible Reynolds Averaged Navier–Stokes equations [6]. All cases are fully
viscous applying the Spallart-Allmaras turbulence model. In case of the jet intake case, the mass flow
was fixed along the engine inlet face.
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2.4. Modified Cuckoo Search

Modified Cuckoo Search [4] is an evolutionary algorithm applying the ‘survival of the fittest’ strategy
to a given population. Each agent within the population exhibits a fitness value which is defined the
objective function as for example Lift to Drag ratio. The population is separated into good and bad
agents dictated by the fitness. All good agents are ‘cross-bread’ and the bad agents perform a random
walk called Lévy flight in search of an improved agent. The process of replacing and creating eggs
continues until a stopping criteria is met.

3. Case Studies

3.1. Intake Duct Optimisation

A common problem in aerodynamic design is the optimisation of an engine intake duct. In this case study
a land–based supersonic vehicle has been optimised first for distortion and consequently for pressure
recovery and distortion combined. Pressure recovery Pr measures the amount of restored total free
stream pressure P∞ Pr = P∞/Pt to allow minimization of pressure losses. Distortion σ provides a
measure of standard deviation of the total pressure Pt in relation to the mean total pressure P̄t across a

plane or line of interest using the integral σ = −
L∫

0

∣∣∣Pt − P̄t
∣∣∣

P̄tL
dl. Solutions to the fully viscous problem

were sought at a range of Mach numbers Ma = [0.5, 0.8, 1.1, 1.4]. The applied mesh contains a total of
82868 mesh nodes and 163419 mesh elements including 7 boundary layers using four control nodes with
a specified explorable design space of xC ∈ [−0.3, 0.3] and yC ∈ [−0.3, 0.3] for each control node C. The
travel path as well as the fitness are illustrated in Figure 2. The utilized mesh as well as the initial and
final pressure field for the case of Ma = 0.5 and optimization for Distortion only are visualized in Figure
1.
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Figure 1: A supersonic vehicle with engine intake duct showing (a) detailed mesh including the control node
locations and their range of motion (b) the pressure field of the initial geometry (c) the pressure field of the
optimised geometry for Ma 0.5
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3.2. Race Car Diffuser

A 2D diffuser shape of a race car was optimised for down-force to drag ratio. Downforce has been mea-
sured as the negative lift according to F = −

∮
p(n • j) dB and drag was determined by D =

∮
p(n • i) dB

with p is the non-dimensionalized static pressure, n is the normal unit vector directing into the surface
and i and j are the parallel and vertical unit vectors in relation to the freestream velocity direction. Up to
four control nodes were selected to determine a solution at a Mach number of Ma = 0.1 on a mesh with
41324 mesh nodes and 93564 mesh elements.

4. Conclusions

An automated aerodynamic shape optimisation algorithm has been developed making use of the con-
cept of ‘control nodes’ in the mesh. The approach was coupled to the ‘discrete boundary smoothing’
technique allowing both linear and non–linear deformation along the same boundary. The approach is
complemented with the FDGD domain mesh movement allowing to cut the mesh regeneration step and
reduce the problem inherent in translating geometries from CAD-based geometry definitions to CFD
meshes. Modified Cuckoo Search (MCS), an evolutionary optimisation approach, has been implemented
to find the global optimum. The resulting algorithm is self-sufficient during the entire optimisation cy-
cle and has been successfully applied to various different aerodynamic problems including a race car
and subsonic, transonic and supersonic engine intake duct optimisation. It demonstrated to be robust in
terms of the diverse applicability as well as its ease of implementation for all test cases and improve-
ments in the fitness were achieved with a fast convergence in terms of number of generations. It has
also demonstrated to be intuitive to use being able to include human expertise and allowing a flexible yet
small design space.

For future work, the authors aim to extend the code into 3D. Additionally, ’dynamic’ control nodes will
be tested with the position being an optimisation by itself in order to increase the explorable design
space whilst maintaining the rapid convergence. Also, enhancing the optimisation methodology may be
exploited by implementing hybrid schemes combining this evolutionary approach with local gradient-
based searching.
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ABSTRACT
In this paper, we focus on the generation of a strongly coupled monolithic system to describe the interaction
of the magnetic field, generated mechanical vibrations and corresponding acoustic behaviour active in an MRI
environment. We linearise the resulting nonlinear equations and consider both temporal and frequency dependant
axisymmetric formulations of the full three dimensional problem. We also utilise a stress tensor approach for the
electromagnetic forces, previously employed in [1, 2, 3]. This formulation allows the use of H1 conforming hp
finite elements, which when combined with hp refinement results in the possibility of accurate solutions. The fully
discretised scheme is solved by a Newton-Raphson procedure, in an extension of [1], which employed a fixed-
point algorithm. The results of our formulation are benchmarked against a series of numerical examples including
an application to a realistic magnet geometry shown in Figure 1.

Key Words: MRI Scanner; hp finite elements; Acoustic Magneto-Mechanical Coupling; Multi physics

1. Introduction

Recently Magnetic Resonance Imaging (MRI) has become an important tool in the medical industry.
The non-intrusive imaging capability and high resolution makes it desirable for identifying a range of
medical ailments, such as tumours, damaged cartilage and internal bleeding. The most common type of
magnet used in MRI scanners are superconducting magnets, consisting of superconducting wire cooled
by liquid helium contained within a vessel known as a cryostat. Figure 1 shows a typical setup of an MRI
scanner, which consists essentially of four main components. A set of main magnetic coils produce a
strong uniform stationary magnetic field across the radial section of the scanner. The secondary magnetic
coils are used to avoid large stray fields arising outside the scanner. The cryostat consists of a set of
metallic vessels used to maintain the supercooled magnet temperatures and shield from radiation. A set
of resistive coils inside the imaging volume, known as gradient coils, produce pulsed gradient magnetic
fields to generate an image of the patient.

Radiation Shields

Main Magnet CoilsSecondary

Gradient Coils

Magnet Coils

Figure 1: Primary Components of a typical MRI scanner

The presence of eddy currents in these conducting (metallic) vessels can be caused by changing magnetic
fields, such as those generated by the pulsed gradient fields. These eddy currents can cause perturbations
in the magnetic field. They also give rise to Lorentz forces and exert electro-mechanical stresses in the
conducting components which cause them to vibrate and deform. These deformations cause the magnetic
field to further perturb thus generating more eddy currents. The vibrations also cause perturbations of the
surrounding air, which in turn produces an acoustic pressure field. These phenomena can have undesired
effects causing imaging artefacts (ghosting), decreased component life and uncomfortable conditions for
the patient, due to the noise from mechanical vibrations.
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2. Coupled System
The aim of this work is to develop a computational analysis tool to aid in the magnet design by providing
a better understanding of the induced vibrations and acoustic behaviour. These phenomena are described
through the coupled set of Maxwell (eq. 1a and 1b) and linear elasticity (eq. 1c) equations. In the air
the linear elasticity equations reduce to a scalar Helmholtz equation for the acoustic pressure (eq. 1d).
Here ρ denotes the density of the material, µ the electromagnetic permeability, ε dielectric permittivity,
γ the electric conductivity, λ and G the Lamé parameters, c the speed of sound through a medium, E the
electric field vector, H the magnetic field vector, u the displacement field vector, p̂ the acoustic pressure
and σm is the cauchy stress tensor and the dot symbol (˙) is used to represent a time derivative.

∇ × E = µḢ ∇ · εE = 0 in Ω (1a)

∇ × H = J (u̇,H ,E) ∇ · µH = 0 in Ω (1b)

∇ · σm (u) + b (H ) = ρü σm (u) = λ (∇ · u) I + G
(
∇symu

)
in Ωc (1c)

∇2 p̂ − 1
c2

¨̂p = 0 in Ωn (1d)

The current term consists of J (u̇,H ,E) = J s + J l (u̇,H ) + Jo (E), the source, Lorentz and Ohmic,
or eddy currents. The magneto-mechanical coupling, shown in Figure 2, arises in the conductor due to
the Lorentz currents and through body forces in terms of Maxwell stresses, b (H ) = ∇ · σe (H ) in
continuation of [1, 2, 3], defined as

σe (H ) = µ

(
H ⊗ H − 1

2
(H · H ) I

)
(2)

The acoustic pressure is coupled to the magneto-mechanical problem at the air-conductor interface
boundary (∂Ωc) through jump conditions in the tractions and accelerations.

[[σ]]n = 0 on ∂Ωc (3a)

[[ü]] = 0 on ∂Ωc (3b)

where n is the outward normal vector associated with the boundary and the double bracket symbol
[[x]] = xn − xc defines the jump in the solution across a boundary. The subscripts c and n correspond to
the conducting and non-conducting sub domains of our computational domain, shown in Figure 2.

u

σe Jl

u
psc

Ωc

pr

Ωn

Figure 2: Computational domain of the coupled system

3. Computational Framework
3.1. Axisymmetric Problem
Given that the geometry of the MRI Cryostat is constant across the bore section of the cylinder and
modelling only one set of gradient coils, the Z-gradient, the problem may be expressed in terms of an
axisymmetric formulation. By expressing the geometry in cylindrical coordinates the fields are inde-
pendent of the angular component and so the order of the geometry reduces from 3D to a 2D plane.
The problem is solved on the r, z plane as opposed to the x, y, z Cartesian domain, whilst still resolving
the full 3D nature of the fields. However this requires a more complex weak formulation, which takes
account of the differential operators expressed in cylindrical coordinates. By introducing appropriately
scaled variables the 1/r singularity at the radial axis can be eliminated and ur and uz the components
of mechanical displacements along with the Aφ component of a vector potential for representing the
electromagnetic fields can all be discretised by H1 conforming hp finite elements.
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3.2. Time Harmonic System
Computational speed is of great importance to the design process of an MRI scanner, as designers must
test a large number of concept designs over a wide range of operational conditions. For this reason
one would prefer to solve in the frequency domain, rather than the full time dependant problem. This
formulation allows the designer to sweep quickly over the sourcing frequencies of the Z-gradient coil
and compute the dissipated power as a function of the frequency. We have therefore chosen to adopt the
approach taken in [1] of assuming a time harmonic, rather than pulsed, sourcing current in the gradient
coil so that we can formulate the equations in the frequency domain.

3.3. Monolithic Scheme
Unlike the work previously carried out in [1], which involves the implementation of a fixed point it-
eration scheme, we have chosen to adopt a Newton-Raphson approach to solve the coupled system of
non-linear equations (eq. 1). By forming the monolithic system, shown below in eq. 4, this method offers
a more robust solver with quadratic rates of convergence.


KHH KHu 0
KuH Kuu Ku p̂

0 Kp̂u Kp̂ p̂


*..,
δH

δu
δ p̂

+//-
= − *..,

RH (H ,u)
Ru (H ,u, p̂)
R p̂ (u, p̂)

+//-
(4)

Where R is the system residual vector, obtained from eq. 1, δ is the solution update vector and K is the
Tangent stiffness matrix, formed by taking the directional derivative of the residuals with respect to the
solution fields, outlined in [4]. To obtain the solution X = [H ,u,p]T we define some initial guess X [0]

and update it by solving eq. 4 and iterating over X [k+1] = X [k] + δ until convergence is acheived.

3.4. Perfectly Matched Layer
Due to the nature of acoustic wave propogation we must treat the infinite boundary of the computational
domain with special consideration to allow for accurate results. We have chosen to employ a perfectly
matched layer, or PML, to deal with the absorbtion of outgoing waves and avoid numerical pollution
from artificial reflections at the boundary. The PML is analogous to a metamaterial where its parameters
are artificial and are constructed through an exponential decay function in the complex plane (resulting
in a complex coordinate stretching in the layer), in order to absorb incoming waves. A full PML con-
struction and its behaviour in a hp finite element context is discussed in [5]. To demonstrate the effect of
the PML a simple test problem is setup, shown in Figure 3, in which a sphere is located at the centre of
an axisymmetric domain and an incident plane wave is propogated in the positive z direction (upwards)
with a PML around the outer domain boundary. The acoustic pressure can be expressed as p̂ = p̂in + p̂sc ,
where p̂in is an incident (known) plane wave and p̂sc is the unknown scattered wave

z

r

pin

psc
PML

Figure 3: Problem Setup

No PML PML

Figure 4: Pressure Field
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Figure 5: Solution Comparison

The contour plots of the computed scattered field p̂sc is shown in Figure 4. The left plot shows the
pressure field without the PML and the right plot with the PML implemented. Figure 5 is a line plot of
the scattered field p̂sc from the outer radius of the sphere at the centre of the domain to the edge of the
PML. It is clear from the plots that without the PML the artificial reflections at the domain boundary
cause numerical artefacts to emerge. With the PML implemented it is possible to absorb these waves
and allow for accurate solutions within the computational domain. In the PML layer the solution decays
to the defined boundary value and does not fully reflect the analytical solution.
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4. Numerical Results
We present the following numerical example of a realistic cryostat geometry of an actual MRI scanner.
Given that our axisymmetric formulation is still valid for a full 3D problem, Figure 6 shows the plots
of the two magnetic field components, generated by the static and gradient coils, around the full 3D
scanner.

Figure 6: Static (left) and Gradient (right) Magnetic fields
The acoustic behaviour of the MRI magnet geometry is important for determining the noise levels gen-
erated during an imaging cycle. The high noise levels can be uncomfortable for patients undergoing a
body scan, thus the need to accurately simulate the acoustic pressure generated by the scanner is of vital
importance. In Figure 7 the effect of p, polynomial basis function, refinement on the acoustic distribution
is visualised.

Figure 7: p effect on acoustic wave problem
The solution for linear, p = 1, basis functions varies significantly from those with higher order basis
functions, p = 3 and p = 5. The linear shape functions result in numerical dispersion, which causes
the amplitude to grow until steady state, whereas the higher order basis functions are much better at
capturing the wave function and result in a more accurate solution.

5. Conclusions
The results presented here provide a framework to the set up of an analysis tool for the prediction of
deformation and vibration in the conducting regions of an MRI scanner and the correponding acoustic
patterns and sound levels that arise. The accuracy of the non-linear coupled hp finite element framework
has been verified on a series of further benchmark industrial and academic examples, which will be
presented in the talk at ACME conference Cardiff.
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ABSTRACT

In this paper, we study numerical solutions of Helmholtz problems using high order finite element formulations.
These include the polynomial high-order finite element method (high-order FEM) and the partition of unity finite
element method (PUFEM). The aim of the study is to solve efficiently and with high level of accuracy two dimen-
sional problems at high frequencies. The performance of both methods is compared and analysed on test examples
of practical interest.

Key Words: Helmholtz equation ; weak variational formulation ; partition of unity finite element method ; high
order finite element method ; propagation and evanescent waves

1. Introduction

Numerical solutions to the Helmholtz problems depend significantly on the wave number k. Specifically,
the accuracy of the solution of the Helmholtz equation using the conventional FEM deteriorates with
increasing wave number, even if the number of elements per wavelength is kept constant. This is due to
the pollution error [1].

With the aim to reduce the computational cost and improve the accuracy of wave problems, various
methods based on field enrichment have been proposed. We addressed the literature on partition of unity
finite element method (PUFEM) and other related methods. Another alternative to reduce the pollution
error is to increase the interpolation polynomial order over each element. High order polynomial ap-
proximations reduce resolution requirements which results in lower number of parameters in the whole
problem.

The current work assesses both PUFEM and high-order FEM for the solution of Helmholtz problems
with increasing wave numbers. PUFEM has been thoroughly investigated for acoustic [2] wave problems
and attempts have been made to compare its performance to that of the standard FEM. Given that only
low order elements have been considered for FEM, it is intended here to increase the polynomial order
p to hopefully claim a fair comparison.

2. Weak formulation and numerical approximation

Let Ω ⊂ R2 be an open bounded domain with a smooth boundary Γ. We consider finite element dis-
cretizations for approximating the solution of the Helmholtz equation

−∆u − k2u = 0 in Ω, (1a)

∇u.n + iku = g on Γ. (1b)

The Galerkin finite element approximation is applied to the weak variational formulation of the
Helmholtz problem. The weak formulation is obtained by multiplying the Helmholtz equation (1a) by a
smooth test function v = v(x, y) and integrating the resulting equation over the domain Ω such as

−
∫

Ω

(∆u + k2u)v dΩ = 0. (2)
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By applying the integration by parts to the integrand with second order derivatives and then introducing
the Robin boundary condition (1b), the system of equations to solve is then

∫

Ω

(∇u.∇v − k2uv) dΩ + ik
∮

Γ

u.v dΓ =
∮

Γ

gv dΓ. (3)

Our aim is to find an approximate solution uh of the weak form (3) using either, high-order finite ele-
ments (FEM) or elements with plane wave enrichment functions (PUFEM).

In the high-order FEM model, the computational domain Ω is divided into N uniform non-overlapping
quadrilateral elements Ωe , e = 1, ...,N . The field unknown variable over each element Ωe is then ap-
proximated by

uh =
#vert∑

j=1

u j Nj (ξ ) (4)

where Nj stands for the Lagrangian polynomial interpolation functions [3] and u j represents the nodal
values (unknowns of the problem) corresponding to the element vertices. The degree p of the polynomial
interpolation functions Nj depends on the number of nodes assigned to each element. In general, for an
approximation of degree p the number of vertices per element would be (p + 1)2.

In the PUFEM model, the elements are chosen to be quadrilateral with #vert = 4. At each vertex, the
unknown variable u j of expression (4) is expanded into a linear combination of q plane waves with
directions encompassing the two dimensional space [2]. The PUFEM approximation of the unknown
field variable within each element Ωe is then given by

uh =
4∑

j=1

q∑

l=1

Nj eikd.r Al
j . (5)

where Nj are the bi-linear basis functions corresponding to the mesh vertex, d = (cos θl ,sin θl )T and
θl = 2π l/q for l = 1,2, ...,q. The unknowns of the problem are no more the coefficients u j but the
amplitude factors Al

j of the plane waves.

3. Numerical experiments

In this section, both PUFEM and high-order FEM models are assessed by considering test cases of
practical interest. The first one involves an evanescent wave and the second case deals with the propa-
gation of waves in a duct with rigid walls, which involves propagating and decaying modes. The per-
formance of each method is measured through the relative error, in percent, using the L2 norm. The
discretization level in terms of degrees of freedom per wavelength is indicated by the paramter τ given
by τ = λ

√
totdof/area(Ω), where totdo f stands for the total number of degrees of freedom required for

the solution and Ωarea is the area of the computational domain. Another parameter of interest is totsys
representing the total number of storage locations of the system matrix (x). Finally, the conditioning of
the system matrix (x), denoted by κ(A), is also considered. It is computed using the 1-norm and is given
by κ(A) = | |A| |1 | |A−1 | |1. To conclude with, all the elementary integrals are evaluated numerically in a
straight forward way by using Gauss-Legendre quadrature. The number of integration points is chosen
to be enough so that the results are not affected by the integration errors.

3.1. Evanescent wave problem

The first test case deals with the numerical solution of an evanescent wave problem in a square domain
Ω = [−1,1]× [−1,1]. The Robin boundary condition is applied on the boundary Γ through the boundary
source term g. The exact solution of this problem can be found in [4].

The problem is solved for the wave number ka = 100 and β = 1.001. The results obtained with both
approaches are given in Table 1. We list the L2-error, the condition number κ and the total number
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Table 1: Evanescent wave test case for ka = 100 and β = 1.001. Relative percentage L2-error, ϵ2[%], conditioning,
κ(A), and total number of storage locations, totsysfor different numbers of τ.

p-FEM PUFEM

p=10 p=20 p=30
3.44969 (4.5) 4.44105 (3.8) 1.55543 (3.8) 1.61219 (1.5)

0.00053 (10.1) 0.00061 (6.4) 0.00025 (5.7) 0.08167 (1.6)
ϵ2[%] 0.00015(11.4) 0.00016 (7.6) 0.00023 (7.6) 0.00081 (1.7)

0.00002 (13.9) 0.00002 (11.4) 0.00009 (9.5) 0.00080 (1.8)
0.80E+04 (4.5) 0.13E+05 (3.8) 0.23E+05 (3.8) 0.14E+09 (1.5)

0.40E+05 (10.1) 0.38E+05 (6.4) 0.47E+05 (5.7) 0.97E+09 (1.6)
κ(A) 0.54E+05 (11.4) 0.53E+05 (7.6) 0.85E+05 (7.6) 0.37E+10 (1.7)

0.84E+05 (13.9) 0.12E+06 (11.4) 0.11E+06 (9.5) 0.5IE+14 (1.8)
1,973,161 (4.5) 2,386,381 (3.8) 3,520,981 (3.8) 102,870 (1.5)

22,978,081 (10.1) 10,827,301 (6.4) 11,687,221 (5.7) 139,965 (1.6)
totsys 32,645,341 (11.4) 18,614,761 (7.6) 27,471,961 (7.7) 182,760 (1.7)

59,413,861 (13.9) 62,293,141 (11.4) 53,386,201 (9.5) 231,255 (1.8)

of storage locations of the final system matrix, totsys. The discretization level τ is also given and is
presented between brackets.

The results from Table 1 show different aspects of the high-order FEM and PUFEM. As the order p
increases in the FEM, the discretization level τ required to achieve a prescribed accuracy is decreased.
But PUFEM seems to provide similar quality results for significantly lower values of the discretization
level τ. For example, PUFEM provides 1.5% error with τ = 1.5 whereas a similar error is obtained with
p = 30 and τ = 3.8. Moreover, PUFEM provides an error of order 10−4% with τ = 1.7 whereas an error
of the same order is achieved with τ = 10.1 for p = 10, with τ = 6.4 for p = 20 and finally, with τ = 5.7
for p = 30. On the other hand, the lowest levels of L2-error are achieved by the polynomial approach
approach (FEM) but with a significantly higher discretization level. Moreover, the number totsys of
storage locations required by PUFEM is lower in comparison to the values required by high-order FEM.
However, looking at the condition number κ, the values corresponding to high-order FEM are of the
same order while the value corresponding to PUFEM is orders of magnitude higher.

3.2. Wave propagation in a duct

The second test example deals with the propagation of a wave in a duct with rigid walls. The computa-
tional domain Ω = [0,2] × [0,1] is considered with the Robin condition (1b) on its boundary Γ through
the source term g. The exact solution of this problem can be found in [5].

We solve the problem for the wave number ka = 40. Two different values of θ are considered which
give the highest-propagating mode (θ = 12) and the lowest-evanescent mode (θ = 13). The computed
L2-errors, in percent, and the discretization levels are given in Table 2.

As shown in Table 2, the error decreases by refining the mesh grid for high-order FEM with a given order
p and by increasing the number q of enriching plane waves for PUFEM. This is valid for both values
of θ representing propagating and evanescent modes. Again, for all cases, PUFEM requires less degrees
of freedom per wavelength in comparison to high-order FEM in order to reach a prescribed accuracy.
While high-order FEM requires more degrees of freedom per wavelength, this number decreases as
p increases. The results also show that the solution requires more degrees of freedom per wavelength
to reach a certain accuracy for the evanescent wave problem in comparison to the propagating mode
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Table 2: Wave propagation is a duct. Relative L2-error [%] and discretization level for high-order FEM and
PUFEM for ka = 40.

p-FEM PUFEM

p=10 p=20 p=30
0.00380 (5.7) 0.00020 (4.6) 0.00101 (3.4) 1.24777 (1.9)
0.00005 (9.0) 0.00006 (6.8) 0.00009 (6.8) 0.08853 (2.4)

θ = 12 0.00005 (11.2) 0.00005 (11.2) 0.00007 (10.1) 0.00557 (2.7)
0.00005 (13.4) 0.00006 (13.4) 0.00005 (13.4) 0.00019 (3.0)
0.00870 (5.7) 0.00085 (4.6) 0.02018 (3.4) 39.14330 (1.9)
0.00011 (9.0) 0.00010 (6.8) 0.00012 (6.8) 4.14675 (2.4)

θ = 13 0.00010 (11.2) 0.00010 (11.2) 0.00010 (10.1) 0.41524 (2.7)
0.00009 (13.4) 0.00010 (13.4) 0.00010 (13.4) 0.00121 (3.0)

problem. For example, PUFEM provides about 1.2% and 0.09% with τ = 1.9 and 2.4, respectively, in
the case of propagating mode. These errors increased to about 39.1% and 4.1% respectively in the case
of evanescent mode. This observation is also valid for the high-order FEM approach.

4. Conclusions

In this work, two high order finite element formulations have been used to solve 2D Helmholtz problems.
The methods chosen are the high-order polynomial finite element method (high-order FEM) and the
partition of unity finite element method (PUFEM). The performance of each approach is assessed in
terms of results quality and required degrees of freedom per wavelength. The condition number and
total number of required storage locations are also considered.

PUFEM provides high quality results with a low number of degrees of freedom per wavelength,
especially for relatively high frequencies where the element size incorporates many wavelengths. Errors
lower than 1% were obtained with less than 2 degrees of freedom per wavelength. In such cases, the final
system to solve is obviously drastically reduced in comparison to high-order FEM and hence the number
of storage locations is also reduced. However, it is also shown that further increasing the discretization
level by increasing the number of enriching plane waves does not always enhance the results beyond
a certain level due to the ill-conditioning issue which is inherent to the plane wave enrichment technique.
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ABSTRACT

We present a method of obtaining properties of electromagnetic cavities with frequency dependent materials,
such as the resonant frequencies, quality factors and mode shapes, using a high-order discontinuous Galerkin
(DG) time-domain solver. Optimal convergence in the resonant frequency has been achieved for all numerical
examples. The accuracy of resonant frequencies obtained is quantified and we present a study of errors due to
geometrical approximation. Advantages of a multi-processor computation using Message Passing Interface (MPI)
are demonstrated.
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1. Introduction
Recent advances in manufacturing techniques, such as electron beam lithography make it possible to
manufacture resonant cavities on the scale of the wavelength of light. These devices frequently have
desirable qualities such as high quality factors and well defined resonant frequencies [1]. However, the
typical scale and the geometric complexity introduce several challenges for numerical simulation.

The behaviour of these resonators is described by Maxwells’ equations of classical electromagnetics.
For dispersive materials, an auxiliary ordinary differential equation based on the Drude model of solids
[2] is coupled to the Maxwell system. Frequency domain solvers are traditionally employed to find the
resonant frequencies and associated modes, but as the scale and geometric complexity of the devices
increase, the large eigenvalue system that must be solved becomes computationally prohibitive.

We propose using the Discontinuous Galerkin method with explicit time marching, which only requires
solving a block diagonal system of equations for each timestep [3]. The frequency spectrum, resonant
frequencies and quality factors are then recovered by a Fourier transform of the time domain solution.

2. DG solution of the transient Maxwell’s equations in dispersive media
Maxwell’s equations of classical electromagnetics and the auxiliary ordinary different equation required
for dispersive media in linear, dimensionless, conservation form by

∂ U
∂t
+

nsd∑

k=1

∂ Fk (U)
∂xk

= S (U) , (1)

where nsddenotes the number of spatial dimensions. The vector of unknowns, U, is
given by U = (εE1, εE2, εE3, µH1, µH2, µH3, J1, J2, J3)T , the flux vectors, Fk , are given
by F1 = (0, H3,−H2, 0,−E3, E2, 0, 0, 0)T , F2 = (−H3, 0, H1, E3, 0,−E1, 0, 0, 0)T and F3 =

(H2,−H1, 0,−E2, E1, 0, 0, 0, 0)T and the source term, S, is given by S = (0, 0, 0, 0, 0, 0, ω2
d

E1 −
γd J1, ω2

d
E2−γd J2, ω2

d
E3−γd J3)T . HereE = (E1, E2, E3) is the electric field intensity,H = (H1, H2, H2)

is the magnetic field intensity and J = (J1, J2, J3) is the polarisation current. The material parameters ε ,
µ, ω and γ are the electric permittivity, magnetic permeability, plasma frequency and electron damping
coefficient respectively.
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We discretise the computational domain Ω on an unstructured mesh. The DG weak formulation [4] of
(1) on an element Ωe can then be written as

∫

Ωe

W · ∂ Ue

∂t
dΩ +

∫

Ωe

W · *,
nsd∑

k=1

∂Fk (Ue )
∂xk

− S (Ue )+- dΩ +
∫

∂Ωe

W · A−n ~Ue� dΓe = 0 ,

where Ue denotes the solution vector restricted to the element Ωe , W is a vector of test functions and
~Ue� = Ue − Uout denotes the jump of the solution across the element boundary ∂Ωe . The boundary
term, derived after introducing the numerical flux on the boundary and using a flux-splitting technique,
results in

A−n ~Ue� =
1
2
*..,
−n × ~H� + n × (n × ~E�)
n × ~E� + n × (n × ~H�)

03x1

+//-
,

where n is the outward unit normal of the element and 03x1 is a zero vector of dimension 3. After
introducing the approximation of the solution and using a Galerkin formulation, the following system of
ordinary differential equations is obtained

MdU
dt
+ R (U ) = 0 ,

where U is the vector of nodal values, M is the block diagonal mass matrix and R (U ) is the residual
vector. The system of ordinary differential equations is advanced in time using a fourth-order explicit
Runge-Kutta method.

3. Resonant frequencies and mode shapes
The engineering quantities of interest are the resonant frequencies and the associated modes shapes and
quality factors. In order to obtain these quantities from time domain simulations, we begin with an intial
field distribution containing a point excitation. Maxwells’ equations are solved to advance the fields in
time, and the amplitude of the solution field is recorded at fixed time intervals, ∆t, at at least one point
in space for a period of time, T . The resulting discrete field intensity signal is illustrated in Figure 1a.
Taking the fast Fourier transform of the field intensity signal results in its frequency eigenspectrum,
shown in Figure 1b for a 3-dimensional cubic cavity with a perfect electric conductory (PEC) boundary.
The resonant frequencies of the cavity correspond to the locations of peaks in the spectrum, whilst the
quality factors are related to peak widths. The mode shape associated to a given resonant frequency can
be obtained as a postprocess, by taking the discrete Fourier transform at the desired frequency.

For a high fidelity computation of broadband spectrums, two properties of the fast Fourier transformmust
be taken into consideration: (1) the spectrum resolution is inversely proportional to T ; (2) the highest
resonant frequency that can be computed is inversely proportional to ∆t. To alleviate the potentially large
computational cost which results, we employ a high-order DG solver with a NEFEM [5] rationale. This
enables the use of extremely coarse meshes that guarantee that the time step of the explicit time marching
algorithm is not restricted by the stability condition, but by the maximum frequency that is to be resolved.
In addition, an efficient parallel implementation using MPI has been developed, enabling to dramatically
reduce the computational time required to advance the solution large periods of time.

4. Numerical Results
The solver was validated validated using a rectangular 2-dimensional cavity filled with a dispersive
medium (ε∞ = 1, σ = 1, ω = 6.7433, γ = 0.0799), surrounded by a perfect electric conductor, with
a width twice its length. Figure 2a shows how error in the resonant frequency, calculated relative to
a reference solution, converges with T to a final numerical error due to spatial discretisation. Optimal
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Figure 1: Signal and corresponding eigenspectrum obtained from a time domain simulation for a cubic,
free-space cavity with a PEC boundary.

convergence of the error in resonant frequency is shown in Figure 2b, the error convergences as the
numerical dispersion error, at a rate h2(p+2).
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(b) h-convergence of the error in resonant frequency
obtained for the fundamental frequency.

Figure 2: Results for a rectangular cavity filled with a dispersive medium, surrounded by a PEC boundary

A circular free-space cavity is used to illustrate the effect of boundary approximations on computed
resonant frequencies. In Figure ??, convergence of error for p- and h-refinement is shown for iosparametric
elements and NEFEM elements. The geometrical error can be seen to have a significant effect for low-
order planar elements.
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Figure 3: Results for a circular free-space cavity surrounded by a PEC boundary.
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(a) Examples of mode shape obtained
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(b) Parallel speed up for a mesh of 12,288 planar
hexahedral elements

Figure 4: Results for fully 3-dimensional cubic cavity with PEC boundaries

Parallel computation allows computation of resonant frequencies and mode shapes for challenging
realistic 2- and 3-dimensional geometries with high accuracy, in a reasonable run time. Dramatic speed
increases can be obtained for larger meshes, notable with higher-order elements, as illustrated by an
almost linear speed up shown in Figure 4b.

5. Conclusions
A method has been presented for obtaining electromagnetic resonance properties of cavities using
a parallelised discontinuous Galerkin time domain solver. We validated the method by showing h-
convergence of the error in resonant frequencies. Themethod has been validated and optimal convergance
rates in the resonant frequency error has been achieved. The effect of geometrical representation and
high-order elements on resonant frequencies have been quantified and the advantages of parallelisation
quantified.
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ABSTRACT

This paper proposes a novel scheme for the solution of Maxwell equations in the time domain. A discretization
scheme in time is developed to render implicit solution of system of equations possible. The scheme allows for
calculation of the field values at different time slices in an iterative fashion. This facilitates us to tackle problems
whose solutions have harmonic or even more general dependency on time.
The spatial grid is partitioned into finite number of elements with intrinsic shape functions to form the bases of
solution. Furthermore, the finite elements are enriched with plane wave functions. This significantly reduces the
number of nodes required to discretize the geometry, without compromising on the accuracy or allowed tolerance
in the errors, as compared to that of classical FEM. Also, this considerably reduces the computational costs, viz.
memory and processing time. Parametric studies, presented herewith, confirm the robustness and efficiency of the
proposed method.
The numerical scheme can thus be further developed for solution of problems where analytical solutions cannot
be developed, or even when the solution cannot be categorized as time-harmonic in nature.

Key Words: Finite Element ; Partition of Unity ; Time domain ; Wave Equations

1. Transverse Electric Mode of propagation
Let Ω be a unit square defined on a 2D Euclidean space, with its four edges as the boundary Γ. The
boundary value problem be defined as follows

∂2E
∂t2 − c2∇2E = f (t, x, y); on Ω (1a)

∂E
∂v̂ + hE = g(t, x, y); on Γ (1b)

E0 = U0 (1c)
∂E0

∂t
= V0 (1d)

where E is the magnitude of the transverse electric field in the direction ẑ perpendicular to the Euclidean
plane. The above equation can be approximated using finite element and finite difference schemes for
numerical solution. Let’s discretize the time derivative in the following way (in order to facilitate the
development of time-dependent formulations [1] as seen in analyses for transient response [2] or diffusion
problems [3])

∂2En

∂t2 =
En − 2En−1 + En−2

∆t2 (2)

Where the superscript n stands for the value of the field at the time instance t = n∆t. Substituting in (1a)
gives

∇2En =
En − 2En−1 + En−2

c2∆t2 − 1
c2 f (t, x, y)

⇒ En − (c2∆t2)∇2En = 2En−1 − En−2 + (∆t2) f (t, x, y) (3)
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The equation (3) can be used to obtain a weak form which can be further solved over a finite number of
elements in space as a linear system of equations. Let u be a test function multiplied to (3)

u(En − (c2∆t2)∇2En) = u
(
2En−1 − En−2 + (∆t2) f (t, x, y)

)
(4)

Integrating the left and right hand sides, over the domainΩwith boundary Γ, and applying the divergence
theorem we get
∫

Ω

uEndΩ + (c2∆t2)
{∫

Ω

∇u · ∇EndΩ −
∫

Γ

u v̂ · ∇EndΓ
}
=

∫

Ω

u
(
2En−1 − En−2 + (∆t2) f (t, x, y)

)
dΩ

(5)
Where v̂ is the normal unit vector to Γ. From (1b) and (5) we get the solvable weak form

∫

Ω

uEndΩ + (c2∆t2)
∫

Ω

∇u · ∇EndΩ + (c2∆t2)
∫

Γ

u (hEn)dΓ =
∫

Ω

u
(
2En−1 − En−2 + (∆t2) f (t, x, y)

)
dΩ + (c2∆t2)

∫

Γ

u g(tn, x, y))dΓ (6)

This equation (6) can be used to solve for En for the given set of boundary and initial conditions. The
equation can then be iterated over n to obtain subsequent values of the fields for consecutive time steps.

This paper validates the proposed method against a transient wave problem on a 2D plane, where the
solution is such that the magnitude of Electric field E is defined as E = Aeiwf

p
L where p = t − rk

ω . Here
k is the wave number, ω angular frequency, r length of the position vector, e the natural exponent and
i the imaginary number. Then the above constant c becomes the phase velocity defined such as c = ω

k

while the function g(t, x, y) is defined on each domain edge according to the relevant normal direction.
The propagator function f pL (defined in the appendix) provides a means to control the initial condition
of the problem, and can be used to manipulate the envelope of the moving wave, such that the solution
is a wave expanding symmetrically about the origin as it evolves in time.
The problem is initialized with the solution E0 (i.e. at t = 0), and for the boundaries we use appropriate
derivatives.
To solve the weak form (6) using the finite element method we mesh the domain into a set of elements
where the field E over each element is approximated in terms of a set of nodal values Ei and nodal shape
functions Ni such as

E =
n∑

i=1
EiNi (7)

Using the partition of unity [4] property one may further express the nodal values of the potential Ei as
a combination of Q plane waves [5] such that

E =
n∑

i=1
Ni

*.,B +
Q∑

q=1
Aq
i ei(kx cosαq+ky sinαq )+/- (8)

where αq is the angle of the qth plane wave. This ensures that we have the B term to capture variations
which vary slowly (or don’t vary at all, for example constants), and the plane wave enrichments that could
form the basis for wave type solutions in the computational domain. Now by solving the linear system
resulting from the above discrete representation we get the amplitudes Aq

i of the plane waves which is
the qth plane wave contribution at the node i.

2. Analyses
A comparison of relative errors is conducted to study the behaviour of accuracy in solution obtained
from the suggested PUFEM and classical FEM (figure 1). We test the accuracy of our method with the L1

norm, computed as the relative error percentage given by L1 =
abs(Ẽ−E )

abs(E ) ×100, where Ẽ, E are numerical
and analytical solutions of the problem at hand.
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The problems parameters are wave number k = 8π, angular frequency ω = 1, and amplitude A = 1.
The computational domain is a 2D unit square, with its bottom-left vertex shifted from the origin by
a distance of c × 100∆t in each direction. This facilitates the wave, originating at the origin, to enter
the computational domain by a 100 iterations in time, for the given step-size ∆t. Note, the parameters
assumed here are strictly numerical.

Table 1: : Parameters for PUFEM vs. FEM

Type ∆t λ DOF Q τ

PUFEM 10−2 1/4 300 12 4.3
FEM 10−2 1/4 3600 n/a 15

Table 1 shows the values of parameters studied. τ is the total number of degrees of freedom per
wavelength, computed as τ = λm

√
Q for PUFEM, and for FEM was calculated as τ = λm, where m is

the number of nodes per direction on the computational grid. The total number of degrees of freedom
(DOF) for PUFEM was computed as m2Q and for FEM it’s simply m2.
Figure 1 below shows the plots of errors obtained from the analyses. The FEM stands at 50% error at
the end of 5000 time steps (for a total time of 50 with ∆t = 10−2), as compared to the proposed PUFEM
which showed less than 10% error with about one fourth the τ used in case of FEM.

0 13 25 38 50
1.0e-03

3.8

8.2

50.850.8

t

L
_

1
 [

%
]

PUFEM

FEM

Figure 1: Semilog plot of L1 norms in percentage to compare results from PUFEM and FEM for k = 8π. The wave
covers the whole of computational domain by time t ≈ 36.
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Figure 2: 2D Plots of the recovered wave (k = 8π), obtained using the proposed PUFEM. The computational
domain was meshed into 4 × 4 elements. The number of plane wave enrichments used Q(τ) = 12(4.3), and
∆t = 10−3. The final L1 norm percentage at the end of the simulation was 3.6%

Even though we know that, in theory, a smaller ∆t would lead to better results, however, it becomes
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increasingly impractical to use smaller ∆t with FEM owing to the sheer computational costs to solve
bigger systems. To provide an idea (and by no means a rigourous comparison), the FEM results presented
here took multiple weeks to compute, compared to their PUFEM counter parts which finished all the
computations over a few hours.
Figure 2 shows 2D plots for numerical solution obtained with PUFEM when we used the same τ = 4.3
but with a smaller ∆t = 10−3, and the final error was about 4%.

3. Conclusions
An enriched Finite Element Method, utilising the property of partition of unity to enrich the nodal values
in the classical FEM, is formulated for solution of Maxwell equations in the time domain. The proposed
PUFEM is validated against a progressive wave problem as demonstrated in section 2, wherein the
method is tested against analytical solution for the proposed problem, with the L1 norm. A comparison
of the suggested method with classical FEM is carried, and it is observed that the former outperforms
the latter on the grounds of lesser computational cost (including the total simulation time) and accuracy.
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Appendix A. Definition for the propagator function
The function definition for fL for parameters a and b is given as

fL (x) =
1

1 + a

{
erf

( x
b

)
x + ax +

b√
π

e−
x2
b2

}
(A.1)

The parameters a and b can be set to control the smoothness of the slope of the function near the origin.
The derivative of this function is given by

d
dx
{ fL (x)} =

erf
(
x
b

)
+ a

1 + a
(A.2)

That is, the derivative of the function is a shifted and normalised error funciton. The following notation
is used for the function

fL (p) =
1

1 + a

{
erf

( p
b

)
p + ap +

b√
π

e−
p2

b2

}
= f pL (A.3)
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ABSTRACT

The aim of this work is to provide a promising way to improve the computational efficiency for BEM. This study
introduces an ’a priori’ model reduction method in BEM analysis aiming to enhance efficiency by approximating
the problem solution using the most appropriate set of basis functions, which depend on Karhunen-Loève decom-
position. The calculation process will proceed making use of a precomputed basis function space if the norm of the
residual is small enough; if not, it need to enrich the approximation basis and compute again some of the previous
steps. Finally, an example is proposed which demonstrates fast resolution of BEM problem and illustrates the
potential of this numerical technique. This work is preliminary work in a larger programme leading to optimisation
using isogeometric BEM scheme accelerated with the Proper Orthogonal Decomposition.

Key Words: BEM; model reduction; Karhunen-Loève decomposition

1. Introduction
The Boundary Element Method (BEM) [1] is a domain discretization technique for solving partial
differential equations; one major advantage of boundary integral equation approaches is to decrease the
dimension by one, i.e., only line integrals are required in 2D and surface integrals in 3D problems, from
which a smaller systemof equationswill be generated.Hence, this alleviates the burden ofmesh generation
as a surface mesh generation is much easier, more rapid and (importantly) more robust than domain mesh.
In spite of teh advances in FE mesh generation, these advantages of BEM remain considerable when
the objective is to analyse many, similar geometries, such as in optimisation schemes, involving multiple
remeshing operations. The drawbacks of BEM include the fully populated matrix structure; it also dos
not lend itself as well as FEM to materially non-linear problems. In order to accelerate the solution
(specifically, the re-solution) of the dense linear system, model reduction techniques present a promising
strategy.

Model reduction techniques have been derived from some problems in random data processing, and
further used in image processing. They have been successfully applied in some finite element frameworks
[2, 3], the nonlinear mechanical problem [4, 5] and 2D BEM in fluid mechanics [6]. In the current work
we assess their suitability for the BEM analysis process in 3D elasticity, updating solutions following
geometric changes that might occur during an optimisation process. In the future this will be extended
into an isogeometric BEM context.

1.1. Boundary Element Discretization

For a linear elastic problem, the structure occupies a continuous domain Ω, having boundary Γ, with the
boundary conditions,

u = u on Γu
t = t on Γt

(1)
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where the domain boundary Γ = Γu + Γt .
The Boundary Integral Equation (BIE) can be written as follows,

ui (s) +
∫

Γ

Ti j (s, x)u j (x)dΓ(x) =
∫

Γ

Ui j (s, x)t j (x)dΓ(x) (2)

where s is the ‘source’ point and x the ‘field’ point. By using standard methods of discretisation of (2)
and taking s as all nodes in turn, we arrive at the matrix form

H u = G t (3)

where u contains the nodal displacements and t the nodal tractions. Both u and t include a combination
of unknown values and prescribed boundary conditions. Rearrangement of (3) leads to the final form

A x = F (4)

where the size of A is N × N .

1.2. The Karhunen-Loève Decomposition (KLD)

Also known as Proper Orthogonal Decomposition (POD), the KLD is a powerful and elegant method for
data analysis aimed at obtaining low-dimensional descriptions of a high-dimensional process.
For an arbitrary evolution process, a certain field could be defined by a discrete form as up (xi ), ∀p ∈
[1, . . . , P],∀i ∈ [1, . . . , N], describing the nodal displacement (xi) at the calculation step p. Themain idea
of the KLD is to obtain a low dimensional space containing the most typical or characteristic behaviour
among the displacement fields. This is equivalent to obtaining a function φ(x) maximizing α defined by

α =

∑P
p=1

[∑N
i=1 φ(xi )u

p (xi )
]2

∑N
i=1(φ(xi ))2

(5)

Introducing a vector notation, Eq.(5) takes the following matrix form

kφ = αφ (6)

The two point correlation matrix k is given by

k =
P∑

p=1
up (up )T (7)

which is symmetric and positive definite.
Here, the functions defining the characteristic structure of up (x) are the eigenfunctions φk (x) ≡ φ

k
associated with the highest eigenvalues.

2. Reduced Model Construction
If some direct simulations have been carried out previously, the nodal displacement can be defined as
u(xi, sp ) ≡ up

i , ∀i ∈ [1, . . . , N], ∀p ∈ [1, . . . , P]. The eigenvalues are assumed ordered, if αk > 10−10α1,
∀k ∈ [1, . . . , n], (α1 is the highest eigenvalue). Then, those n eigenvectors related to the eigenvalues
above could be used for generating an approximating basis for further solutions. The matrix B is defined
as

B =



φ11 φ21 · · · φn1
φ12 φ22 · · · φn2
...

...
. . .

...

φ1N φ2N · · · φnN


(8)
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where N is the DOF of the system and we take eigenvectors 1,...,n. The nodal displacement vector in
Eq.(4) could be written as

x =
n∑

i=1
ζiφ

i
= Bζ (9)

which could be substituted to Eq.(4) to obtain

ABζ = F (10)

and we finally premultiply both sides by BT,

BTABζ = BTF (11)

This procedure provides a final n × n matrix in a low dimension. While the generation of matrix A is
still time consuming, it can be accelerated by er-use of matrix coefficients that are unchanged from a
previous design iteration. This process is likely to be made more powerful and general when the authors
implement their future plans of bringing POD to an isogeometric BEM context.

3. An ’a priori’ Model Reduction Strategy
As the geometry evolves during the design/optimisation process, the basis matrix B should be updated.
The basis matrix B is generated by the first P steps, and another S steps will be analysed with this basis.
After each S steps, the residual of the system should be evaluated as

R = Ax − F = ABζ − F (12)

If the norm of residual is sufficiently small, ‖ R ‖< ε , with ε a threshold value, the next S steps will
be continued; otherwise, the approximation basis should be enriched and the last S steps recomputed to
ensure accuracy is maintained. The enrichment is built using the Krylov subspace, the new basis matrix
being defined as

B∗ = {BV, R, AR, A2R} (13)

where V is the combination of the most representative eigenvectors which is from the previous reduced
result ζ . A new solution vector could be written as

ζ∗ =
[
B∗TB∗

]−1
B∗TBζ (14)

4. Numerical Example
In this preliminary study, the problem is defined as a simple cube (Fig. 1) which is under a uniaxial
compressive pressure of 1MPa in the z-direction. The left, back and bottom surfaces have normal
displacement constraints. The material properties of steel are used. As a design evolution process, the
height h will be continuously increased in 0.02m increments. This problem is solved first P = 25 steps
for generating the approximation matrix using the conventional BEM approach. The approximation is
performed using 54 elements, giving 168 degrees of freedom. The eigenvalues and eigenvectors are
derived from those pre-calculated displacements, and only 4 eigenvalues satisfy the selection criterion
(αk > 10−10α1). This means a 168 × 168 matrix will be reduced to a 4 × 4 matrix for solving the
remaining design iterations. The next calculation step will be divided to S = 35 parts, for each part,
including Ssub = 5 sub-calculation steps. In this case, the solution is performed starting from the reduced
basis which is obtained previously and after each 5 steps, the quality of the solution is checked and follows
the previous criterion for judging whether the basis should be enriched.
Fig. 2 compares the displacement result of the top surface in the z-direction; as the figure shows, the
reduction model provides an accurate result with a lower dimensional computation, and the error is
within 0.14%.
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Figure 1: The cube under uniaxial com-
pression

Figure 2: Displacement solutions

5. Conclusions
In this article, the Karhunen-Loève decomposition model reduction approach is combined with the
Boundary Element Method for 3D elasticity. The size of linear system is dramatically decreased while
mainitaining appropriate accuracy. The numerical example proves the potential of this method. Fur-
ther work will demonstrate the extension of this method to isogeometric BEM, and linking with the
optimisation process for more complicated structural components.
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ABSTRACT

The present work develops a new isogeometric Boundary Element Method with subdivision surfaces for solving
Helmholtz problems. The work gives a brief overview of subdivision surfaces and their use in an analysis context
highlighting the pertinent points for boundary element analysis. We find that by adopting the high order (quartic)
basis functions of subdivision surfaces to perform Helmholtz analysis a higher accuracy per degree of freedom
is obtained over equivalent Lagrangian discretisations. We demonstrate this through a Helmholtz problem with a
closed-form solution in which a plane wave is impinged on a ‘hard’ sphere.
Key Words: Isogeometric analysis; boundary element method; Helmholtz; subdivision surfaces

1. Introduction
Isogeometric analysis (IGA) has rapidly expanded in recent years into a major research effort to link
Computer Aided Design (CAD) and numerical methods driven by the need for more effcient industrial
design tools. The central idea of IGA is that the same discretisation model is used for both design
and analysis which eliminates costly model conversion processes encountered in traditional engineering
design work flows. IGA was originally conceived by Hughes et al. [1] and has predominately focussed on
the use of the Finite Element Method, but work has also applied the approach to the Boundary Element
Method (BEM) where distinct advantages are found, stemming from the need for only a surface mesh. In
the majority of IGA implementations the most commonly used CAD discretisation is the Non-Uniform
Rational B-Spline (NURBS) due to its ubiquitous nature in CAD software. However, NURBS technology
has limitations due to its tensor-product nature and a number of researchers have developed alternative
CAD discretisations which overcome this limitation. One such example is T-spline technology which has
been employed in an IGA setting by Bazilevs et al. [2] in 2010. Subdivision surfaces provide another
alternative for overcoming the limitations of NURBS, initially introduced by Cirak [3] in 2000. The
present work have developed an isogeometric Boundary Element Method with subdivision surfaces for
solving acoustic problems.

2. Boundary Element Method for Helmholtz Problems
For time-harmonic acoustic problems, the governing equation is the Helmholtz equation which is ex-
pressed as

∇2φ(x) + k2φ(x) = 0 (1)

where φ(x) is the acoustic pressure and k is the wavenumber defined as k = ω
c where ω is the angular

frequency and c is the thermodynamic speed of sound. Several numerical methods can be used to solve
Eq. (1) but many suffer from problems including dispersion error and difficulties in handling infinite
domains (e.g. the finite element method). In contrast, the Boundary Element Method does not suffer
from dispersion error and naturally handles infinite domains. A core feature of the BEM is the use of
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fundamental solutions to arrive at a numerical solution, and in the case of 3D acoustic problems the
fundamental solution is given by:

G(x, y) =
eikr

4πr
(2)

where x is the source point, y is the field point and r = |x − y|. The corresponding normal derivative of
this kernel can be expressed as:

∂G(x, y)
∂n

=
eikr

4πr2 (ikr − 1)
∂r
∂n
. (3)

The use of Eq. (2) and (3) allows a boundary integral equation to be formulated that relates acoustic
pressure and its normal derivative as:

c(x)φ(x) +
∫

s

∂G(x, y)
∂n

φ(y) dS(y) =
∫

s

G(x, y)
∂φ(y)
∂n

dS(y) + φinc (x) (4)

where S represents the boundary surface, φinc denotes the acoustic pressure of a prescribed incident
wave (only applicable in the case of scattering problems) and c(x) is a coefficient that depends on the
geometry of the surface at the source point. In the case of smooth boundaries, its value is given by
c(x) = 1

2 .

For computer implementation purposes, the acoustic pressure and normal derivative are discretised
through an appropriate set of basis functions as:

φ(x) =
n∑

A=1
φANA(x)

∂φ(x)
∂n

=

n∑

A=1
qANA(x) (5)

where in the present study {NA(x)}n
A=1 is a global set of subdivision basis functions, {φA(x)}n

A=1 is a set
of nodal acoustic pressure coefficients and {qA(x)}n

A=1 is a set of nodal acoustic velocity coefficients.

3. Subdivision Surfaces
There exist a variety of subdivision schemes, but all are based on the idea of generating a smooth surface
from a coarse polygon mesh. Subdivision refinement schemes construct a smooth surface through a
limiting procedure of repeated refinement starting from an initial control mesh. Subdivision refinement
schemes can be classed as either an interpolating or approximation scheme where Figure 3 illustrates the
commonly used Catmull-Clark approximation scheme.

Figure 1: Successive levels of Catmull-Clark subdivision refinement applied to an initial cube control mesh.

Subdivision basis functions can be used as a basis for analysis [5] and have successfully been used in
variety of applications including thin-shell finite element analysis [3]. We extend the work of [3] by
adopting a Loop subdivision scheme and applying subdivision basis functions for acoustic boundary
element analysis.

The Loop subdivision scheme is based on a triangular tessellation with a typical element and its one-ring
neighbours shown in Figure 2 corresponding to a regular patch where each vertex has 6 connecting edges.
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The shaded element in this patch contains 12 non-zero quartic basis functions as detailed in [5]. In the
present study these basis functions are used to dicretise the acoustic pressure and acoustic velocity. In
addition, we apply a collocation procedure whereby a set of global collocation points is generated through
interpolation of the limit surface at vertex locations allowing a system of equations to be constructed.

Figure 2: An element defined over a regular patch with 12 control points

4. Results
To validate the current subdivision BEM the approach was applied to the problem of a ‘hard’ sphere
impinged by a plane-wave, as illustrated in Figure 3. In this problem a dimensionless wavenumber of
k/a = 8 was chosen with the acoustic pressure sampled at a set of points surrounding the sphere.

Figure 3: Problem of a plane wave impinged on a ‘hard’ sphere [4]

Two sets of boundary element analysis were performed for this problem: the first applied a conventional
Lagrangian discretisation using quartic basis functions defined over triangular elements and the second
applied quartic subdivision discretisations. In the study, a Lagrangianmesh with 1152 degrees of freedom
(dof) and two subdivision meshes with 438 and 1746 dof were used.

The results for the three discretisations at each of the sampling points are shown in Figure 4 along with the
analytical solution. A a closeup view of this plot illustrates that both subdivision discretisations deliver
higher accuracies compared to the Lagrangian discretiation even with fewer degrees of freedom.
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Figure 4: A comparison between Lagrangian discretisations and subdivision surfaces (k = 8)

5. Conclusions and Future Research
The present work develops a new isogeometric Boundary Element Method with subdivision surfaces
for solving Helmholtz problems where it is found that higher accuracies are obtained over a Lagrangian
discretisation of the same order. There are several future research directions for the present work:

• Coupling the Boundary Element Method and the Finite Element Method for structural-acoustic
analysis

• Simulating electromagnetic scattering problems by developing suitable div- and curl-conforming
discretisations
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ABSTRACT 

In this study, an incompressible mesh-less smoothed particle hydrodynamics (SPH) methodology has been 

implemented to simulate the flow of self-compacting concrete (SCC) mixes in the J-ring test. A suitable 

Bingham constitutive model has been coupled with the Lagrangian momentum and continuity equations to 

model the flow. The capabilities of the SPH methodology are validated by comparing the simulation results with 

the actual J-ring tests carried out in the laboratory. The comparison shows that this methodology is efficient to 

predict precisely the behaviour of SCC in the sense that the simulated mixes meet the passing ability criterion 

and the shapes and diameters of the flow spread are nearly the same as observed in the laboratory test. 

 

Keywords: Self-compacting concrete (SCC); Smoothed particle hydrodynamics (SPH); Non-Newtonian fluid; J-

ring test; plastic viscosity. 

1. Introduction  

With the recent tendency towards the use of computer modelling in concrete technology, its 

application in self-compacting concrete (SCC) is in demand and increasingly becoming an important 

issue. In this regard, one of the important approaches offering considerable potential is the smoothed 

particle hydrodynamics (SPH). It is able to simulate flows that contain particles of different sizes. 

SPH is a particle-based method (it does not require re-meshing) to represent with an acceptable level 

of accuracy the rheological behaviour of heterogeneous flow. This method has been examined and 

proved to be efficient and accurate in modelling the flow of SCC in the cone slump flow and L-box 

tests [1, 2]. The goal of this paper is to extend its application to simulating the flow of SCC in the J-

ring test. This methodology will provide a thorough understanding of whether or not an SCC mix can 

satisfy the self-compatibility criteria. For this purpose, a series of SCC mixes differing in target plastic 

viscosity and compressive strength were prepared in the laboratory. These mixes were designed 

according to the rational mix design method proposed in [3]. 

 

2. Numerical modelling 

Fresh SCC is a non–Newtonian fluid best described by a Bingham–type constitutive model. From a 

practical computational perspective, it is expedient to approximate the bi-linear Bingham constitutive 

model, which has a kink at zero shear strain rate, by a smooth continuous function in which m is a 

very large number (e.g. m = 105).  

                                                             
 me 1ττ y                                                                (1) 

Here, τ , , and yτ  represent shear stress tensor, mix plastic viscosity, shear strain rate and mix yield 

stress, respectively. The Bingham constitutive model of the mix is coupled with the Lagrangian 

continuity equation (Eq.2) and momentum conservation equation (Eq.3) to model the flow of the SCC 

mix: 

                                 0.
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where  , t, v, P and g represent the fluid particle density, time, particle velocity, pressure and 

gravitational acceleration, respectively.  

A projection method based on the predictor-corrector time stepping scheme has been adopted to track 

the Lagrangian non-Newtonian flow. The prediction step is an explicit integration of the momentum 

conservation equation (Eq.3) in time without enforcing incompressibility. Only the viscous stress and 

gravity terms are considered in Eq.3 and an intermediate particle velocity *

1nv is obtained as:  

                                                      tnn 







 τgvv .

1*

1


                                                           (4) 

Then the correction step is performed by considering the pressure term in Eq.3: 
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where
1nv is the corrected particle velocity at the time step n+1. Computing Eq.5 requires the 

pressure 1nP , which is obtained by enforcing the incompressibility condition from the 

continuity equation (Eq.2): 
                                                                   0. 1  nv                                                                          (6) 

Hence the intermediate velocity can be projected on the divergence-free space by writing the 

divergence of Eq.5, using Eq.6, as: 
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As the density of particles remains constant in this simulations, Eq.7 can be rewritten as: 

                                                               
*
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                                                               (8) 

where 2 is the Laplacian. Once the pressure is obtained from the Poisson equation (Eq.8), the 

particle velocity is updated by Eq.5. Finally, the instantaneous particle position is updated as:      

                                                                 tnnn Δ11   vxx                                                               (9)   

 

3. Boundary conditions 

Three types of boundary conditions need to be considered in the simulation of the J-ring test when 

solving the continuity and momentum conservation equations. These are: (1) a zero pressure condition 

on the free surface; (2) Dirichlet boundary condition at the wall of the cone, J-ring bars and the 

bottom plate, and (3) Neumann conditions on the pressure gradient (this zero pressure gradient is used 

only for solving the pressure Poisson equation), as shown in Figure 1A. 

In this simulation, the technique based on arrays of rigid dummy particles was used to implement the 

cone wall, J-ring bars and base plate boundary conditions, as shown in Figure 1B. For realistic 

simulations, the friction between the SCC mix and the contacting surfaces should be taken into 

consideration. Here, the coefficient of kinematic friction (Cf) for the horizontal plate and J-ring bars is 

0.55 and 0.48 N s/m, respectively. The former was determined previously by matching the t500 (the 

time when the mix spread reaches 500 mm) in slump cone test with the simulated results [2]. The 

latter was chosen by matching the t500J in the J-ring test with the simulated results of Mix50 in the 

present study. 
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 Figure 1: (A) boundary conditions, (B) Dummy particles for enforcing boundary conditions 

 

4. Treatment of particles in the simulated mixes 

In order to monitor the velocity vectors and positions of coarse aggregates of different representative 

sizes, as well as those of the fluid particles representing the mortar, the particles were represented by 

recognisable colours as shown in Figure 2. The volume of the mix in the cone was simulated by 

23,581 particles. These particles were generated randomly in this simulation. Particles representing 

the mortar as well as the coarse aggregate form a homogeneous mass and possess the same continuum 

properties except for their assigned volumes. The masses of the SPH particles representing different 

coarse aggregate particles in the mix were calculated according to their respective volume fractions in 

the mix. Throughout the simulation, particles representing the coarse aggregates based on their 

assigned volumes were tagged (Figure 2) in order to monitor their velocity vectors and positions. 

 

 
Figure 2: Schematic sketch of particle representation in the simulated mixes 

5. Simulation results 

To investigate how efficient the SPH is to predict the flow of SCC mixes through reinforcing bars, 

different SCC mixes were three-dimensionally simulated using the J-ring test. The fundamental 

parameters (plastic viscosity and yield stress) of these mixes have been determined to be used in the 

present simulation. The plastic viscosity was estimated by a micromechanical procedure from the 

known plastic viscosity of the paste and the SCC mix proportions [4] while the yield stress was 

predicted in an inverse manner using the SPH simulation of slump flow test [1].  
The results of a typical SCC mix (Mix50) regarding its shape and spread as well as its blockage 

assessment are shown in Figures 3 and 4. From Figure 3A it can be noticed that the shape of the 

simulated spread looks smooth as a ‘pan cake’ identical to that in the laboratory test (Figure 3B). It 

can also be seen that the diameters of the flow spread of the simulated mix are nearly the same as that 

observed in the laboratory test. 

With the reference to the passing ability criterion, SCC should have the ability to flow and pass 

through congested reinforcement and narrow openings while maintaining adequate suspension and 

distribution of coarse particles in the matrix. This means that arching near obstacles and blockage 

during flow have to be avoided. In this simulation, the SCC passing ability can be judged in terms of 

the height difference between the concrete inside and outside the steel bars of the J-ring using the 

following equation. 
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Here, PJ is the blocking step, ∆h0 is the height measurement at the centre of flow and ∆hx1, ∆hx2, 

∆hy1, ∆hy2 are the four measurement heights at positions just outside the J-ring. Taking the acceptance 

criterion of SCC passing ability as the blocking step (PJ) is no more than 10 mm [5], the simulated 

mix did flow homogeneously without blockage, as it is clearly observed in Figure 4. 

 

 

Figure 3: Flow pattern of SCC (Mix50) after final spread: (A) simulated mix, (B) experimental mix 

 

 
Figure 4: Diametrical cross-sections (A and B) of the simulated mix  

 

6. Conclusions 

This study reveals that the developed numerical methodology (SPH) is able to capture the flow 

behaviour of SCC mixes in the J-ring test. This has been validated by benchmarking the results of the 

numerical simulation against actual J-ring tests carried out in the laboratory. SPH simulation is 

therefore an indispensable and cost-effective tool for understanding the behaviour of fresh SCC 

replacing time-consuming laboratory tests, thereby saving time, effort and materials. 
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ABSTRACT

We investigate discretization strategies of the conservation equation inVSIAM3 (volume/surface integrated average
based multi-moment method) which is a numerical framework for incompressible and compressible flows based
on a multi-moment concept. We investigate these strategies through the droplet splashing on a superhydrophobic
substrate. We find that the use of the CIP-CSLR (constrained interpolation profile-conservative semi-Lagrangian
with rational function) method as the conservation equation solver is critically important for the robustness of
incompressible flow simulations using VSIAM3 and that numerical results are sensitive to discretization techniques
of the divergence term in the conservation equation.

Key Words: multi-moment method; VSIAM3; CIP-CSL method; droplet splashing

1. Introduction
VSIAM3 [1, 2] is a numerical framework to simulate fluid flows, and employs a CIP-CSL method [4, 3]
as the conservation equation solver. VSIAM3 is a highly robust and efficient numerical framework [5].
However, a multi-moment framework which has been used in VSIAM3 (including the CIP-CSL method)
have increased some complexities in the implementation. Although several CIP-CSL methods such as
CSL2 (CSLwith quadratic function) [4], and CSLR (CSLwith rational function) [3] have been proposed,
little attention has been given to the formulation of the divergence term in the CIP-CSL methods.
In this study, we propose efficient formulations for the divergence term in the CIP-CSL schemes and we
identify reasons for robust implementation of VSIAM3.

2. The CIP-CSL and the Velocity Divergence Term
The CIP-CSL methods are used to solve the conservation equation

∂

∂t

∫

Ω

φdV +
∫

Γ

φ(u · n)dS = 0, (1)

here φ is a scalar value. In the CIP-CSL, an interpolation function Φi (x) is constructed using different
moments in one cell. For instance, in the CIP-CSL2 [4] method, a quadratic interpolation functionΦi (x)

Φi (x) = ai (x − xi−1/2)2 + bi (x − xi−1/2) + φi−1/2, (2)

is used to interpolate between xi−1/2 and xi+1/2 as shown in Fig. 1. By using the following constraints

Φi (xi+1/2) = φi+1/2, (3)

φi =

∫ xi+1/2

xi−1/2

Φi (x)dx/∆x, (4)

the coefficients, ai and bi , can be determined. In the CIP-CSLR [3] method which is characterised by
less numerical oscillations, the following interpolation function

Φi (x) =
αi βi (x − xi−1/2)2 + 2αi (x − xi−1/2) + φi−1/2

(
1 + βi (x − xi−1/2)

)2 , (5)
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with
αi = βiφi + (φi − φi−1/2)/∆x, (6)

βi =
1
∆x

( |(φi−1/2 − φi ) | + ε
|(φi − φi−1/2) | + ε + 1

)
, (7)

is used. Here ε is an infinitesimal number. Once the interpolation functionΦi (x) is ready, the cell average
φi is updated by a finite volume formulation

i-1/2
i+1/2

i-3/2

x i-1/2 x i+1/2x i-3/2

i-1 i

φ
φ φ

φ φ
ui-1/2

Figure 1: Schematic figure of the CIP-CSL2 method. ui−1/2 < 0 is assumed. The moments which are indicated by
gray color (φi−1/2, φi and φi+1/2) are used to construct the quadratic interpolation function.

∂

∂t

∫ xi+1/2

xi−1.2

φdx = − 1
∆x

(Fi+1/2 − Fi−1/2), (8)

here Fi−1/2 is the flux

Fi−1/2 =

−

∫ xi−1/2−ui−1/2∆t

xi−1/2
Φi−1(x)dx if ui−1/2 ≥ 0

−
∫ xi−1/2−ui−1/2∆t

xi−1/2
Φi (x)dx if ui−1/2 < 0.

(9)

The boundary value φi−1/2 can be updated by the conservation equation of a differential form

∂φ

∂t
+ u

∂φ

∂x
= −φ∂u

∂x
. (10)

(10) is solved using a splitting approach as follows

∂φ

∂t
+ u

∂φ

∂x
= 0, (11)

∂φ

∂t
= −φ∂u

∂x
. (12)

A semi-Lagrangian approach is used for the advection equation (11)

φ∗i−1/2 =

{
Φi−1(xi−1/2 − ui−1/2∆t) if ui−1/2 ≥ 0
Φi (xi−1/2 − ui−1/2∆t) if ui−1/2 < 0. (13)

(12) represents a correction due to the divergence term of the velocity and is solved by a finite difference
method.We propose the following approximations of the velocity divergence term of the 1D conservation
equation.

Simple upwind based on boundary value (UPW)

φ
∂u
∂x
=


φ∗
i−1/2(

un
i−1/2−un

i−3/2
∆x ) if ui−1/2 > 0

φ∗
i−1/2(

un
i+1/2−un

i−1/2
∆x ) if ui−1/2 ≤ 0.

(14)

This is a simple upwind approximation based on the boundary values.
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Central difference based cell centre value (CDcc)

φ
∂u
∂x
= φ∗i−1/2

ûn
i − ûn

i−1
∆x

(15)

This is a central difference approximation based on the cell center values (ûi), where ûi is the
velocity calculated at cell centre [2]

ûi =
3
2

ui − 1
4

(
ui+1/2 + ui−1/2

)
. (16)

Mixed formulation of the simple upwind and a central difference (UPW-CDcc)

φ
∂u
∂x
=


DUPW if DUPW · DCDcc < 0
DUPW else if |DUPW | < |DCDcc |
DCDcc else,

(17)

here DUPW and DCDcc represent φ
∂u
∂x

which are calculated by (14) and (15), respectively.
The mixed formulation is introduced to take advantages of both upwind and central difference
approximations.

3. Numerical results of the droplet splashing
We conducted numerical simulations of droplet splashing on a superhydrophobic substrate to study
the effects of these discretization strategies of the conservation equation in VSIAM3 through a highly
complicated free surface flow problem.For more detail see [5].
In the set of numerical simulations, quantitative parameters, the densities ρl iquid = 1000 kg/m3, ρair =
1.25 kg/m3, viscosities µl iquid = 1.0×10−3 Pa·s, µair = 1.82×10−5 Pa·s, surface tensionσ = 7.2×10−2

N/m, gravity 9.8 m/s2, initial droplet diameter D = 1.86 mm, impact speed 2.98 m/s and the equilibrium
contact angle 163◦ are used. A regular Cartesian grid system of 192 × 192 × 48 is used.
Fig. 2 shows the results. VSIAM3 with CSL2-UPW could not capture droplet splashing well as shown
in Fig. 2a. CSL2-UPW also was not stable after around 1.1 ms. VSIAM3 with CSL2 with any central
difference formulation was not stable for this problem. VSIAM3 with CSLR is stable when UPW was
used for the divergence term as shown in Fig. 2b. However if we use any central difference formulation for
the divergence term, VSIAM3 with CSLR was also unstable. If we use UPW-CDcc (mixed formulation),
VSIAM3 with CSLR could conduct stable numerical simulation of droplet splashing and capture droplet
splashing well as shown in Fig. 2c.

4. Conclusions
The numerical results showed that VSIAM3 with CSL2 is not robust enough and that VSIAM3 with
CSLR is highly robust (if an appropriate formulation is used for the divergence term). We also found
that the numerical results are sensitive depending on discretization formulations of the divergence term
in the conservation equation. The numerical results of droplet splashing showed that VSIAM3 with any
central difference formulation is not robust even though CSLR is used, while VSIAM3 with the simple
upwind formulation was highly robust and captures the droplet splashing well. These results indicates
that the use of the upwind formulation is suitable for robust numerical simulations, especially for highly
complicated flows like droplet splashing.
We also proposed the mixed formulation using both a central difference and the simple upwind formu-
lation for the divergence term. The mixed formulation can simulate the droplet splashing like the result
using the simple upwind. The mixed formulation can take advantages of both central difference and
upwind formulations.
In conclusion, employing the less oscillatory CSL scheme (i.e. CSLR) with an appropriate divergence
term formulation is critically important for robust implementation of VSIAM3.
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Figure 2: Numerical results of droplet splashing by CSL2-UPW (a), CSLR-UPW (b) and CSLR-UPW-CDcc (c).
VSIAM3 with CSL2-UPW was not stable after around 1.1ms.
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 ABSTRACT  

Self-compacting concrete (SCC) has been widely used in structures around the world because of its ability to 

flow without external intervention. The ability of passing around and between obstacles and the filling of the 

formwork are important properties of SCC; they determine how well the SCC mix can flow through confined 

and limited zones. For this reason, it is essential to devise numerical tools aimed at the simulation of how SCC 

fills formwork as a homogeneous mass without the segregation of mix components. The present study reports a 

numerical investigation of the flow and the distribution of large coarse aggregates of SCC mixes in the L-box 

using the three-dimensional Lagrangian particle based smooth particle hydrodynamics (SPH) method.   
 

Keywords: Self-compacting concrete; Smooth particle hydrodynamics; yield stress; plastic viscosity and L-box. 

 

1. Introduction  

Self-compacting concrete is described in its fresh state by high flow-ability, filling ability of the 

formwork, passing ability through restricted reinforcement bars and resistance to segregation without 

requiring any external vibration for compaction. The durability of concrete structures is affected by 

many problems of compactness; these problems result from incomplete filling of formworks and 

segregation of aggregates inside the structure. This problem is getting more acute as SCC is used in 

structures with complex shape and denser reinforcements. It is therefore important to have a tool for 

predicting the flow, filling and passing ability in order to save time, effort and materials. 

Computational simulation of SCC flow can be a helpful tool for understanding the rheological 

behaviour of SCC and can allow to identify a lower workability of fresh concrete that could ensure 

proper filling of formwork [1]. For this purpose, the three-dimensional Lagrangian particle based 

smoothed particle hydrodynamics (SPH) method is employed to simulate the flow of SCC in the L-

box configuration and to reveal the distribution of coarse aggregate particles larger than or equal to 8 

mm in the mix and then to compare the numerical results with the corresponding experimental data.   
 

2. Numerical implementations 

SCC is treated as a non-Newtonian fluid best described by a Bingham-type model that contains two 

material properties: the yield stress )( y and the plastic viscosity (η) [2]. From a practical 

computational point of view, it is expedient to approximate the bi-linear Bingham constitutive model 

with a kink at by a smooth continuous function, where m is a very large number (m=105) [3].  

)(γτ
γ m

y e 1                                                     (1) 

There are two basic equations solved in the SPH method together with the constitutive relation; the 

incompressible mass and momentum conservation equations 
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where ρ, t, v , P, g and τ  represent the fluid particle density, time, particle velocity, pressure,  

gravitational acceleration, and shear stress tensor, respectively. Below we shall consider flows in 

which the density is constant, so that the first term in Equation (2) vanishes. 

The solution procedure uses prediction-correction fractional steps with the temporal velocity field 

integrated forward in time without enforcing incompressibility in the prediction step. Only the viscous 

stress and gravity terms are considered in the momentum Equation (3) and an intermediate particle 

velocity 1n
*v  is obtained as:  

tgnn 







 τ.vv

*



1
1                                   (4) 

Here, nv  and 1n
*v  are the particle velocity and intermediate particle velocity at time nt  and 

1nt respectively. Then the correction step is performed by considering the pressure term in Eq. (3): 
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Rearranging Equation (5) gives, 

tPnnn 
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where 1nv  is the corrected particle velocity at the time step tn+1. By imposing the incompressibility 

condition in the mass conservation Equation (2), the pressure 1nP  in equation (6) will be obtained.  

As the particle density remains constant during the flow, the velocity 1nv  is divergence-free. 

Enforcing the incompressibility condition as Equation (2) yields,  
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              (7), (8) 

Since the density of particles remains constant in the present simulations, Equation (8) can be 

rewritten as:  

11

2
 


 nn

t
P *v.


                                  (9) 

where 
2  is the Laplacian operator. Once the pressure is obtained from the Poisson Equation (9), the 

particle velocity is updated by the computed pressure gradient (see equation (6)). Finally, the 

instantaneous particle position is updated using the corrected velocity: 

tnnn   11 vxx                                   (10) 

where 1nx  and nx  is the particle position at 1nt and nt  respectively. 

 

3. Modelling of the flow of SCC mix and the boundary conditions 

The modelling of the flow of the SCC mix in the L-box has been done previously [4]. In the present 

study, three additional aspects are taken into consideration. These aspects include; friction on the 

sides of L-box and on the steel bars, the effect of the time delay in the lifting of the L-box gate 

manually on the simulated flow times and the comparison between the simulated distribution of larger 

coarse aggregates with the distribution in tests performed in the laboratory using colour coded 

aggregates. The distribution of the aggregate particles equal or larger than 8 mm in size have been 

modelled as separate particles suspended in the viscous paste containing the particles less than 8 mm 

in size. Four ranges of size of the coarse aggregates have been used during the numerical simulation 

size as follows; 8 ≤g≤ 12, 12 ≤g≤ 16, 16 ≤g≤ 20 and g≥20 mm with a total number of particles 59,568 

and these particles were represented by distinct colours as shown in Figure 1(a). When solving the 

momentum and continuity equations, the boundary conditions need to be applied. Four arrays of rigid 

dummy particles placed outside the sides and the base of the L-box were used to implement the 
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boundary conditions as illustrated in Figure 1(b). Dirichlet and Neumann boundary conditions were 

imposed on the sides and the base of the L-box. Friction between the boundaries and the SCC mix 

was imposed on the L-box sides and the base with a dynamic coefficient of friction between the SCC 

mix and steel equal to 0.55 Ns/m. 

 

 
 

Figure 1 :  (a) The aggregate particle representation (b) The boundary conditions of the L-box 

 

4. Simulation results of the flow and the distribution of the coarse aggregates 

The 3D simulation of the SCC flow and distribution of the large coarse aggregates has been 

performed on the mix of strength 60 MPa, which was developed according to the rational mix design 

method[5]. The results of the simulation when SCC mix reached 200 mm, 400 mm of horizontal 

section of the L-box are illustrated in Figure 2(a), (b). These flow times differ from the corresponding 

test results as a result to delay time in the lifting of the gate L-box manually. By cutting the simulated 

L-box specimen after the mix reached the end of horizontal section of the L-box and flow stopped by 

two longitudinal sections A-A and B-B Figure 2(c),  it was found the modelled distribution patterns 

are agreed with the distribution of coarse aggregates in the experimental test results as illustrated in 

Figure 3. 

 

 
 

Figure 2 : The 3D simulation of the flow in the L-box after SCC mix reached (a) 200 mm (b) 400mm (c) the end 

of horizontal section of the L-box and the flow stopped 
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Figure 3:  The distribution of the coarse aggregates in the experimental test (a) section A-A (b) section 

B-B and numerical simulation (c) section A-A (d) section B-B 

 

5. Conclusions 

The 3D simulation of the flow of the SCC mix in the L-box presents a prediction of the filling 

behaviour similar to that observed in the laboratory test.  With regard to the flow times needed for the 

mix to reach 200 mm and 400 mm, there is a difference between the simulation flow times and that   

the corresponding experimental data due to the delay time in the lifting of the gate L-box manually.  

The 3D numerical simulations of the distribution of the coarse aggregates showed that the larger 

aggregates remained homogeneously distributed in the mix exactly as in the L-box test in the 

laboratory.  
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ABSTRACT 

Computational modelling of the flow for a viscous fluid such as self-compacting concrete (SCC) is a potential 

tool for understanding its rheological behaviour and for mix proportioning as well. The present paper describes a 

simple approach to simulate the flow of SCC mixes of different strengths and performances containing aggregate 

particles of various sizes in the V-funnel test using 3-dimensional mesh-less smooth particle hydrodynamics 

(SPH) computational technique. A comparison between the results of the numerical simulation with the 

corresponding experimental observations has revealed the flow characteristics of SCC mixes and confirmed the 

capability of SPH and the rheological model to predict SCC flow and mould filling behaviour. 

 

Keywords: Self-compacting concrete; V-funnel; SPH; Bingham parameters; plastic viscosity; yield stress. 

1. Introduction 

In concrete construction, massive problems arise from the insufficient filling of formwork, inadequate 

de-airing and concrete segregation. The impact of such problems has increased year after year since the 

formwork is becoming continuously more complex and reinforcement is becoming denser. Self-

compacting concrete (SCC) has been developed to solve these engineering issues. It is a concrete that 

flows under its own weight, without external vibration, while maintaining homogeneity. This ensures 

proper filling of formwork and produces high quality finish in restricted areas and heavily reinforced 

structural members. Various tests are implemented to evaluate the characteristics of SCC, including its 

filling ability, passing ability, and segregation resistance [1].These tests can be avoided by using the 

most cost-effective computational modelling to save time, effort and materials. Such modelling can also 

provide an understanding of the SCC flow behaviour, which is crucial to achieving high quality. Indeed, 

the employment of the modelling has brought insight into the significance of the rheology as a tool for 

the optimization of mix composition, and the processing techniques to fulfil the levels of engineering 

properties required for the intended civil applications.  

The V-funnel test, which is one of the standard SCC tests, is designed to determine the filling ability of 

SCC in which shorter flow time indicates greater flowability. The V- shape restricts the flow, and 

prolonged flow times may give some indication of the susceptibility of the mix to blocking.The actual 

time (tv-funnel) taken (the discharge time) when it is possible to see vertically through the V-funnel into 

the container below is measured. A time delay of 10 ± 2 s from filling the V-funnel to the release of the 

gate at the bottom of the V-funnel is permissible.  In this paper, SCC flow during the V-funnel test of 

SCC mixes of various strengths and performances is modelled using the SPH method and the concrete 

discharge time is determined. This will provide a tool for simulating the discharge time and its 

comparison with the EFNARC guidelines.  
 

2. Numerical simulation 

Since SCC flow during the V-funnel test is typically a free surface flow with large deformations, the 

Lagrangian mesh-less SPH numerical method is preferred to solve the governing SCC flow equations. 

It is also able to treat naturally highly-varying density, deformable boundaries, propagation of 

discontinuities, multi-phase flows and other physically complex flow situations. The SPH is a mesh-

less particle numerical approach based on an interpolation theory, in which the partial differential 

equations of motion of continuum fluid dynamics are transformed into integral equations by using an 

interpolation function.  
2 On leave from University of Karbala, Iraq  
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This interpolation is carried out by ‘‘kernel estimate’’ of the field variable at any point. The basic 

equations solved in the SPH are the incompressible mass and momentum conservation equations [2], 

together with the Bingham-type constitutive relation. In this approach, the flow continuum is discretized 

into a limited number of particles, N. The particles, which behave as Lagrangian fluid elements, carry 

all the necessary information needed about the flow variables; this feature is the principal strength of 

the method. The field variables and their gradients are approximately calculated and interpolated from 

values at a discrete set of particles in a domain of influence. All randomly generated particles, which 

represent the paste and the large aggregates, form a homogeneous mass with the same properties as the 

continuum except their assigned volumes.  
 

3. Governing equations 

Given its shear rate-dependent response, SCC can be regarded as a non-Newtonian incompressible 

fluid. Its rheology is best described by a Bingham-type model which contains two material properties, 

the yield stress, 𝜏𝑦 and the plastic viscosity, 𝜂. From a computational perspective, it is expedient to 

approximate the bi-linear Bingham constitutive model with a kink at 𝛾̇= 0 by a continuous function: 

𝜏 = 𝜂𝛾̇ + 𝜏𝑦(1 − 𝑒−𝑚𝛾̇)                                 (1) 

in which m is a very large number, m = 105. Suitable numerical schemes, which integrate the Lagrangian 

SPH approximations of the governing equations (i.e. mass and momentum conservation equations) with 

the rheological Bingham type model for SCC, have been developed. These schemes have been exploited 

to understand the flow behaviour of SCC containing coarse aggregate particles of various sizes. The 

isothermal, Lagrangian form of mass and momentum conservation equations are: 

1

𝜌

𝐷𝜌

𝐷𝑡
+ 𝛻. 𝑣 = 0                                  (2)           

𝐷𝑣

𝐷𝑡
= −

1

𝜌
∇𝑃 +

1

𝜌
∇. 𝜏 + g                                   (3) 

where ρ, t, v, P, τ and g represent the fluid particle density, time, particle velocity, pressure, 

shear stress tensor and gravitational acceleration, respectively. The first term in Eq.(2) vanishes 

since the density is constant due to the incompressible flow assumption. A projection method 

based on the predictor-corrector time stepping scheme has been adopted to implement the 

incompressible SPH approach. The prediction step is an explicit integration in time without 

enforcing incompressibility. Only the viscous and gravity terms (second and third terms, 

respectively) in Eq. 3 are initially considered to obtain temporal velocity for particles (𝑣𝑛+1
∗ ). Then, 

the correction step is performed by considering the pressure term (first term) in Eq.3, which will 

be obtained by imposing the incompressibility condition using Eq.2. Once the pressure is 

obtained from Poisson’s Equation, the particle velocity and position are updated by the computed 

pressure gradient. Figure 1 illustrates the time stepping scheme [3].  
 

 
Figure 1: The predictor-corrector time stepping scheme of the incompressible SCC flow [3]  
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4. Initial configuration and treatment of large aggregates 

It is necessary to impose appropriate initial boundary conditions to solve the mass and momentum 

conservation equations. Three sorts of boundary conditions have been applied in the modelling of the 

V-funnel test: zero pressure condition on the free surface (P=0), Dirichlet boundary condition at the 

walls of the V-funnel (𝑣𝑛 = 0), and Neumann conditions on the pressure gradient ( 𝜕𝑃 𝜕𝑛⁄ = 0) (zero 

pressure gradient is used only for solving the Poisson equation to find the pressure), as illustrated in 

Figure 2, where the geometry of the V-funnel apparatus is also shown. Rigid dummy particles of four 

arrays placed outside the walls of the V-funnel were used to implement the wall boundary conditions. 

To reveal the positions and velocity vectors of aggregates of various sizes, and those of the fluid 

particles representing the paste, the particles are represented by distinct colours and generated 

randomly. In order to get reliable simulation results, the kinematic coefficient of friction (𝑐𝑓) between 

the V-funnel wall and the SCC mix has been altered to get the best fit between the experiment and 

simulated results for one mix. The same coefficient was then used for all other mixes. 

 

 

                                                         
 

 
Figure 2: Boundary conditions  and geometry of the V-funnel apparatus  

 

 

5. Preliminary simulation results 

A range of SCC mixes with 28-day cube compressive strength between 30 and 80 MPa has been 

developed following the rational mix design procedure described in [4].The plastic viscosities of these 

mixes were estimated following the micromechanical procedure described in [5]. This procedure is 

based on the rheology of concentrated suspensions, and it can predict accurately in a stepwise way the 

plastic viscosity of heterogeneous SCC mixtures beginning with the plastic viscosity of the 

homogeneous paste. On the other hand, the yield stress of a mix was estimated in an inverse manner 

from the measured time, t500 to reach 500 mm spread of the SCC mixes in a cone flow test using the 

three-dimensional SPH [6]. Details of the SCC mixes and their plastic viscosities are given in [7].The 

3D numerical simulation of the V-funnel test for a typical SCC mix (Mix 50B) has been represented by 

53,846 particles to investigate its flow characteristics and compare with the corresponding experimental 

results. The simulation has revealed the distribution of the large aggregates in the SCC mix (coarse 

aggregate size (g) ≥8 mm) to check whether these heavier aggregates remain homogenously distributed 

in the viscous mix during the flow. 

It can be noticed from Figure 3 that the flow patterns obtained from the numerical simulation at various 

time step are very similar to those observed in the laboratory test. The slight difference in the discharge 

time, tv-funnel may be due to two possible reasons: firstly, the assumption that the SCC particles are 

spherical in shape and secondly, the slight time delay in opening the bottom gate. Importantly however, 

it can be observed from the simulated flow illustrated in Figure 3 that the larger aggregates (g) do indeed 

stay homogeneously distributed in the mix at various times during the flow.  

Dimensions  

in mm 
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Figure 3: 3D simulation of 50MPa SCC mix in V-funnel after 2.0 s and 2.5 s showing the larger aggregates (g) 

 

 

6. Conclusions 

A 3D Lagrangian SPH numerical model has been developed to simulate the flow of SCC mixes of 

varying strengths and performances and to estimate the discharge time in the V-funnel test. Concrete is 

assumed as a heterogeneous, non-Newtonian fluid whose relation between shear stress and strain rate 

is of the Bingham type. This relation has been coupled with the Lagrangian mass and momentum 

conservation equations to simulate the SCC mixes of different viscosities and yield stresses in the V-

funnel test after determining the proper number of particles for simulations. The predicted discharge 

time result is generally in good agreement with the test data. The numerical methodology also shows 

that it can conceptualise the flow behaviour of SCC mixes and provide insight into the distribution of 

larger aggregates during the flow. It can be concluded that without performing the V-funnel test, 

concrete discharge time, and consequently its suitability for application as SCC can be established when 

the plastic viscosity and yield stress are known. 
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ABSTRACT

This paper describes new software based on a partitioned, black box approach for solving fluid structure
interaction (FSI) problems. It couples the open source finite volume solver OpenFOAM, to the open
source finite element solver ParaFEM [1]. This coupling is done using a conventional serially staggered
scheme, that is first order accurate in time. The software has been tested using benchmark FSI problems,
with long term goals to investigate the broad range of large scale FSI cases relevant to the wind energy
industry. The aim is to demonstrate the potential benefits of such a tool, by delivering a unique capability
to investigate novel concepts, to levels of physical realism not yet achieved.

Key Words: Fluid-Structure Interaction; High Performance Computing; Computational Fluid Dynamics;
Finite Element Analysis; Partitioned Coupling

1. Introduction

Over the past thirty years the average size of offshore wind turbines has increased, with rotor diame-
ters growing from 10m to 160m. It therefore becomes increasingly important to simulate the complex
dynamics involved with unsteady and turbulent flow through rotating blades, and the large structural
deformations of blades, in order to optimise their design.

The motivation is to produce software capable of solving coupled FSI problems to investigate the dy-
namics of wind turbines; both individually and ultimately in arrays relevant to farm configurations. The
project will focus on coupling OpenFOAM to ParaFEM [1] in such a way as to minimise communication
bottleneck and to maximise performance of the software.

The developed software uses a partitioned approach, with OpenFOAM and ParaFEM acting as blackbox
fluid and structural solvers respectively. Using this approach makes use of already existing models and
solution algorithms that have been previously validated, and the user has the versatility to select the type
of CFD and FEM simulations independently from the coupling strategy. The coupling is achieved using
a conventional serially staggered (CSS) scheme to solve the governing equations. The software will be
highly parallel allowing large complex problems to be run with sufficient accuracy in a reasonable time
on High Performance Computers.

FSI modelling offers the potential to accurately predict the deforming blade shape across a range of
load conditions and thus improve the prediction of blade efficiency and noise production. FSI with
ParaFEM not only provides fast stress analysis through parallel processing, but also the capability to in-
corporate more heavy weight structural integrity assessment through stochastic simulations [2], thermo-
mechanical analysis [3] and multi-scale modelling of fracture [4].

2. Method

This section will give a brief description of the governing equations associated with the fluid and solid,
and the interface conditions. Finally the system architecture and coupling algorithm between Open-
FOAM and ParaFEM is described.
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2.1. Fluid/OpenFOAM

The flow variables are described by the Navier-Stokes equations (1,2). The subscripts s and f represent
the solid and fluid respectively.

∂

∂t
+ ∇ · (ρUf ) = 0 (1)

ρ
∂Uf

∂t
+ ρUf · ∇Uf − ∇ · σ f = f (2)

Where U represents the velocity vector [u,v,w], ρ the density, t the time and σ the stress tensor. The
governing equations are discretised using the finite volume method (FVM).

2.2. Solid/ParaFEM

The solid is solved using an element by element variant of the finite element method (FEM), through the
linear equation:

nels∑

1

{ fe } = [Ke]{xe } (3)

Where fe and xe are the elements nodal forces and displacements respectively, and Ke represents the
element stiffness matrix which is computed from the material properties and shape functions. nels is the
total number of elements in the mesh.

2.3. Interface

The interface between the fluid and solid is described by kinematic (4) and dynamic (5) equilibrium.
Where n represents the unit normal.

Uf =
dUs

dt
(4)

σ f .n f = −σs .ns (5)

The kinematic condition ensures the spatial variables, velocity and displacement, at the interface between
the fluid and structure are in equilibrium. The dynamic condition states that the force/stress exerted by
the fluid and solid at the interface are equal and opposite.

2.4. System Architecture

The software considers OpenFOAM and ParaFEM as two black box solvers. This partitioned approach
means the numerical schemes and discretisation methods, for the structure and flow, can be chosen inde-
pendently. The modular approach makes the software robust and flexible for different types of problems.
However if a dynamic structural model is used, care must be taken with the choice of time step so as to
avoid spurious oscillations in the acceleration and traction at the interface [5].

The algorithm used in solving the FSI problem is shown in Figure 1a. The algorithm currently used
is the most basic coupling technique, the conventional serially staggered scheme, developed in [6]. The
coupling between the two programs is in its most simplistic form, a transfer of data. The difficulty comes
from two sources. Moving data from an object orientated language (C++) to a procedural language (For-
tran) and from a FVM to FEM. The quasi standard coupling interface MpCCI has been used for a similar
problem in [7]. OpenFOAM contains good interpolation libraries, making the use of external packages
unnecessary. OpenFOAM acts as the master program with ParaFEM being called as a subroutine at run-
time. Figure 1b shows the data coupling, interpolation and data transfer between the two programs. This
is described more comprehensively below.

1. Geometry : The initial geometry data (nodal coordinates and connectivity matrix) of the solid
mesh are passed to ParaFEM, before the time loop begins.
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(a) Conventional Serially Staggered Scheme (b) Interpolation between FEM and FVM

Figure 1: High level diagrams of the 1a Solution Algorithm & 1b Data Transfer

2. Dynamics : The pressure on each face, at the interface, is interpolated to a point force and a
direction vector. This force is then distributed over the nodes of the FE element according to [1].

3. Kinematics : The nodal displacements are passed back to OpenFOAM that interpolates the nodal
values into patch/face displacements.

3. Test Problems and Results

The software has been checked using the FSI benchmark problem proposed by Stefan Turek and Jaroslav
Hron in [8]. This test involves the 2D laminar flow of an incompressible, Newtonian fluid, through a
channel and around an elastic object (Figure 2). The values for the geometric parameters are shown in
Table 1. The test involves fixing the elastic solid until the flow is fully developed before allowing the
solid to move under the force of the fluid. The displacement at position A, is compared to the benchmark
results over one full cycle.

(a) Fluid Domain

(b) Solid Domain

Figure 2: Schematic of the Hron and Turek benchmark case, taken from [8]

During the conference, the implementation of the software will be described before presenting the re-
sults and performance of the code for the FSI benchmark problem described earlier. Figure 3 shows an
example of the problem run using the current FSI solver in OpenFOAM. This uses a finite volume solver
for both the fluid and the solid.
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Figure 3: An example of Hron Turek Test case

Parameter Value(m)
L 2.5
H 0.41
C (0.2,0.2)
r 0.05
l 0.35
h 0.02
A (0.6,0.2)
B (0.2,0.2)

Table 1: Geometric Parameters from [8]

Scaling tests for both OpenFOAM and ParaFEM have been performed in the literature. Smith et al [1]
has shown that ParaFEM scales well on up to 32,000 cores. while the HPC Advisory Council [9] have
shown that OpenFOAM can scale well to 1024 cores.

4. Conclusions

This paper has described new software that couples the finite volume CFD solver, OpenFOAM with the
finite element structural solver, ParaFEM. OpenFOAM has acted as the master, calling ParaFEM as a
subroutine each time step.The modular set up of the software makes it flexible and robust. The code
will be able to tackle larger and more complex problems, with good fidelity in the results, specifically to
investigate physical phenomena that occur in wind turbines and ultimately arrays/farms.

Acknowledgements

The first author is supported by an Alstom/EPSRC PhD Studentship. The authors would like to express
their gratitude to Prof. Hrvoje Jasak and Dr Stefano Rolfo for their help at the 3rd UK and Ireland
OpenFOAM User Meeting at the Hartree Center.

References
[1] I. M. Smith, D. V. Griffiths, and L. Margetts. Programming the Finite Element Method. John Wiley & Sons,

Ltd, 5th edition, 2014.

[2] Jose David Arregui-Mena, Lee Margetts, D. V. Griffiths, Louise Lever, Graham Hall, and Paul M. Mummery.
Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of
virgin Gilsocarbon bricks. Journal of Nuclear Materials, 465:793–804, 2015.

[3] Llion Evans, Lee Margetts, Valentina Casalegno, Louise Lever, Joe Bushell, Tristan Lowe, Andrew Wall-
work, Philippe Young, Andre Lindemann, Marc Schmidt, and Paul Mummery. Transient thermal finite ele-
ment analysis of CFC-Cu ITER monoblock using X-ray tomography data. Fusion Engineering and Design,
100:100–111, 2015.

[4] A Shterenlikht and L Margetts. Three-dimensional cellular automata modelling of cleavage propagation
across crystal boundaries in polycrystalline microstructures. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 471(2177), 2015.

[5] Joris Degroote. Partitioned Simulation of Fluid- Structure Interaction. State of the Art Reviews, 20(3):185–
238, 2013.

[6] M. Lesoinne and C. Farhat. Higher-Order Subiteration-Free Staggered Algorithm for Nonlinear Transient
Aeroelastic Problems. AIAA Journal, 36(9):1754–1757, sep 1998.

[7] Michael Schäfer, Marcus Heck, and Saim Yigit. An implicit partitioned method for the numerical simulation
of fluid-structure interaction. Fluid-structure interaction, pages 171–194, 2006.

[8] Stefan Turek and Jaroslav Hron. Proposal for numerical benchmarking of fluid- structure interaction between
an elastic object and laminar incompressible flow. Lecture Notes in Computational Science and Engineering,
53:371–385, 2006.

[9] Scale Working Group. Computational Fluids Dynamics (CFD) Simulations at Scale OpenFOAM open source
applications. Technical report, 2010. Available: http://www.hpcadvisorycouncil.com/best_practices.php.

67



Advanced Applications I

68



 

Proceedings of the 24th UK Conference of the 

  Association for Computational Mechanics in Engineering 

31 March – 01 April 2016, Cardiff University, Cardiff 

 

RESPONSES AND VULNERABILITY OF COMPOSITE RAILWAY 

TRACK SLAB TO TRAIN DERAILMENTS 

*Sakdirat Kaewunruen¹, Olivia Mirza
²
 and Daniel Thomson³ 

1
School of Engineering, University of Birmingham, Edgbaston, B15 2TT UK 

2
School of Computing, Engineering and Mathematics, Western Sydney University, Kingswood NSW, 2577 

Australia 
3
Engineering Services, Sydney Trains, Sydney NSW 2000 Australia 

 

*s.kaewunruen@bham.ac.uk 

 

ABSTRACT 

Modern replacement of deteriorated timber transom sleepers by steel-concrete composite slabs can significantly 

improve asset management strategy for railway bridges over their life cycle. Track engineers can take advantage 

of steel-concrete composite technology over traditional concrete slabs. The design of such steel-composite track 

slabs has shown 10-20% reduction in the component depth and thus the weight. These benefits enable the 

composite slabs to fit brown-field maintenance project where merely aging transoms can be renewed and the 

new composite slabs can be installed over existing girders and support systems. In practice, railway bridge 

structure is designed to embrace redundancy assuring public safety. The risk and consequences of train 

derailment over the bridge has prompted railway authority to investigate the vulnerability of railway bridge 

system. Therefore, the design and modelling of this composite slab has been verified by previous work of the 

authors. This paper presents the dynamic responses and vulnerability of the composite track slabs to train 

derailments. A nonlinear finite element model of integrated train-track-bridge has been developed and validated 

using field data. The impact analysis has then been carried out using ABAQUS Explicit to evaluate the dynamic 

responses of the composite railway track slabs, benchmarked with quasi-static code-based design method. This 

study enhances the insight into the dynamic behaviour of vulnerable track slabs so that track engineers can 

predict the damage arisen from a train derailment. 

 

Keywords: Railway bridge; steel-concrete composite; transom; railway bridge sleeper; track slab, train 

derailment; failure analysis; dynamic finite elements 

  

1. Introduction  

Over 90% of Australia’s railway bridges are using timber transoms. Similar percentages of aged 

railway bridges in the UK and Europe have also utilised timber transoms (or commonly known as 

‘railway bridge sleepers’). At present, railway infrastructure managers require to renew around 3.5 

million of aging and failing timber transoms around the world in order to upgrade the railway lines 

and to maintain existing rail lines. Griffin et al. [1-2] found that timber transoms are generally 

replaced within 10 to 20 years’ period of time, resulting in a shorter turnover period and additional 

costs for track maintenance [3-4]. This research was undertaken to explore the replacement of timber 

transoms based on a case study for the iconic Sydney Harbour Bridge using new composite materials. 

Composite transoms are a good alternative to timber transoms due to the production of greenhouse 

gas emission for timber transoms are 6 times higher than in the concrete and composite transom [5]. 

However, an alternative material for the replacement of timber transoms shall be compatible with the 

existing structural system.  Furthermore, it should also be able to be replaced without much effort in 

order to enhance resilience and maintainability [6-7]. Therefore, composite precast concrete retrofitted 

on the existing steel girder would be a good alternative.  
 
It is interesting to find that train derailments keep presenting challenges to the railways system around 

the world. Indeed, not only can the derailments occur on turnouts and curved tracks, but they could 

also occur on a straight rail viaduct such as those due to broken bogie axles [8]. The aim of this study 

is to investigate the complex and unprecedented behaviour of composite transoms acting as track 
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slabs caused by train derailments. Failure modes of the rail transoms due to train derailments need to 

be well understood for public safety protection and fail-safe design principle of critical infrastructures. 

This outcome of this study will improve a performance-based design methodology for railway bridge 

transoms using steel-precast concrete composite members. Possible failure modes can be identified by 

previous failure investigations of railway bridges. Grayrigg train derailment in the UK [9] is a good 

example for progressive failure of railway structures triggered by derailments. Therefore, train 

derailment is a scenario, which cannot be ignored in designing structural components that enable a 

fail-safe railway system. 

 

The steel-concrete composite transoms are being tested using full-scale specimens in the laboratory at 

Western Sydney University. However, in order to carry out experimental investigations, numerical 

analysis is required for a better insight into its dynamic behaviour so that test setup arrangement could 

be safely managed. Also, experiments are generally very expensive and time consuming.  Therefore, 

this study is aimed at using numerical analysis to investigate the failure modes and behaviour of 

composite transoms caused by train derailment. Based on critical literature review, Brabie and 

Andersson [10] have investigated high speed derailments through various computer models. This 

simulation has been done on the wheel – sleeper impact when derailments occurred. They have 

further enhanced the model to simulate a post derailment scenario. Gu and Franklin [11] then created 

a model to analyse dynamic impact loading accurately. They considered the response of the railway 

bridge over the travelling speed of the train. Ju [12] studied non-linear behaviour of the wheel rail 

interaction. Effects of the profile of the track on derailment failure were later studied [13]. Fang and 

Zhang [14] developed a model to investigate the feasibility of using fiber concrete in transoms. In his 

study, a detailed parametric study was carried out by changing selected material properties of the fiber 

concrete to simulate different test models. However, all the above literatures did not considered the 

newly retrofitting precast steel-concrete composite slab into existing steel girders. The paper here is 

the first to look at the behaviour and failure modes of composite track slabs subjected to train 

derailment loads. 
 

2. Structural track system, design load actions and derailment  

Transoms are simply supported on stringers and the walk-way has been designed as a cantilever, as 

shown in Figure 1. The designed composite transoms are connected to the existing steel stringers 

using headed shear stud connectors. Existing rails then be fastened to the composite transoms using 

rail pads installed on steel baseplates. Actions of the design loads on transoms shall either be 

considered in their serviceability and ultimate limit states. LC1, LC2, LC5 and LC10, which will be 

described later, are considered as the most unfavorable load combinations or the set of worst case 

scenarios for design according to precedent research [1-2, 13]. The maximum static axle load acting 

on a transom during a train derailment has been taken as 20 tons, and its derailment impact can be 

calculated as per the guide lines established by the transport for New South Wales [2]. 

563 3237

 
Figure 1: Structural system 

Wheel set 

Proposed extension to 

transoms (walkway) 

Rail 
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3. Finite element model and its validation  

Numerical model was developed using ABAQUS Explicit to simulate the impact of derailment 

loadings on the proposed steel-concrete composite panel [1-2]. For design purpose, the maximum 

influences on the composite transoms of single wheel derailment have been considered in the 

derailment model as is illustrated in Figure 2. Due to the nature of loading, which is applied on the 

stringer not being of importance, the model has been simplified using symmetry. The concrete slab 

and steel components were modelled using the eight-node linear hexahedral solid elements with 

reduced integration and hourglass control (C3D8R). Elements with reduced-integration have been 

adopted as they could reduce computing run time. These elements were incorporated in a reasonably 

fine mesh in order to improve the accuracy of these models. The mesh sizes were also verified by 

carrying out a sensitivity analysis to develop a convergence chart. The shear connectors were 

modelled using second order three-dimensional twenty-node quadratic brick elements with reduced 

integration (C3D20R). The connectors were modelled to represent the actual geometric size and shape 

within the limitations of the application. The reinforcing bars were modelled with two-node linear 

three-dimensional truss elements (T3D2). The track stiffness of 40 MPa (or rail displacement of 

4.5mm specified by the rail authority) was used to validate the finite element model [2]. 

  
Figure 2: Finite element model           Figure 3: Finite element results 

 

4. Results 

The stress distribution in Figure 3(a) displays the resulting stress levels carried by the Bondek II at 

impact caused by derailment. The derailment relationship of the Bondek II is shown as stress versus 

time. From initial impact at time 0, the graph displays a linear curve up until about time 0.004, this is 

due to the combination of concrete and steel taking load. The maximum stress is reached at time 0.005 

with a value of 550 MPa and fluctuates up until time 0.015. Beyond time 0.02 the stress level is 

reached and is maintained constant. Figure 3(b) displays the deformed model of the Bondek II caused 

at the impact once the wheel interacts with the panel. Figure 4 shows the parametric effects on the 

dynamic responses of the steel-composite composite track slab components. 

 

   
 

Figure 4: Parametric studies 

a) 

b) 
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5. Conclusions 

Composite panels can be effectively used as a replacement of timber transoms in a railway bridge. In 

this study, the provisions given in the Australian standards was utilised for the composite steel-

concrete transoms. A finite element model (FEM) was used to simulate the behavior of the composite 

transom under derailment loads. Impact loads were applied within a selected period of time. 

Allowable stresses in components of the composite transom could also be determined experimentally 

in the simulation. Stresses developed in various components were observed for deferent characteristic 

strength of the materials. The maximum allowable stress in concrete increased with increasing 

characteristic compressive strength of concrete. Defection control test simulation was done to find out 

the relationship between strength of Bondek sheet (yield strength) and the allowable stress.  The 

allowable stress increased linearly until the yield strength of bondek sheet increased to 700MPa. 
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ABSTRACT 

The aim of this study is to identify different populations for rock characteristics based on uniaxial compressive 

strength (UCS) and density within limestones of Karoun-4 Dam, SW Iran. The results from a Number-Size (N-

S) fractal model log-log plots for UCS and rocks’ densities reveal that there are four populations for the studied 

variables. The last populations for UCS and density commence from 87 MPa and 2.65 t/m
3
, respectively. 

Finally, a log-ratio matrix is applied to validate and determine the overlaps between the N-S fractal model for 

UCS and density values within the main rock type. The overall accuracy (OA) is 85% which shows that there 

are positive correlations between UCS and rock density in the Karoun-4 Dam. 

 

Keywords: number size fractal modelling; uniaxial compressive strength (UCS); logratio matrix; karoun-4 

  

1. Introduction  

Outlining of host rock characterisation in terms of uniaxial compressive strength (UCS) and density is 

one of the fundamental aspects in a reservoir dam planning and design. Main host rocks of Iranian 

dams are carbonate rocks especially limestones and dolomites. Numerical models specifically based 

on geostatistics and fractal have been utilised to define various phenomena for better interpretation of 

the parameters’ variability for rock mass characteristics in rock mechanics [1, 2, 3, 4].  

Fractal/multifractal modelling, established by Mandelbrot (1983), has been used for delineation and 

classification of various parameters in mining engineering and geomechanical modelling such as ore 

grades, geophysical parameters and rock characteristics since the 1980s [5]. Consequently, several 

fractal models have been proposed and developed for a wide application from rock 1980s to mineral 

exploration [5, 6, 7, 8].  

The purpose of this study is to recognise different populations for rock characteristics with respect to 

UCS and density within limestones as the main lithological unit of Karoun-4 dam, SW Iran according 

to the Number-Size (N-S) fractal modelling proposed by Mandelbrot (1983) [5]. Furthermore, a log-

ratio matrix is used to determine the intersections between the N-S fractal model for UCS and density 

values within the limestones. 
 

2. Studied area characteristics 

The Karun 4 reservoir dam is an arch dam on the Karun River located in Charmahal and Bakhtyari 

Province, SW Iran (Fig. 1). Marginal part of Zagros orogeny has a high amounts of carbonate rocks 

especially limestones and dolomites. Main rock type of the studied area is limestones and minor 

lithological units are sandstones, marls and shales. 

  

 

3. Methodology 

In this study, 70 rock samples were collected from limestones in different situations within the dam 
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area and also, their UCS and density values were measured. Moreover, the main parts of the 

limestones were determined using N-S fractal modelling in terms of the above-mentioned variables. 

Finally, the main populations for these parameters were correlated and compared by the logratio 

matrix as proposed by Carranza (2011) [9].  

 

 
Fig. 1: The location of Karoun-4 dam in Iran 

 

4. N-S Fractal Modelling  

The N–S fractal model can be utilised to describe the distribution of geomechanical populations 

without pre-processing of data. The N-S log–log plot describes the power law relationship according 

to the frequency distribution of size, which is UCS and density values in this study, and cumulative 

number of samples [5, 10]. This model is expressed by following equation [2, 5, 10]: 

 

N(≥ρ) = F ρ
-D

        (1) 

 

Which in this equation ρ and N(≥ρ) denote elemental values (UCS and density) and samples 

cumulative number with values greater than or equal to ρ respectively, F is a constant and also, D is 

fractal dimension. The N-S log-log plots show straight lines segments, with different slopes (-D) 

corresponding to different intervals [10]. 

There are four populations based on the N-S log-log plot which indicate that the main UCS and 

density populations have the USC and density values higher than 87 MPa and 2.65 t/m
3
, respectively 

(last populations: Fig. 2). The background parts for USC and density values are lower than 60 MPa 

and 2.45 t/m
3
, respectively, as depicted in Table 1. 

 

 

 
(a) 

 
(b) 

Fig. 2: The N-S log-log plots for (a) Density for (b) UCS 

 
Table 1: The UCS and density thresholds derived via the fractal modelling 

UCS(MPa) Density (g/cm3) 

60 2.45 

76 2.57 

87 2.65 
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5. Correlation between the UCS and density 

Based on the N-S fractal modelling, the main populations of UCS and density for limestones were 

compared and correlated by the logratio matrix proposed by Carranza (2011) [9]. An intersection 

operation between major parts of UCS and density derived via the fractal modelling was performed to 

obtain the number of samples according to each of the four classes, as indicated in Table 2. Overall 

accuracy (OA) of the populations was calculated which shows that the OA is 0.85. This reveals that 

there is a direct relationship between high intensity populations of UCS and density within limestones.  

 

Table 2: The correlation between main UCS and density populations  

 
Main density population (> 2.65 t/m3) 

Inside zone Outside zone 

Main UCS population I(> 87 MPa) 

Inside zone True positive (A) = 2 False positive (B) = 8 

Outside zone False negative (C) = 4 True negative (D) = 68 

 Overall accuracy = (A+D)/(A+B+C+D) = 0.85   

 

6. Conclusions 

Results obtained by the N-S fractal modelling show that there is a positive and direct relationship 

between two important parameters of rock characteristics including UCS and density in the Karoun-4 

dam, SW Iran. The major populations of these characteristics obtained by fractal modelling have a 

good correlation based on the high value for OA resulted via the logratio matrix. As a result, the 

limestones contain high density with large values of UCS.  
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ABSTRACT 

A modified cohesive zone model (CZM) has been developed to simulate damage initiation and evolution in 

Glare™ Fibre-Metal Laminate (FML) specimens containing both splice and doubler features under high-cycle 

fatigue loading. The model computes the cohesive stiffness degradation under mixed-mode loading based on 

user-defined crack growth rate data and is implemented in a VUMAT subroutine for the FEA software 

Abaqus/Explicit. To validate the model experimental data has been obtained for a number of Glare 4B 

specimens containing splice and doubler features monitored using digital image correlation (DIC) to provide 

full-field displacement and strain data and Acoustic Emission (AE) monitoring to detect damage initiation and 

propagation. The model was used to predict the initiation and growth of damage in splice joints under quasi-

static loading. The results were verified against the cohesive zone model available in Abaqus and then validated 

against experimental data on Glare specimens. The codes are currently being extended to incorporate a mixed-

mode fatigue damage evolution model based on input Paris laws, which have been extracted from high cycle 

fatigue experiments on Glare specimens containing both splice and doubler joints. 

 

  

 

Keywords: Fibre Metal Laminates, Fatigue, Cohesive Zone Model, DIC, AE 

 

1. Introduction  

FMLs including Glare are manufactured from alternating metallic sheets bonded with fibre reinforced 

composite layers. Where large panels are required joints including splices (where metallic sheets are 

positioned side by side with a gap in between, with the gaps staggered to prevent loss of strength and 

the fibre layers providing load transfer) and doublers (additional external or internal layers introduced 

to reduce stresses) are used. One of the most common failure modes for FML structures is 

delamination in these joints [1]. Delamination in fibre composites has been modelled by researchers 

using a number of different approaches. These include the cohesive zone model (CZM) which 

incorporates both continuum damage and fracture mechanics concepts [2] and which has been used to 

model delamination initiation and propagation under high cycle fatigue [3-7]. This paper describes 

work done to extend this application to FMLs. 

 

2. Experimental work 

Fatigue tests were conducted on a series of Glare specimens containing splice and doubler features. 

Specimens had dimensions 153 mm × 13.5 mm and were manufactured from GLARE 4B which 

consists of 2024-T3 aluminium alloy sheets 0.4 mm thick and UD-S2 glass fibre reinforced epoxy 

(GFRP) layers each having 3 plies with the layup [90
o
/0

o
/90

o
] and a cured ply thickness of 0.125 mm 

(Figure 1). They were tested in an MTS servo-Hydraulic (50 kN) machine using the setup shown in 

Figure 2 with a constant load ratio (trough/peak) of R= 0.1 and a frequency 5 Hz. 
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Figure 2. Experimental fatigue test setup 

 
 

 

 

 

 

 

 

3. FE model 

Two types of model were 

created to analyse the 

delamination behaviour of the 

joints. Initially a simplified 

model was generated as 

shown in Figure 3 in order to 

validate the cohesive zone 

approach for static loading. 

Following this a more 

accurate model of the 

specimens was created to 

explore the effect of fatigue 

loading. This involved 

extracting the geometry and 

thickness of each layer from scans 

of the actual specimens, as shown 

in Figure 4, and then meshing them 

using linear continuum elements 

(CPS4R). The interfaces were then 

meshed using two dimensional 

cohesive elements (COH2D4). In 

both cases a mixed mode cohesive 

zone model (CZM) (Figure 5) was 

assumed using a quadratic nominal 

stress criterion for damage 

initiation (equation 1) and a power 

law failure criterion (equation 2) 

for damage evolution. Strain 

energy release rates GI and GII 

where calculated using equations 3 

and 4 and the power law parameter 

ϕ was determined by the best fit to 

mixed-mode delamination data from the literature [8]. Finally the model was implemented in the FEA 

software Abaqus/Explicit using a VUMAT subroutine.  
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Figure 3. Simplified model 
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Figure5. Mixed mode cohesive law 
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The simplified model was loaded statically as shown in Figure 3. Fatigue loading on the other hand 

can be represented by a constant amplitude load equal to the maximum load level in the actual fatigue 

cycle. Only the envelopes of loads and displacements are then analysed following a 'cycle-jump' 

strategy [3-7] .As shown in Figure 6, the force applied to the model is increased gradually from zero 

to the peak load (Fmax), and a fatigue degradation law is then activated to model fatigue crack growth 

and the corresponding reduction in overall stiffness and increase in axial displacement. Future results 

of fatigue tests will use this approach to calculate crack growth rate using a normalised Paris law: 

𝑑𝑎

𝑑𝑁
= 𝐶 (

∆𝐺

𝐺𝑐

)
𝑚

                                  … (5) 

Where da/dN is the crack growth rate (increment in crack area with increasing number of cycles) and 

C and m are best fit coefficients to experimental data in a log-log plot. 

 

4. Results and conclusions 

The experimental results illustrated in Figure 7 show that the fatigue life for the doubler specimens 

was higher than for the splice specimens, as the doubler joint exhibited high fatigue damage tolerance 

compared with the splice joint. The results also showed that delamination onset and growth occured in 

the external discontinuous Aluminium/ GFRP interface for the splice specimens, while the doubler 

specimens did not show any delamination. The FE results for the simplified model in Figure 8 show 

good correlation with the ABAQUS cohesive zone model as expected. Although there is a small 

difference in simulation time (pseudo-time) for damage initiation, the damage evolution parameter is 

identical and the small differences are attributed to small oscillations in stresses in the VUMAT 

subroutine which is currently free of any viscous regularisation or damping. Ongoing work focuses on 

adding a Paris law-based fatigue damage evolution rule as described above. 

 

 

 

Figure 6. Schematic of fatigue modelling envelope load 
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ABSTRACT 

Acoustic emission (AE) provides engineers with a powerful tool by allowing the location of damage sources as 

they occur. Damage localisation using traditional time of arrival approaches is inadequate in complex structure 

components. Cardiff University presented a novel approach known as Delta T mapping which overcame these 

limitations but it was considered as time consuming and an operator dependent approach. This paper presents 

new full automatic Delta T mapping technique overcomes these remaining limitations.  

 

Keywords: acoustic emission; source location; complex structure; unsupervised clustering; Delta T technique 

  

1. Introduction  

Damage localisation in complex structures, such as those found in aerospace applications, is a 

difficult problem in the field of structural health monitoring (SHM). The development of an easy to 

use, fast to apply, cost-effective and very accurate technique is key for the uptake of SHM. The use of 

Acoustic Emission (AE) [1] is important for SHM as it offers the potential for the real time 

monitoring of the health of a structure. Acoustic emission (AE) arising from damage mechanisms and 

propagating through the structure in the form of Lamb waves can be detected using piezoelectric 

sensors mounted on the surface of the structure. The ability to track the early onset of damage and 

hence determine the structure's integrity will enable the switch from periodic inspections to a more 

condition based approach, therefore enabling increased inspection intervals, reducing structure 

downtime and maintenance costs.  

The time of arrival (TOA) technique is traditionally used to locate these sources, and relies on the 

assumption of constant wave speed within the material and uninterrupted wave propagation path 

between the damage and the sensor. In reality, structural complexities such as holes and thickness 

changes that may be present, which alter the wave propagation path and velocity. In order to 

overcome these limitations, Cardiff University developed a technique (called Delta T Mapping [2]) to 

locate damage in complex structures with high accuracy [3-5] by using artificial sources on an area of 

interest to create training maps. These maps are used to locate subsequent AE events arising from 

damage events. However, this technique needs high operator expertise to deal with the training map 

data (e.g. selecting the correct data) which can be a time consuming process as well as it requires the 

cluster diameter value to be identified in advance to be able to calculate the source location (only the 

convergence points inside a specific cluster diameter are used to calculate the probable AE source 

location). The most recent version of Delta T technique is known as the AIC Delta T Mapping 

technique and was  developed by Pearson et al [6, 7] and overcame the limitation of arrival time 

calculation, another source of error in the traditional approach.  

In this paper, a new and improved fully automatic Delta T Mapping technique is present. Here the 

correct data in the training maps were identified and selected automatically using a clustering 

algorithm and a new approach (Minimum Difference approach) is used to determine the damage 

location. This paper reports experimental validation of the advantages of the new techniques 

achievements. The results showed excellent reduction in running time (from 7 hours to only 11 

seconds) as well as improved accuracy (location error improved from 4.96mm to 3.88mm in a 

complex geometry). 
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2. Automatic Delta T mapping technique Methodology  

This approach can be divided into two parts; firstly, selecting the valid events (to be used for creating 

the initial maps) at each grid point using an unsupervised clustering technique and secondly, 

calculating the AE source location using the Minimum Difference approach [1].  

In the first part, after collection of the training data by applying H-N sources [8] (an artificial AE 

source) on each node position in the grid the time of arrival to each sensor is obtained using the AIC 

approach [9]. The classification process is applied at each grid position to select AE events which are 

highly similar to each other, where the input data vector for the clustering process is the time 

difference between sensors pairs and will be used for the similarity criteria by following these steps: 

 In each point of the Delta T grid, the recorded hits were separated automatically to create AE 

events using a time based approach. Simultaneously, the incorrect erroneous data were 

automatically removed.  

 The AE hits from each point within the delta grid are correlated with the point coordinates (x, 

y) automatically, using time stamps placed by the operator within the collected data. Where 

the time stamps are placed in the data following acquisition from each grid node and are then 

used to automatically identify which hits are associated with each grid node.  

 Each event is identified by the calculated difference in time of arrival for each sensor pair       

(e.g. the case of four sensors creates six sensor pairs 1-2, 1-3, 1-4, 2-3, 2-4 and 3-4). 

 A complete link hierarchical clustering algorithm [10] is then used to group events based on 

their similarity, or correlation coefficient. In this work the 0.99 correlation coefficient level 

from the largest group was selected and all events in this group were used (correlation 

coefficient of 1 means total correlation). 

 Delta T maps from the average values of the difference in time of arrival for each sensor pair 

are calculated for the selected highly correlated events at each grid point.   

 Calculate location of real AE data: the Minimum Difference approach is a numerical 

approach, which is dependent on finding the point at which the difference between the source 

data and the training map data is minimised. 

 

3. Experimental Procedure  

An aerospace grade 2024-T3 aluminium plate, with dimensions of 370 x 200mm with a thickness of 

3.18mm was used to assess the performance of the new technique. The specimen contained a series of 

differing diameter circular holes as shown in Figure 1a. A MISTRAS PCI-2 system was used to 

record all AE data at 40 dB threshold and 2MHz sampling rate. Four MISTRAS Nano-30s were 

adhered on the front face of the specimen (Figure 1a) using silicon RTV (Loctite 595). All transducers 

were connected to MISTRAS 0/2/4 pre-amps which had a frequency filter of 20 kHz to 1MHz. The 

Delta T Mapping grid on the specimen covered an area of interest of 200mm x160mm and had a 

resolution of 10mm (Figure 1a). Five H-N sources were used at each node position within the grid. In 

order to assess the performance of the new Delta T mapping technique in a more complex structure, 

six arbitrary positions were selected within the Delta T grid and three H-N sources were conducted at 

each position. The average wave speed was calculated as 5400 m/s. Source locations were calculated 

using all four sensors using the traditional approach, Time of Arrival (TOA), AIC Delta T and the 

new Automatic Delta T for comparison. 

 

4. Results and Discussion  

Source location calculations using the AIC Delta T were conducted using 20mm cluster diameter 

(calculated using a trial and error procedure) and the training maps were filtered manually. For the 

Automatic Delta T source location calculations, the training maps are constructed automatically using 

the unsupervised clustering procedure. The source locations are then calculated using the Minimum 

Difference approach. Finally, the TOA location results were exported directly from the MISTRAS 

AEwin software. Figure 1b shows the source locations on the specimen from the three location 

methods.   
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(a)                                                                                    (b) 

Figure 1: (a) Specimen Configuration (b) Calculated source location by three techniques 

 

A comparison between the three methods results are provided in Table 1. From the table it’s clear that 

the average error of the Delta T techniques is considerably lower than the TOA and offers an 

improvement in accuracy from 222 mm to approximately 5mm. As well as the automatic Delta T 

shows an improvement in accuracy over the AIC Delta T results by reducing the error from 4.96mm 

to 3.88mm. 

Furthermore, there is significantly reduces the time invested in implementing the technique. The most 

time consuming step in the AIC Delta T is represented by the selection and preparing of the AE data 

to construct the training maps which takes approximately 7 hours. On the other hand, the Automatic 

Delta T mapping is very fast and reduces the running time for constructing the training maps to 

approximately 11 seconds which is a significant improvement.  Moreover, the new Delta T does not 

require the trial and error process of determining the optimal cluster diameter when compared with the 

AIC Delta T the cost is approximately 3.6 hours. 

 
Table 1 Techniques performance comparison 

 

 TOA AIC Delta T Automatic Delta T 

Average location error 222.18mm 4.96mm 3.88mm 

One standard deviation of the average ±177.75mm ±3.14mm ±3.19mm 

Prepare the AE data to construct training maps - 25200 sec (7 hours) 10.88 sec 

Calculate the optimal Cluster size - 13089 0 

 

5. Conclusions 

A new fully Automatic Delta T technique is introduced and verified experimentally using a complex 

structure. The results obtained are excellent and demonstrate the success of the adopted methodology. 

The AIC Delta T technique has been improved, with this approach, considerably and has increased in 

processing speed, increased reliability, efficiency, more accurate, increased simplicity and more 

capability to apply in large scale structures.  

The results of this study highlight the potential for the use of AE monitoring as a tool of SHM for 

damage localisation tasks; a high simplicity, fast, reliable, cheap and accurate technique has been 

presented. If this technique is integrated with commercial AE monitoring systems, it will be a 

powerful tool to provide real time highly accurate source location within complex large-scale 

components. 
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ABSTRACT 

Due to new technologies, the improvement of industrial systems is progressively complex. Accordingly, it has 

become difficult to manage and predict the behaviour of these systems, particularly when they will be exposed to 

failures. An identical dynamic model should reflect all characteristics of a planned integrated mechatronic system. 

Health monitoring of any system is essential in guaranteeing the safe, efficient, and correct operation of complex 

engineering systems.  This paper presents a simulation of a non-linear, experimental based model of a coupled 

tank apparatus CE 105 by using LabVIEW 2014. In this study, a common modelling paradigm with several 

sources of fault was used to simulate both nominal and faulty behaviour. It is concluded that the liquid level, in 

the presence of a PID controller, will not be affected by the fault value until it reaches a certain threshold. Hence, 

the end of the useful life could be predicted by monitoring the PID voltage. 

 

Keywords: nonlinear system; health monitoring; liquid level system; model based simulation 

  

1. Introduction  

Liquid level systems have an extensive variety of industrial process applications, such as petrochemical 

industries, papermaking, water treatment industries, and power plants. For example, controlling a liquid 

level in a tank and consequently the free outflow rate by using Proportional- Integral- Derivative (PID) 

controller is of crucial importance for mixing reactant processes [4].  A liquid level system is commonly 

controlled by using a conventional PID controller. This feedback controller minimises error through 

regulating the process-controlled inputs, the pump voltage for example [6]. Ogata [7] stated that a liquid 

level system can be considered linear if the liquid outflow is laminar; 𝑄 = 𝐾 ℎ, where Q is a steady-

state liquid outflow rate, [m3/sec], K is a coefficient [m2/sec] and h is a steady-state head, [m]. If the 

flow through the outlet valve is turbulent, the steady-state outflow rate is: 𝑄 = 𝐾√ℎ. Ogata [7] also 

stated that if the flow is turbulent, the system can be linearized when the change in the variables are 

kept small. The square root characteristic is widely used to model the flow through hydraulic orifices. 

This may cause numerical problems because the derivative of the flow with respect to the pressure drop 

tends to infinity when the pressure drop approaches zero. Furthermore, it is more reasonable to assume 

that the relationship between the free outflow rate and the pressure drop is linear for small values of 

pressure drop [2]. Non-linearity is the nature of all real systems [5].  

PID controller is a widely recognisable type of feedback controller. A PID controller calculates an 

"error" value as a difference between the required demand and the measured process or plant variable. 

The purpose of the controller is to minimise the error through regulating the process-controlled inputs 

as each element of the PID controller assigns a specific activity taken on the error [6]. The liquid level 

system is commonly controlled by using a conventional PID. The main reason for using a PID controller 

is on account of its simple structure and application.  
The contribution reported in this paper relates to the simulation and experimental validation of a CE 

105 coupled-tank liquid level control system. The consideration of this system is extended via the 

inclusion of non-linear elements in the simulation created using a real-time control toolbox within 

LabVIEW 2014. The simulation is used to accelerate the timescales of monitoring in order to have a 

prior knowledge of the system behaviour and track different operational scenarios. Furthermore, faults 
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diagnosis and the remaining useful life prediction could be achieved in advance. Results are reported 

and discussed for a leakage and reduced pump performance faults. 

 

2. Description of the coupled tank system 

The coupled tank apparatus CE 105 was selected to study its nominal and faulty behaviour. In this set-

up, a PC with NI USB– 6008 DAQ and LabVIEW 2014 programme serves to control and manage the 

system, as shown in Figure 1. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram of the system 

 

3. Calibration equations  

Open loop experimental tests were done on the CE105 apparatus in order to estimate the calibration 

equation of each single element of the system; the results are as shown in Figure 2.  
  

    

    

Figure 2: Calibration equations of the system elements 

a. Calibration of the liquid level 

sensor [mm] to [volt] 
b. Steady state outflow rate [L/min] 

VS Liquid level [mm] 

c. Tank inflow rate [L/min] VS Pump voltage [volt] d. Dynamic response of the pump 
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Calibration equations of liquid level and flow rate sensors are linear functions companion an offset 

terms as shown in equations 1 and 2 respectively. 

 𝑦 = 0.0386 𝑥 + 0.3231  (1) 

 𝑦 = 2.0954 𝑥 + 0.2377 (2) 

Laplace transformation of the liquid pump calibration equation is: 
 

 
 

(3) 

Free outflow rate equation is a non-linear equation as shown below: 
 

     𝑞𝑜 = 0.2383 ℎ0.514 + 0.003 (4) 

These equations were used to build a closed loop simulation under LabVIEW 2014 environment in 

order to study the system behaviour when some faults may occur. 

 

4. Case Study 

In this study, a PID controller under LabVIEW 2014 environment was used to preserve the desired 

liquid height and hence the required discharge. Liquid level and outlet valve opening have a direct 

impact on the free outflow rate. The specifications of the coupled tank apparatus CE 105 were used to 

build a closed loop simulation incorporated with the system elements’ calibration equations (1- 4) and 

the parameters shown in Table 1. This simulation shows a response as similar as the test rig does at the 

same system parameters.  

 
Table 1: The parameters were used for the simulation purpose 

 

The liquid level set point 125 mm 

PID 

parameters 

Proportional gain (Kc) 1 

Integral time (Ti, min) 0.01min 

Derivative time (Ti, min) 0 min 

Output high and low 10 volt and 0 volt respectively 

Nominal pumping efficiency 100%  

Nominal outflow rate According to the free outflow rate Equation (4) 

 

5. Fault Modelling 

As a result of ageing or long-term use, the system behaviour could change due to one or more abrupt 

and/ or incipient faults in some parts. The liquid level system can be divided into two main sides, a 

high-pressure and a low-pressure side. 

A. The high-pressure side contains the system pump and the tank inlet pipe. Faults in this portion can 

be divided into two categories. A leakage in the tank inlet pipe is assumed to be an abrupt fault, 

this is the first category while the second is incipient faults that progress slowly with time. The 

latter includes a pump internal leakage or impeller wear, represented as a progressive degradation 

in the impeller area [1]; [3].  Bearings wear fault can be considered as an incipient fault progression 

in any type of bearings have been used, e.g. radial bearing or thrust bearing [3]. Degradation in the 

mechanical and/ or electrical efficiency has been represented in this research as a percentage of the 

nominal pumping efficiency. 

B. It is assumed that a fault in the low-pressure side, i.e. tank and drain line, occurs in two different 

ways. The first occurs when the outlet valve setting is abruptly changed to a new significant value 

and/ or a breakdown leads to massive leakage. Such fault usually settles at this value for a period 

of time. The second fault is assumed to be a time variant function and hence, the fault value has a 

𝑄𝑝 =
0.515 𝑉𝑝 + 0.0135

1 + 𝑆 + 0.29 𝑆2
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slow progression. For the purpose of this paper, this fault was represented as a percentage of the 

nominal outflow rate. 

 

6. Results and Discussion  

For the system parameters stated in the case study of a closed loop system and in presence of a PID 

controller, the liquid level will not be affected by a fault value if: 

 The pumping efficiency reduces by up to 55.2%, as shown in Figure 3-a. 

 The drainage from the tank increases by up to 81% from its designed value, as it can be seen in 

Figure 3-b. 

 

  

a. Pumping efficiency and its impact on the liquid 

level and PID output voltage 

b. Liquid leakage and its impact on the liquid 

 level and PID output voltage 

Figure 3: Impact of the pumping efficiency and liquid leakage on the PID voltage and liquid level 

 

7. Conclusions 

The PID controller hastens an increase in the voltage supplied to the pump in order to boost the liquid 

pumping rate to mask any reduction, caused by faults, in the required liquid level. This is true until the 

controller reaches its saturated high value or the maximum permissible pumping rate. When the 

controller reaches this threshold, the liquid level will drop by reason of an incremental fault value as 

shown in Figures 3-a and b. Each liquid level has its own threshold as a result of each fault. 
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ABSTRACT

In this study a robust iterative technique is developed for solving the one-dimensional human arterial
blood flow problem by adopting Locally Conservative Galerkin method (LCG). Using Newton method
with two different linear solvers (i.e. Gauss elimination and Jacobi methodologies), the non-linear govern-
ing equations are solved. Such strategies result in rapid convergence and fast solution without excessive
memory cost for semi and full implicit LCG discretizations. In the proposed methods, the numerical
strategies require computing a 4 x 4 matrix per element to determine blood flow characteristics. The
novel methods developed are employed to study the blood flow through the major vessels of a complex
human systemic circulation network. The validity and stability of the present methods are investigated
by comparing the results against the available data in the literature.

Key Words: Human Arterial Tree; One-dimensional Model; Locally Conservative Galerkin LCG;

Finite Element Method; Newton-Gauss elimination and Newton-Jacobi.

1. Introduction

Fundamental understanding of the blood flow behaviour is essential for predicting and treating
common diseases in cardiovascular system such as aneurysm and atherosclerosis [1]. In order
to achieve such comprehension in a complex geometry of human circulation, one-dimensional
models have been used in most studies as they have been proven as efficient tools to give insight
into quantities to interest [2, 3]. Among the schemes for solving the governing equations, ex-
plicit methodology in which the characteristic variables are employed to prescribe the boundary
conditions is popular [2, 3]. Although such methods are more intuitive as the wave nature is
considered and computationally efficient, time step restriction is the main drawback. Also, it
leads to less stability especially at branching sites [4]. Alternatively, implicit treatment relaxes
time step restriction but it is difficult to implement, especially in large scale problems due to
large, complex and unsymmetric matrices which may lead to convergence issues. As the bound-
ary conditions have to be prescribed in advance to allow a large time step, standard implicit
schemes may affect the accuracy. Thus a combination of the advantages of steps from estab-
lished explicit and implicit methods may lead to a better method. In the present work two such
approaches , semi- and full- implicit Locally Conservative Galerkin (LCG) [5, 6] methods, are
developed to relax the explicit LCG time step restriction and to enhance the stability. Basi-
cally, LCG method treats each element independently, this produces very small matrix of 4 x
4 per element and thus the solution is rapid. The standard Newton iteration is implemented
here alongside a linear solver which is either Gauss elimination or Jacobi for the simultaneous
solution. Such basic solvers are sufficient to achieve the rapid convergence since the matrices of
LCG method are small unlike standard implicit methods. The results produced are compared
against explicit methods to evaluate performance.
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2. Governing Equations and Numerical Formulations

The governing equation (i.e. the conservation of mass and momentum equations) are numerically
solved over 63 segments representing the major arteries in human systemic circulation as shown
in Figure 1, also coronaries and ventricle valve are incorporated (All segments details can be
found in [2, 3]). The compact form for the governing equation can be written as
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Figure 1: Configuration of the arterial tree for the current model [3].

∂U

∂t
+

∂F

∂x
− S = 0 (1)

where

U=

[
A
u

]
, F=

[
Au

u2

2 + p
ρ

]
and S=

[
0

−8πµ
ρ

u
A

]

In above equation, A and u are the primitive variables (i.e. area and velocity respectively).
The pressure p is linked to the cross sectional area through the non-linear relationship, p =
pext + β(

√
A − √

Ao). The parameters, ρ, µ, pext and Ao are fluid density, fluid viscosity, the
pressure from the surrounding tissues and the area at zero transmural pressure respectively.

And, β accounts for the material properties of the elastic vessel and given as β =
√

πhE
Ao(1−σ) ,

where h is the vessel wall thickness, E is Young’s modulus and σ is the Poisson’s ratio, assumed
to be 0.5 (i.e. the vessel wall is incompressible) (see [2] for more details). The finite elements
discretisation procedures are applied to the governing equation according to [7] by adopting
linear shape functions, which results in fully discrete LCG form as

[M]e{∆ Un} = ∆t
[
[K]{Fn+1} + [L]{Sn+1} + {fΓ}n+θ

]
e

(2)

where e refers to an element and all matrices details (i.e. M,K and L) can be found in [2]. The
flux fΓ is used to transfer information between elements. As stated before, we use both versions
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of LCG method, i.e. semi- implicit in which fnΓ = Fn at θ = 0 and fully-implicit in which
fn+1
Γ = Fn+1 at θ = 1. In both cases, the flux is rewritten in terms of implicit area and velocity

at n or n + 1 time level. After that, the primitive variables in Eq.2 are estimated according to
Newton method [8, 9] along with Gaussian elimination or Jacobi for solving the simultaneous
equations.

3. Results and Discussion

As stated before, the governing equations along with the boundary conditions are solved over
the whole arterial tree. The input wave for the model is the pressure wave from left ventricle (see
[2, 3] for more details). The pressure and flow rate are briefly discussed here as shown in Figure
2 at two monitoring positions along the aorta, i.e. ascending aorta (segment 9, denoted by A and
B in the figure). The results are produced using Newton-Gauss elimination and semi- and full-
implicit LCG method (legends Case 1 and Case 2 respectively). The Thoracic aorta II is also
considered in Figure 2 (segment 35, denoted by C and D in the figure) in which Newton-Jacobi
is adopted. We run three cardiac cycles where time step is chosen as ∆t = 0.0002s, larger time
step is possible but due to diffusive nature of Taylor-Galerkin method at larger time steps, this
is not attempted here. For explicit LCG method used for comparison, time step was set in [3]
as ∆t = 2 x 10−5s. The figure clearly demonstrates that new methods proposed are close to the
established explicit method. Between the two methods the semi-implicit method appears to be
least accurate. This may be due to the flux being treated at n time level.
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Figure 2: Comparisons for pressure and flow in various locations in the arterial tree.

In Table 1 the cost performance of the the three sachems are compared. As seen the fully-
implicit method appears to be the fastest method among the methods compared and gives an
accurate solution to the problem. The fully-implicit method also has the advantage of no time
step restriction.

4. Conclusion

Two different time stepping schemes of LCG method, i.e. semi- and fully- implicit discretisations,
have been developed for a human circulatory system. The solution is achieved by using the
Newton iteration along with two linear solvers, Gauss elimination and Jacobi method. As LCG
method generates only an element matrix (i.e. 4 x 4 size), this allows us to implement standard
solvers. This enormously simplifies the computation. The comparisons between the proposed
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Table 1: Computational speed comparison averaged over three cardiac cycles.

Method Newton-Gauss, Semi-implicit Newton-Gauss, Fully-implicit Explicit

Time (s) 972.50 927.75 1017.00

Method Newton-Jacobi, Semi-implicit Newton-Jacobi, Fully-implicit Explicit

Time (s) 942.00 896.25 1017.00

methods are established explicit method shows that the fully-implicit method is both fast and
accurate. Thus the fully-implicit method proposed in this paper is recommended for future
studies. Further investigation is essential to improve the fully-implicit method to enhance time
step sizes, without compromising the accuracy.
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ABSTRACT

Angiongenic vessel growth is widely acknowledged to be a fundamental process that underpins cancer growth,
invasion and metastasis, and it is highly instructive to construct and test reliable mechano-biological models
of this process. Whereas previous studies have explored the chemical underpinning of both tumour growth and
angiogenesis, here we extend these frameworks significantly to focus on the interplay between angiogenic network
evolution and growth-induced solid stresses through a hapto- and mechanotactic stimulus for vessel sprouting, and
a mechanics based remodelling process of the microvasculature. The proposed three-dimensional, multiscale in
silico model for tumour-induced angiogenesis and growth is validated against in vivo data from murine mammary
carcinomas, specifically focusing on the role of mechanical signals in recapitulating experimental evidence.

Key Words: cancer mechanics; neo-vascularisation; tumour microenvironment; multiscale model; finite element
method

1. Introduction
Over the past two decades there has been a rapid development of deterministic mathematical and compu-
tational models describing cancer behaviour. These span from single scale to multiscale models, based
either in continuum, discrete or hybrid methodology approaches. Cancer models that target simulating
the dynamics of solid tumour biomechanics can be classified into avascular and vascular tumour growth
models, with the reviews [4, 5] providing an exhaustive list of publications in the field. In this paper we
propose a novel in silico model of tumour-induced angiogenesis and growth. This model is capable of
producing high fidelity predictions of the morphology of the tumour microvasculature and its structural
characteristics (e.g. endothelial lining, pore-size) and, importantly, it is has been validated against in
vivo data from murine mammary carcinomas. The novelties of the model include: the introduction of
mechano- and haptotaxis in capillary tip elongation; utilisation of a phenomenological description for the
elongation speed of sprouts; and development of a constitutive model to describe vessel wall remodelling
and structural integrity as a function of mechanical cues. Last but not least, an innovation of the proposed
methodology is that it couples, in a partitioned manner, the tumour–host solid mechanics with the fluid
mechanics of the capillary–interstitium interaction and the balance of biochemical factors regulating
tumour growth and angiogenesis.

2. Methodology
The proposed in silico cancer modelling framework consists of four interconnected modules, as shown
in Fig. 1: the solid mechanics (Box A), the biochemics (Box B), the microvasculature (Box C), and the
fluid mechanics (Box D). This coupled model is solved using finite element (FE) methods using our
in-house numerical analysis tool FEB3. Details of the novel aspects of the mathematical model and its
computational implementation are summarised next.

We employ a continuummodelling approach to describe tissue solid and fluidmechanics, and biochemical
transport. The domain of analysis consists of a spherical tumour (1 mm diameter) embedded in a cuboid
(1.7 cm3) of healthy tissue. The tumour region is initially avascular, with an initial spatially-uniform
vascular network seeded in the healthy tissue. This 3D vasculature evolves temporally in response to

94



Figure 1: Flow diagram of the coupled multiscale solver illustrating the interaction between the different solvers.

both chemical and mechanical cues, and is described using a discrete description of individual vessel
segments, connected via nodal junctions. Throughout, transient analysis is resolved using an explicit
time-integration scheme. A set of three coupled equations are solved for the tumour angiogenic growth
factor (TAF) concentration, τ, secreted by the cancer cells; the oxygen concentration, ξ, which diffuses
from the blood vessels into the extracellular matrix (ECM) where it is metabolised by the cells; the
concentration of matrix-degrading enzymes (MDE), µ, which is produced by endothelial cells in the
sprouting vasculature, and the tumour cells, and diffuses through the ECM. The local composition of the
ECM, ε , changes dynamically due to MDEs cleaving the proteins in the matrix. Tumour development
is stimulated by the local increase of oxygen in the tissue using a physiologically representative growth
expression and tissue biomechanical properties [9]. Boundary and initial conditions on the outer boundary
of the tissue domain, and also healthy-tumour interface, are chosen to mimic in vivo conditions.

Figure 2: A. Predicted tumour volume as a function of time. B. Predicted vascular
density (capillary lumen surface area to tissue volume ratio) normalised against
the initial vascular density. C, D. Predictions of the tumour vasculature scaling
parameters λ and δmax [1], compared with in vivo measurements [8].

The initial vascular net-
work, seeded within the
healthy tissue, has proper-
ties (i.e. lumen size, thick-
ness, pore size) obtained
from in vivo data [6].
The vascular grid is non-
conforming to the tissue FE-
mesh. The meshes are cou-
pled in the fluid mechanics
solver (Box D of Fig. 1),
where the steady-state fluid
problem is solved [7], and
the interstitial fluid pres-
sure (IFP) and the fluid mi-
crovascular pressure (MVP)
are evaluated. The vascular
network evolves in response
to both chemical and me-
chanical stimuli. First of all,
the orientation of elongat-
ing vascular sprouts is de-
scribed by the superposition of chemo-, hapto- and mechanotaxis stimuli: e = kτ∇τ − kε∇ε − km t ,
where kτ , kε , km are scalar parameters, and t is the minimum eigenvector of the tissue mechanical stress
tensor. Following recent in vitro experimental observations [10], we also impose that the tip elongation
speed is inversely dependent to the vessel lumen size. Finally, the capillary lumen diameter and wall
properties remodel in response to both the wall shear stress (WSS), and also compressions via the ac-
cumulated mechanical stresses in the tissue (a vessel collapses and its flow is occluded when the load
exerted on its walls exceeds a critical value).
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Predictions of the in silico model (with and without mechanical stimuli switched on) are compared
against both reported literature observations, and in vivo experimental data which characterises tumour
growth, vascular extent and fluid flow characteristics in murine mammary carcinomas [8], providing a
crucial validation step of these types of computational tumour frameworks.

3. Results
Fig. 2A shows the predicted bulk tumour growth (diameter increase from 1 to 6.5 mm in a month), with
Fig. 3 illustrating tumour-induced angiogenesis and size at discrete time points (cancer mass shown as
a transparent sphere); here the capillaries are shown as cylindrical tubes scaled to their lumen diameter.
From left to right, Fig. 3 showsMVP, mean blood velocity, WSS, and radius respectively. In the rightmost
panel, the concentration field of TAF (secreted by the tumour cells) is overlaid with the functional (red)
and collapsed (blue) vessels; this collapse occurs due to the high solid stresses around the tumour-healthy
tissue interface. The in silico cancer model predicts uniform IFP of around 8.5mm-Hg in the tumour, with
a steep decrease in the peri-tumoural region. This result is within the experimentally measured pressure
range for tissue-isolated (7.8±3.8 mm-Hg) and subcutaneous (9.1±3.9 mm-Hg) small-size tumours
[2]. The predicted maximum interstitial fluid velocity is approximately 0.15 µm/s, which is the correct
order of magnitude with respect to experimentally measured values (0.6 ± 0.2 µm/s) [3]. In tumours,
normalised vascular density (capillary lumen surface area to tissue volume ratio, normalised against the
initial vascular density) is reported to range from 3.3 to 5 [11]. Fig. 2B depicts the temporal change of
the normalised vascular density. We compare the model results when vascular sprouting is regulated by
chemotaxis only, or in combination with mechano- and haptotaxis. Model predictions in each scenario
are within physiological limits. We also adopt the method in [1], where two scaling parameters, λ and
δmax, were introduced to quantify key vascular features in 3D. Here λ is defined as a measure of the
distribution of blood vessels in space, and δmax measures the distance between a point in the interstitium
to the nearest blood vessel. A comparison between model predictions and the in vivo data from MCaIV
carcinomas is presented in Figs. 2C and 2D. Whereas the simplified chemotaxis model (mechano- and
haptotaxis switched off) overestimates λ at all time points, the agreement betweenmodel and experiments
is excellent when the mechanical features are included. The impact of these features had a less significant
effect on δmax because tumour growth in the model is not affected by the structure of the newly formed
vasculature.

Figure 3: Snapshots of the in silico cancer model predictions, illustrating: MVP, velocity, WSS, capillary radius,
and TAF distributions together with functional (red)/collapsed (blue) vessels.
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4. Conclusions
This paper presents a validated 3D multiscale model of tumour-induced angiogenesis and growth,
which incorporates a comprehensive description of the coupling between the tumour mechano-biology
and capillary network fluid flows, functionality and growth. Model predictions are validated against
experimental measurements of fluid pressures and velocities, and quantification of vascular parameters,
and this agreement is strongest when angiogenic behaviours are driven by not only chemo-, but also
hapto- and mechanotactic stimuli. Therefore, this study provides strong support for the importance of
mechanical factors in influencing tumour vascularisation and development.
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ABSTRACT 

To understand the characteristics of blood flow, it is important to identify the key parameters that influence the 

flow of blood. The characterisation of blood flow will also enable us to understand the flow parameters 

associated with physiological conditions such as atherosclerosis. Thrombosis plays a crucial role in 

atherosclerosis and it also helps to stop bleeding when a blood vessel is injured. This article focuses on using a 

meshless particle-based Lagrangian numerical technique, named the smoothed particles hydrodynamic (SPH) 

method, to study the flow behaviour of blood and to explore the flow conditions that induces the formation of 

thrombus in a blood vessel. Due to its simplicity and effectiveness, the SPH method is employed here to 

simulate the process of thrombogenesis for various blood flow parameters. In the present SPH simulation, blood 

is modelled by particles that have the characteristics of plasma and of platelets. To simulate the coagulation of 

platelets which forms thrombus, the adhesion and aggregation processes of the platelets are modelled by an 

effective inter-particle attraction force model. With these models, the motion of platelets in flowing blood, and 

their adhesion and aggregation are effectively coupled with viscous blood flow. In this study, the adhesion and 

aggregation of blood particles are analysed on a (straight vessel) under various low Reynolds number scenarios. 

The results are compared with the experimental results, and a good agreement is found between the simulated 

and experimental results.  

 

Keywords: smooth particle hydrodynamics (SPH); blood flow; thrombus; arteries   

1.Introduction 

A thrombus is considered to be one of the most important causes of many diseases in human body. On 

the other hand, A blood clot anchored to a damaged vascular wall can stop bleeding or it can prevent 

atherosclerosis in arteries. The danger is that a thrombus can affect the blood flow in the vessels and 

this can cause potentially deadly accidents, such as cardiac infarction (or heart attack) or ischemic 

stroke when the damage occurs in the coronary or the carotid arteries, respectively. The formation of a 

thrombus depends on platelet flow; for example, the transport to denuded subendothelium, formation 

of membrane tethers, adhesion to the subendothelium, and aggregation. Many experimental studies 

have provided information on the biochemical effects of fluid forces on thrombogenesis. In recent 

years, due to the availability of vast computational power, research on computer simulation of 

thrombosis has become a field of deep interest. Although fluids can be simulated in either the Eulerian 

or Lagrangian method, the Lagrangian method is considered to be more suitable for this type of 

simulation due to their obvious advantages in tracking movement of particles similar to platelets[1]. 

The purpose of this study is to analyse flow parameters that influence the formation of thrombosis 

inside arteries. A Lagrangian smoothed particles hydrodynamics (SPH) is used for numerical 

simulations of the blood flow consisting plasma and platelets. 
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 2. Numerical Methodology  

The governing equations for solving incompressible or weakly compressible isothermal fluid flow 

using SPH are mass and momentum conservation equations given by, 

1

𝜌

𝐷𝜌

𝐷𝑡
+ ∇. 𝐯 = 0;        

𝐷𝐯

𝐷𝑡
= −

1

𝜌
∇p + 𝑣∇2𝐯 + 𝐅.                                                    (1),(2) 

Where 𝜌,  𝑡,  𝑣,  𝐯, and  p represent the density, time, kinematic viscosity, velocity and pressure of the 

fluid particles and, 𝐅 represents the external force acting on fluid particles. The fluid pressure for 

weakly compressible SPH formulation  is obtained by an equation of state as presented in [2]. The 

numerical procedure to calculate fluid velocity is derived from the momentum equation (2) as, 

                                𝐯𝑛+1 = 𝐯𝑛 + (−
1

𝜌
∇𝑃 + 𝑣∇2𝐯𝑛  + 𝐅) ∆𝑡                                              (3) 

Where superscript 𝑛 and 𝑛 + 1  refer to current and next time steps, respectively, and ∆𝑡  is the 

numerical time step. The position and density of the fluid can be updated respectively at every time 

step by, 

                           𝐱𝑛+1 = 𝐱 + 𝐯𝑛+1∆𝑡,                                                                                        (4) 

and (from the continuity equation (1)), 

                        𝜌𝑛+1 = 𝜌𝑛 − 𝜌𝑛(∇. 𝐯𝑛+1)∆𝑡.                                                                  (5) 

The pressure is then estimated from the updated density. 

3. Modelling Platelet Motion 

The platelets tend to adhere and aggregate when the blood vessel is damaged. This can lead to 

formation of a primary thrombus. Inside the primary thrombus the neighbour platelets link together, 

which are then bound by vWF fibrinogen in plasma and collagen in the sub-endothelial tissue [3]. 

This process takes place by making a link between neighbouring platelets and bound by vWF 

fibrinogen in plasma and collagen in the sub-endothelial tissue. To numerically model such platelet 

motion, an algorithm based on a penalty or spring force mechanism [4] is adopted. This model 

dictates the interactions between platelets and plasma inside the blood vessel. When the platelets are 

within a distance 𝑑𝑎𝑑 from the damaged area, the platelets are attracted towards the damaged wall by 

an adhesive force given by eq. (6). The platelets adhering to the wall are then activated and attract 

other platelets which are within a distance of 𝑑𝑎𝑔  from them. This attractive force is called an 

aggregation force which is given by eq. (7). The aggregation force takes the same form as that of the 

adhesive force but has a different spring constant. 

 

𝑭𝑎𝑑 = {
𝐾𝑎𝑑(|𝒓𝑖𝑗| − 𝑟𝑜)𝒏𝑖𝑗    (|𝒓𝑖𝑗| ≤ 𝑑𝑎𝑑)

   0                                (|𝒓𝑖𝑗| > 𝑑𝑎𝑑)
 ; 𝑭𝑎𝑔 = {

𝐾𝑎𝑔(|𝒓𝑖𝑗| − 𝑟𝑜)𝒏𝑖𝑗    (|𝒓𝑖𝑗| ≤ 𝑑𝑎𝑔)

   0                                (|𝒓𝑖𝑗| > 𝑑𝑎𝑔)
  (6), (7)  

 

In the above equations  𝑭𝑎𝑑 , 𝑭𝑎𝑔  are the adhesive and aggregate forces and  𝐾𝑎𝑑 ,  𝐾𝑎𝑔  are the 

corresponding spring constants. The 𝒓𝑖𝑗 here is distance between activated platelet and vessel wall (or 

other non-activated platelets), 𝑟𝑜 is the original or natural length of the spring and  𝒏𝑖𝑗 is a unit vector 

linking platelet and damaged wall (or linking activated platelet and other surrounding platelets). These 

two forces are introduced in equation (2) for platelet particles which are influenced by adhesion and 

aggregation.   

4. Blood Flow Model 

In this work, the blood flow simulations were performed inside a straight blood vessel with flow 

Reynolds numbers 0.01, 0.02, and 0.03, which were defined at the inlet velocity. The total length of 
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the vessel (L) and the width between two walls (D) are respectively 130𝜇m  and  20𝜇m . The 

dimensions of the damaged wall (Li) is 30𝜇m (refer to the length of the wall damage) and the distance 

from the inlet to the damaged wall (Lo) is 40𝜇m (see Fig.1). The total number of particles used in the 

simulation was 5079. Four layers of boundary dummy particles were also used. The initial distance 

between particles is 1.0 𝜇m. The density 𝜌 and kinematic viscosity 𝑣 of the plasma and platelets, were 

set as 𝜌 = 1x103kg/m3 and 𝑣 = 1x10−6m2/s. The boundary conditions were; a uniform velocity at 

the inlet, zero pressure at the outlet and, non-slip condition at the walls enforced by dummy boundary 

particles. The amount of the platelet particles used is approximately 8.8% of the plasma to resemble 

normal physiological condition. The time step was set to 5x10−7s to ensure the stability of numerical 

integration scheme. In the reported numerical simulations, the spring constants 𝐾𝑎𝑑 and the  𝐾𝑎𝑔 are 

9.0x109 𝑁/m  and 4.5x109 𝑁/𝑚 respectively, while 𝑑𝑎𝑑= 3.0μm = 𝑑𝑎𝑔, and 𝑟𝑜 = 2.0μm. 

 

5. Results 

The purpose of this study is to demonstrate the formation of thrombus and to investigate the 

applicability of SPH in modelling such process. The corrected SPH is used to improve  the accuracy 

[5] of the simulation. Normally, a thrombus is formed by adhesion and aggregation of platelets which 

are transported by the blood flow in different geometries of arteries or vessels, where the growth rate 

of thrombus formation varies with the stenosis and the flow rate of blood. Figure 1 illustrates the 

formation of thrombus at two different stages of the flow. In these figures, for clarity, plasma and 

platelet particles are shown by two different the plasma and platelets are denoted by light and the dark 

grey respectively. The platelets are activated when they are within 𝑑𝑎𝑑 distance from the damaged 

region and form a primary thrombus. During the course of time, a primary thrombus is developed to 

cover the whole damage area by forming several layers of platelets. When thrombus grows to a 

certain volume, part of the thrombus is separated and transported downstream by the blood flow. 

Figures 1 and 2 depict the growth of thrombus at different times for Reynolds numbers 0.01 and 0.03 

of the flow. From the figures below, various stages of thrombus growth on the damaged area of the 

wall are clearly evident. It can be noted from Fig. 1(b) and 2(b) that, part of the thrombus is separated 

from primary thrombus once the primary thrombus grows to a substantial volume. It is interesting to 

observe that the volume of the primary thrombus and the time at which separation of the thrombus 

takes place are affected by the flow rate. From these figures it can be concluded that the higher the 

flow rate the thinner the thrombus growth would be. Further, it can be noted that with higher flow 

rates the separation of thrombus takes place quicker. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The platelet aggregation in the flow Re=0.01 at (a) t=0.2s; (b) t=0.6s 
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Figure 2: The platelet aggregation in the flow Re=0.03 at (a) t=0.2s; (b) t=0.6s 

 

6. Discussion  

The influence of changing hemodynamics on the platelet transport and thrombus formation was 

investigated using SPH. The formation and subsequent behaviour of thrombus at various blood flow 

rates were analysed by numerical simulations. It is evident from the results above that the blood flow 

rate plays a crucial role in the build-up and separation of thrombus. The results show that the growth 

rate of the thrombus, its thickness, and formation/separation vary according to the blood flow rate. 

These results are consistent with the observations reported in [6].  
 

7. Conclusions 

This work has focused on the simulation of the thrombogenesis process using the SPH method by 

considering platelet aggregation and the influence of blood flow rates on thrombus growth. In the 

numerical simulations, blood inside a straight vessel is discretised by particles which are assumed to 

have the characteristics of blood constituents, such as plasma and platelets. The potential of SPH 

method to simulate thrombogenisis process is demonstrated via numerical examples. This study also 

demonstrates the ability and accuracy of the SPH method in modelling blood flow with low Reynolds 

numbers.   
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ABSTRACT

  Understanding the total complexity of biomechanical/mechanical properties of the human skin and developing
an advance computational model (e.g. the Finite element skin models) that do not differ (or not so much differ!)
from experimental data would provide information which could be very useful for surgical training and practical
use (special in this project, the goal is to inform the development of optimized device which can be used for
effective and reproducible skin penetration in the clinical setting. This project will also provide clear definition
of underlying mechanisms of penetration and cutting and make it possible of generating a robust computational
and  physical  model  and  an  excellent  technique  for  measuring  skin  deformation  and  in  combination  with
advanced  computational/mechanical  methods  it  will  offer  many  possibilities  for  in vivo measurements).
  Difficulties and solutions related to the experience of developing this project beside the fundamental limitation
of  the  finite  element  method  for  solving  fracture  mechanics  problem,  were  dealing  with  the  complicated
multilayer structures and strong non-linearity in human skin which make the computational model difficult to
create and analyse. However, to overcome the difficulties with fracture mechanical part the Theoretical and
Computational Aspects of Cohesive Zone Modelling has been adapted to make it suitable for( Frictional and
Thermodynamically coupled Frictional) modelling of cutting and needle insertion by using a modified version
of Contact-Fracture formulation (a specific implementation of a mesh independence method for straightforward
controlling  of  (non-linear)  fracture  mechanical  processes  using  Mixed  Mode  Cohesive-Zone  method).  To
successfully deal  with the problem or difficulty with the modelling of  human skin for  fracture mechanical
analysis, because of its complexity, the problem has been subdivided into simpler problems and analysed. 
  

Keywords: Fracture Mechanics; Cohesive Zone Method; Cutting; Needle insertion; Contact Mechanics

1. Introduction 

    Various theoretical and numerical formulation of the Cutting and needle insertion have been widely
studied and applied for the different problem classes using  the (traditional) finite element methods.
  Using  a  combination  of  digital  image  correlation  and  advanced  Finite  element  modelling  and
explicitly taken into consideration the complexities of the algorithms due to the complexity of non-
linear mechanical behaviour of human skin, after a series of Experimental Measurements on human
skin and related computational modelling, S Evans and C A Holt [4] found evidence to suggest the
application of stochastic optimization algorithms (due to the reduction of the errors).       
   In other study,  in order to design optimised micro-needle device which completely depends on
understanding  of  human  skin  biomechanics  under  small  deformations,  after  doing  a  series  of
optimized laboratory developed tests and using much more precise model (considering the skin as a
multilayer composite) by applying multilayer finite element model (with the results of which show a
remarkable degree of success),  R.B. Grovesa,  S.A. Coulmanb, J.C.  Birchallb and S.L. Evans[2,3]
argue  that,  the  problem  with  the  precise  approach  and  optimum  development  of  numerical-
experimental procedure and modelling of very complex mechanical behaviour of human skin  would
require first the perfect understanding of dependency and in-dependency of parts or elements of skin
combined with mechanical description which can be used later for computational modelling.
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   At this point it is worth adding that, there were two main studies which aim to help us develop this
project.  The  first  one  was  the  study  by  Oliver  A.Shergold  and  Norman  A.  Fleck[1]  about  the
development  of  the  deep  penetration  of  a  soft  solid  by  a  flat-bottomed  and  by  a  sharp-tipped
cylindrical punch with application of  one term Ogden strain energy function and consideration  the
skin as an incompressible hyper-elastic isotropic solid. The second one was the study by Vincent
Hayward and Mohsen Mahvash[5] about the development of the haptic-rendering of cutting with the
clarification of the geometry and the mechanism of the interaction of the tools and the sample.
   Without being affected by the complex nature of soft solid penetration, it is worth noting that the
existing literature unfortunately provides little insight into Underlying Mechanisms of the penetration
and cutting. Generally they indicate the deep penetration involves deformation and cracks and in most
case without taking the existence of (sliding) friction into account. Therefore, this Project goals keep
the  focus  on  what  is  most  important;  namely  mathematical  and  physical  clarification  of  the
mechanisms  of  the  penetration  and  cutting  processes  following  the  related  algorithms  and
computational implementation of the theory.

2. Methodology

   In  order  to  process  the  development  of  this  project,  the  first  step  was  the  classification  of
computational  and  mechanical-mathematical  problems  related  to  modelling  which  were  clearly
separated into those with the implementation of the clarified underlying theory and those problems
with  optimization  using  advanced  computational  and  mechanical  optimization  algorithms  and
methods. Then the accuracy of the implemented algorithms has been practically and experimentally
verified.

Figure 1: Geometrical description of cutting and needle insertion
   
   Following Equation represents the underlying mathematical concepts(total energy functional-energy
conservation law): 
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 (1)

  The algorithm  proceed with  the  adaptation of  the  definition and the algorithm of  the  modified
contact[additionally  thermodynamically  coupled  friction  concept](in  the  previous  study has  been
practically  and  analytically  verified),  optimized  with  inequality  constraints:  the  Kuhn-Tucker
conditions  which  enforces  the  contact  constrains  within  a  strong  Mixed  Mode  Cohesive  Law
formulation by clearly taking the place of the classical contact constrains formulation and in the case
of  the  physical  requirement  of  impenetrability  and  compressive  interaction  between  two  bodies,
enforces the classical contact constrains.

               Figure 2: Definition of  the Modified Contact combined with Classical Contact Mechanics
 

     After applying this definition to the finite element discretisation of global variation equation(1),
summarized, we obtain a non-linear ordinary differential equation (the Discrete Momentum Balance
equation) expressed as (by using the residual vector concept and  appropriated boundary conditions): 

(2)

Where commonly,                                                                                       . ...
   Then the  numerical implementation of the explained theories has been performed in the open
source  code  FEBio  (Non-linear  finite  element  solver  for  biomechanical  applications
http://febio.org/febio/) by the modification of the existing contact algorithm.

3. Computational Model/Result/Discussion

     Based on the collected experimental data[cutting test on silicon rubber type material (E=0.77 MPa,
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 v=0.48) by using Zwick universal testing machine] and practicing the advantage of  FEBio package
(PreView, PostView, FEBio) the computational model has been created and analysed. Beside issues
related to computational model,  an interesting issue had been examined was the sensitivity of the
experimental result to the acceleration and velocity of the cutting tool during testing would have a
direct effect on the under-resolving some local details.

Figure 3: Computational versus Experimental results

     However, comparison Computational with Experimental results reveals that using the modified
contact algorithm in such a way can significantly increase the chances of success and will contribute
to the achievement of desired results.

4. Conclusions

   In this study it has been shown that the development of  computation model, in this way, by using
the Modified Contact fulfils the strong condition of the cohesive zone law and additionally supports
the physical  ideas and mathematical  structures of the Classical  Contact,  allowing us a  significant
degree of flexibility and success in the deployment of robust models for engineering analysis.
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ABSTRACT

The expectant mother undergoes many physiological changes over the course of pregnancy, many of which affect
the cardiovascular system. An existing closed loop 1D cardiovascular network model has been modified, which
includes the main systemic, pulmonary and cerebral arteries and veins. The enhanced trapezoidal rule method
(ETM) is used to solved the 1D blood flow and lumped parameter system. Lagrange multipliers are use to constrain
conservation of mass and conservation of total pressure at vessel junctions. The method is implicit and naturally
incorporates coupling between 1D vessels and lumped models. The ETM has been compared with benchmark
problems and results show excellent agreement with commonly used schemes. The aim of this research is to develop
a cardiovascular model which describes various changes seen during pregnancy. A fully closed loop cardiovascular
network is being developed which uses; a five element Windkessel model to connect arteries and veins; and 0D
lumped models to describe the heart and valves.

Key Words: Implicit Solver; 1D Blood Flow; Closed-Loop System; Cardiovascular Network; Pregnancy

1. Introduction
During pregnancy the expectant mothers undergoes many physiological changes. The cardiovascular
system needs to adapt to allow up to an additional 50% of maternal blood volume, and, increased stroke
volume and heart rate. However, even with these effects it is common that the maternal blood pressure
actually decreases. This is partly caused by the vascular resistance decreasing by around 20%, and, a
number of maternal blood vessels increase in diameter, particularly those close to the womb, such as the
ovarian and uterine arteries. This increase in blood volume also leads to lower blood viscosity. Moreover,
as the foetus develops, external pressure on the maternal blood vessels will increase, particularly in the
abdominal area.

1D blood flowmodels have been often used to study wave propagating in arteries, and have been extended
to veins. Most so called closed loop models use lumped parameter models for the pulmonary circulation
such as [3] rather than treating them as 1D vessels. Mynard and Smolich [4] have recently developed a
fully closed loop 1D cardiovascular network which include 1D vessels in systemic arteries and veins and
pulmonary arteries and veins, together with a heart model.

An improved version of the simplified trapezoidal rule method (STM) [2] has been developed for 1D
blood flow which allows intuitive coupling of 1D vessels and lumped parameter models, such as valves,
the heart and vascular beds. The method is applied to benchmark problems from [1] and compared with
the results therein. The aim of this research is to develop a cardiovascular model which investigates the
mechanisms involved during pregnancy.
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2. Methodology
The system of equations that represent the linearised 1D blood flow are the conservation of mass and
conservation of momentum

Cn
A

∂P
∂t
+
∂Qn+1

∂x
= 0, (1)

ρ

An

∂Q
∂t
+

ρ

An

*.,
∂Q2

A

∂x
+/-
n

+
∂Pn+1

∂x
+

(
8µπQ

A2

)n
= 0, (2)

where CA is the compliance; P and Q is the average pressure and average flow rate in the cross-section
respectively; t is the time; A is the cross-sectional area; ρ is the density of blood; and µ is the blood
viscosity. The system is closed by the constitutive law linking pressure and area P(A).

The vascular beds are treated as lumped models using five element Windkessel models shown in figure
1(a), such as in [4, 5]. Themodel contains the characteristic impedance of an artery Zart ; the characteristic
impedance of a vein Zven; a vascular bed resistance Rp and the arterial and venous compliances Cart

and Cven respectively.

(a) Five element Windkessel model [5]
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(b) Valve opening coefficient ζ for different values of ∆P

Figure 1: Peripheral circulation model and valve opening relationship with pressure difference across valve

The Windkessel model is treated by considering the following two noded resistance and compliance
elements, which are coupled together by sharing a pressure node.

(P1 − P2)
1
R
= q1 = −q2, C

(
∂P2
∂t
− ∂P3

∂t

)
= q3 = −q4. (3)

The heart and valve models are similar to those used in [5], which had been originally developed in
[4]. The heart chambers are described using elastance curves Ech built from two Hill functions. These
elastance curves are used to construct the native Enat and septal Esept elastances. The pressure in a heart
chamber is determined from

Pch = Enat
(
Vch − V0,ch

) [
1 − Ks,chQch

]
+

Enat

Esept
P∗, (4)

where Vch is the volume of the chamber; V0,ch is the residual volume; Ks,ch is a constant; Qch and Pch

is the flow rate and pressure in the heart chamber respectively; and P∗ is the pressure in the contralateral
chamber.

The valve model uses an opening coefficient 0 < ζ < 1 where

∂ζ

∂t
= Ko (1 − ζ )∆P,

∂ζ

∂t
= Kc (ζ )∆P. (5)
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(c) RMSE of Pressure in various vessels
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(d) RMSE of Flow Rate in various vessels

Figure 2: Pressure and flow rate waveforms and error comparison between ETM, STM and Averaged solution of
methods from [1]

The relationship of this coefficient for varied pressure differences across the valves is shown in figure 1(b).
This coefficient is used to determine an effective area, which, in turn is used to calculate the Bernoulli
resistance B and inductance L. These are used to updated the flow rates using

∆P = BQ |Q | + L
∂Q
∂t
. (6)

The implicit solver used is the enhanced trapezoidal method (ETM), which is a modified version of the
simplified trapezoidal rule method (STM) [2]. The method relies on the ability to write the governing
elemental equations in the form

FeP
n+1
e + Gc

eQ
c,n+1
e = hn

e . (7)
The method uses second order backward differences in time and the trapezoidal rule in space.
At vessel junctions the conservation of mass (8) is satisfied via the formulation, and, hence only conser-
vation of total pressures (9) are held as system constraints. The constraints are held in place using using
Lagrange multipliers. For example from a parent vessel (p) to N daughter vessels (di), constraint (9) will
need to be satisfied, and hence N Lagrange multipliers will be needed.

g1 = Apup −
N∑

i=1
A(i)
d

u(i)
d
= Qp −Qd1 −Qd2 = 0, (8)

gi+1 =
ρ

2
Q2

p

A2
p

+ Pp − ρ

2
Q2

di

A2
di

− Pdi = 0, i = 1, 2, . . . , N . (9)

The ETM scheme has been compared with benchmark problems from [1], and results are in agreement
with other commonly used numerical methods.
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3. Results
The enhanced trapezoidal rule method (ETM) has be applied to a cardiovascular network containing
56 one-dimensional vessels terminating in a three element Windkessel model, given in the benchmark
paper [1]. For a time step of ∆t = 0.5ms and maximum element size of ∆x = 0.5mm the method gives
expected results. Figure 2(a) shows the pressure in the right anterior tibial artery for the last cardiac cycle.
The flow rate in the right anterior tibial artery is shown in 2(b). The root-mean-square error (RMSE)
of pressure and flow rate waveforms for vessels which are monitored are shown in figures 2(c) and 2(d)
respectively. The scheme was implemented in MATLAB Student R2013a (The MathWorks, Inc., Natick,
MA, USA) on an Intel Core i5-3337U 1.8GHz. The code ran for 20 seconds per cardiac cycle and needed
8 cardiac cycles to converge to the desired tolerance.

4. Conclusions and Future Work
A 1D closed loop model using the ETM scheme is presented as an improvement to the STM [2].
The scheme has been compared with benchmark problems and gives excellent agreement with other
commonly used schemes. Root mean square errors (RMSE) of the STMmethod vary up to 6.3% for flow
rates and 2.3% for pressures. The new ETM method shows errors (whilst using the same time step and
element size as the STM), that are less than 0.5% for flow rates and 0.25% for pressures.

The ETM scheme is being applied to amodified version of the model by [4], which is a closed loop system
consisting of 396 1D vessels. The closed loop model is to be the basis for future research which involves
investigating changes in the cardiovascular system during pregnancy. This will include the addition of
ovarian and uterine arteries/veins, which increase significantly in diameter. The effects of a growing
foetus will also investigated. Experimental data will be provided in order to aid the development and fine
tuning of the model.
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ABSTRACT

The Material Point Method (MPM) is a method that allows solid mechanics problems with large deformation and
non-linearity to be modelled using particles at which state variables are stored and tracked. Calculations are then
carried out on a regular background grid to which state variables are mapped from the particles. There have been a
selection of extensions to theMPM, for example, a problem in the original method that arises when a material point
crosses the boundary between one background grid cell and another is addressed by the Generalised Interpolation
Material Point (GIMP) method [2]. An area yet to be studied in as much depth inMPM is that conventional analysis
techniques constructed in terms of stress and strain are unable to resolve structural instabilities such as necking
or shear banding. This is due to the fact that they do not contain any measure of the length of the microstructure
of the material analysed such as molecule size of grain structure. Gradient elasticity theories provide extensions
of the classical equations of elasticity with additional higher-order terms [3]. This use of length scales makes it
possible to model finite thickness shear bands that is not possible with traditional methods. Much work has been
done on including the effect of microstructure on a linear elastic solid and has previously been combined with the
Finite Element Method and with the Particle In Cell Method. In this work the MPM will be developed to include
gradient effects.

Key Words: Material Point Method; Gradient Elasticity

1. The Material Point Method
The Material Point Method (MPM) was first developed by Sulsky et al. [1] as an extension for solid
mechanics of the Particle in Cell (PIC) method used in fluid dynamics. The MPM can be referred to as a
meshfree method as although a background grid of connected nodes is required to perform calculations,
material properties are carried by a series of particles which are free to move independently of each other.
In the MPM, material points, known as particles, store state variables and move through a background
grid or mesh which can be changed or reset following each time step or load increment. This can be seen
in Figure 1 where a material has been deformed and the mesh has been reset with particles in updated
positions.

Initially a material domain is split into a number of elements similar to the Finite Element Method
(FEM). Each of these elements are then populated with a number of material points, with each material
point being assigned a weight based on the volume of material that the particle represents. In addition to
the mesh covering the material’s initial position, the mesh must extend to where the material is expected
to deform as the particles move through the mesh during deformation.

In each element containing particles, the state variables must be mapped from the particles to the grid
nodes. This mapping process is carried out within each element using shape functions similar to those
used in the FEM. For instance the external force at a grid node, { f extg }, (shown in 2D) given by

{ f extg } =
np∑

i=1
{N (ξi, ηi)} f extpi

(1)
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Figure 1: Material Point Method. Initial position of particles (a), deformed mesh and particles (b) and reset mesh
with updated particles (c).

where f extp is the particle external force, {N (ξi, ηi)} are the nodal shape functions for the element
containing the particle with local coordinates ξ and η and np refers to the number of material points in
the grid element.

To be able to map to the correct grid nodes it is necessary to know in which element each material point
located at a point in time. Although trivial initially, after particles have moved this problem can become
more complex, especially if the mesh is not uniform. To simplify this process it is common to reset the
background mesh to a uniform grid after each load step.

The stiffness of each element is determined from the contributions from each of the particles currently
inside. A global stiffness matrix is assembled and the grid node displacements determined in a similar
manner to FEM. At the end of a load step the grid node displacements {dg} are then mapped back to
particles to get particle displacements for that loadstep {dp} through

{dp} =
ng∑

i=1
Ni {dgi }, (2)

where ng is the number of element nodes. The particle positions are then updated. The grid node
displacements are not used to update the position of nodes in the mesh; the original undeformed mesh is
used. An important aspect that should be noted is that even for linear MPM the simulation is done over
multiple load steps, that is the MPM is an incrementally linear method.

2. Overview of gradient elasticity
Gradient elasticity theories are an extension of classical elasticity equations to account for microstructure
of a material with extra higher order derivatives, the term gradient elasticity comes from higher order
terms being proportional to the laplacian of lower order terms. An overview introducing gradient elasticity
can be found in [3] by Askes and Aifantis.

Theories relating to enriching elasticity equations by capturing effects of microstructure using higher
order gradients can be seen as far back as the 19th century. Theories were based on modelling particular
physical phenomenon rather than mathematical completeness. More interest in the area developed in the
1960s when many studies began to extend this into elaborate full gradient theories, a landmark paper
being Mindlin [5]. In modern times there has been another shift of interest towards simplified theories.
This simplification allows for easier implementation with the popular FEM an example of this is the
Ru-Aifantis theorem [6].

The majority of the gradient elasticity publications in the literature show how it can be used to eliminate
strains singularities from dislocation lines and crack tips. However one of the current problems is the
perceived drawback of identifying coefficients needed for implementing the method. It is clear that these
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are somehow connected to the microstructure of a material however it is not clear what physically they
represent. To be able to apply gradient elasticity to MPM it was necessary to choose a suitable method
which should allow variables to be stored only at material points and not require any storage on the
background grid. Due to the particles in the MPM being used as integration points the chosen method
should not be too sensitive to slight errors in integration.
Mindilin’s Theory of elasticity with microstructure [5] allows the deformation energy density U to be
expressed as

U =
1
2

Ci jklεi jεkl+
1
2

Bi jklγi jγkl+
1
2

Ai jklmnκi jk κlmn+Di jklmγi j κklm+Fi jklmκi jkεlm+Gi jklγi jεkl (3)

where the macroscopic strain εi j is defined from macroscopic displacements ui, εi j = 1
2 (u j,i + ui, j ).

The microscopic deformation ψi j is used to calculate the micro-deformation gradient, κi jk = ψ jk,i, and
the relative deformation γi j = u j,i − ψi j . However this is quite complicated, the constitutive tensors
Ci jkl, Bi jkl, Ai jklmn, Di jklm, Fi jklm and Gi jkl contain 1764 coefficients of which 903 are independent.
It can shown that this can be reduced to 18 for isotropic materials however this is still an unworkably
large number. As such there have been numerous simplifications to the theory to allow practical use in
Engineering applications.
A simpler versionwas formulated byMindlin using different relationships betweenmacroscopic displace-
ment ui andmicroscopic deformation gradient κi jk . One example being that κi jk = ε jk,i = 1

2 (uk,i j+u j,ik ),
here the micro deformation coincides with the gradient of macro deformation.
Based on work from the 1980s on plasticity [4] an extension of linear elasticity which can be shown to
be a simplification of Mindlin theory using the Laplacian of the strain in the constitutive relationship.

σi j = Ci jkl (εkl − `2εkl,mm) (4)
where ` is a length scale parameter and Ci jkl is the classical constitutive tensor. Substituting this into the
standard equilibrium equation gives

Ci jkl (uk, jl − `2uk, jlmm) + bi = 0 (5)

In [6] Ru and Aifantis show that this approach can be implemented in two steps with an uncoupled
sequence of equations using an operator split.
To achieve this, first displacements uc

i are are used obeying classical elasticity,

Ci jkluc
k, jl + bi = 0, (6)

this is then followed
ug
k
− `2ug

k,mm
= uc

k, (7)

where ug
i are the gradient enriched displacements. This separation makes numerical solutions possible

where they were not before with Mindlin’s general theory. This split approach has the potential to be
a good method to use with the MPM. Although this method doesn’t remove all singularities at tips of
sharp cracks this is not a major goal of the current MPM code as we are more interested in being able to
model a shear band with a finite thickness.
In [7] this displacement based approach is compared with approaches where the displacements are
replaced with strains and stresses. It is shown that all singularities are removed when the gradient
enrichment is evaluated in terms of strains where this is not the case for the displacement approach. Both
of these approaches will be considered when developing the MPM.
The Ru and Aifantis approach has been implemented in FEM in 1D to test the method before applying
it to MPM. A bar with a young’s modulus in one half 5 times greater than the other half (as shown in
[7]), with original length of 10mm, is extended by 0.1mm. The axial strain is calculated using a classic
FEM approach and a displacement based Ru and Aifantis gradient approach (u-RA) with ` = 2mm. The
results of this can be seen in figure 2 with the gradient approach eliminating the jump in strain.
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Figure 2: Strain along an extended bar using the FEM with and without gradient elasticity.

3. Current development and intended progress
As the operator split technique outlined above can be added as a post processing step it is possible to
directly apply this to the MPM however due to the multiple steps in MPM it needs to be thought about
whether gradient effects should be applied at the end of each loadstep or just at the end of the whole
simulation. A further related question is will gradient dependent deformations map between grid and
material points or are they only related to the grid? This work so far outlines the very basics of applying
gradient effects to the MPM, for more interesting geomechanics problems it is likely that it will be
necessary to implement plasticity and look at gradient plasticity methods.
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ABSTRACT

The Material Point Method (MPM) is a numerical boundary value problem (BVP) solver developed from particle-
in-cell (PIC) methods that discretises the continuum into a set of material points. Information at these material
points is mapped to a background Eulerian grid which is used to solve the governing equations. Once solved
information is updated at the material points and these points are convected through the grid. The background grid
is then reset, allowing the method to easily handle problems involving large deformations without mesh distortion.
However, imposition of essential boundary conditions in the (MPM) is challenging when the physical domain does
not conform to the background grid. In this research, an implicit boundary method (IBM), based on the work
of Kumar et al. [1], is proposed to ensure that essential boundary conditions are satisfied in elastostatic MPM
problems.

Key Words: material point method; particle method; implicit boundary method; boundary conditions

1. Introduction
A new modelling framework is under development at Durham University for problems associated with
the ploughing of the seabed, an activity required for installation of offshore energy infrastructure (e.g.
wind, tidal and marine) [1]. EPSRC have funded this research project (grant refs EP/M000397/1 and
EP/M000362/1) with experimental work at Dundee University to validate the computational models
developed at Durham [2]. The computational framework is based around the Material Point Method,
first proposed in the 1990s [3], chosen because it is capable of modelling problems in which very large
deformations occur, without the need for expensive remeshing and mapping of history variables.

The MPM for solid mechanics is described in detail in a number of references, usually in an explicit
format (e.g. see [4]) although it is also possible to work with a fully implicit formulation (e.g. [5, 6]).
Rather than present a lengthy derivation of the method here, the MPM is explained by reference to Figure
1. A problem domain is discretised as a set of distributed material points. In each load step, information
carried at the points is interpolated to a surrounding grid of finite elements, larger than the problem
domain itself. The BVP is solved on this grid using standard finite elements and the solution mapped
back to the material points, which are translated into their new positions. The grid is then discarded and
a new one provided for the next load step. In this way (a mixture of Lagrangian and Eulerian approaches)
the issue of mesh entanglement is entirely avoided, while the individual pieces of the formulation use
standard and robust finite element technology.

2. The Implicit Boundary Method
A key issue in the use of the MPM, and one not covered adequately in the existing literature, is the
imposition of essential boundary conditions. Only if the background grid edge is coincident with the
location of an essential boundary condition is a trivial solution to this problem possible and in themajority
of modelling situations this is not possible to ensure. Burla and Kumar [7] addressed a similar problem
with standard finite elements and developed a method for imposing essential boundary conditions away
from finite element edges, based on ideas proposed over 50 years ago [8], using a trial function for
displacement u defined as

u = Dug + ua, (1)
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Figure 1: Steps in the Material Point Method

where D are Dirichlet functions, the components of which vanish on essential boundaries leading to the
imposition of essential boundary conditions specified by ua, which could, of course, be homogeneous.
The Dirichlet functions operate on the grid variable ug which is defined in standard ways using finite
element or other approaches. The same Dirichlet functions are used to construct test functions for
substitution into a weak form of the PDE to be solved. The implicit boundary method for finite elements
described in Burla and Kumar [7] is restricted to boundaries parallel to one or other of the coordinate
axes. As part of the current project we have extended the implicit boundary method both to the MPM
and also for the case of inclined boundaries and a few details and validation are presented here with a
detailed description to appear in a forthcoming paper.

Figure 2 shows a straight inclined boundary in a 2D frame. For this boundary, a suitable expression for
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Figure 2: An implicit, inclined essential boundary showing the band width δ.

the Dirichlet function is
D =

2n
δ
− n2

δ2 , (2)

where δ defines the width of a narrow band adjacent to the boundary over which the Dirichlet function
varies from zero to unity. In the implicit boundary MPM, the weak form leads to stiffness matrices
associated with grid elements, which can be decomposed as follows

Ke = K1 + (K2 + KT
2 ) + K3. (3)

K1 is the standard local stiffness matrix of the part of the element within the solid region, while K2
and K3 are present only if an essential boundary crosses the element. These matrices are obtained
from integration of matrix triple products similar to standard element stiffness matrices but with B
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matrices containing products of shape functions, Dirichlet functions and derivatives of both, and with
transformations to fit inclined boundaries. Other approaches to dealing with this problem, e.g. non
matching meshes and embedded boundary problems [9, 10], often requires the use of more complex
techniques such as Lagrange multipliers, penalty methods or variations which do not have the advantage
of being close to simple finite element formulations as here.

3. Validation
To demonstrate the implementation of this implicit boundarymethod in theMPM, results are presented for
a very simplemodel problem.A 2Dplane strain square domain of linear elasticmaterial (100 units square)
is subjected to uniaxial compression orthogonal to one side with “roller" boundary conditions on the
other three sides. This problemwas tested for various inclinations of the square domain while maintaining
a structured background grid (Figures 3, 6 and 9). The problem domain was initially discretized by a
set of material points each of which centred on a 10 unit square domain. Any void region was then
truncated from material point domains lying on the border of the solid continua, and the associated
material point was repositioned to the new centroid of the domain. The initial volume associated with
every material point was then determined from the area of its domain. The background grid on which the
elastic problem was solved consisted of a regular grid of bilinear quadrilateral elements (each 10 units
square). The relative displacement and stress errors were computed and are plotted in Figures 4 & 5 (
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Poisson's Ratio 0.3

u=1

x

y

Figure 3: 90◦ Model Figure 4: Relative Error in
Displacement - 90◦ Model

Figure 5: Relative Error in σyy -
90◦ Model

90◦ model), 7 & 8 (45◦ model), 10 & 11 (30◦ model) respectively. 5.55e-5 and 8.25e-6 relative errors in
displacements and stress were obtained in the 90◦ model when compared to the analytical solution. The
relative error in displacements and stresses reduced to 1.06e-3 and 9.9e-4 in the 45◦ model, and 3.14e-3
and 4.48e-3 in the 30◦ model respectively.
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Poisson's Ratio 0.3

u=1

x

y

Figure 6: 45◦ Model Figure 7: Relative Error in
Displacement - 45◦ Model

Figure 8: Relative Error in σ1 -
45◦ Model

4. Conclusions
A method for imposing essential boundary conditions in the MPM without adjusting the grid or layout
of material points is demonstrated in this paper. It takes a simple idea previously applied to coordinate-
parallel boundaries crossing finite elements, and further develops it tomodel inclined essential boundaries
(e.g. rollers) within an exciting new numerical methods. Ongoing work will take this into 3D.
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ABSTRACT 

         This paper studies the buckling behaviour of anisotropic composite laminates under combined in-plane 

compression and shear loading using the exact strip analysis software VICONOPT to calculate the critical 

buckling load of a range of plates. Changes in critical buckling load are studied for both flat and stiffened 

composite plates and the results presented in the form of interaction curves. Different lay-ups are studied to 

illustrate the effect of different combinations of anisotropy and shear load direction on the critical load factor. 

Results are validated using the finite element software ABAQUS/Standard. 

Key words: Buckling, Anisotropic, Laminates, Combined loading, VICONOPT 

 

1. INTRODUCTION 

          Composite plates and panels are used in aerospace, marine structures, bridges and other structural 

applications, where they offer mass reductions over conventional materials, fulfilling a key commercial 

objective. When used for example in aircraft fuselage and wings, these structures are subject to in-plane 

compression, shear or a combination of both making them sensitive to buckling failure. The buckling of 

composite plates under combined loading can be described by buckling interaction curves. Many theoretical and 

experimental studies have investigated this buckling failure. Stowell and Schwartz [1] studied the behaviour of 

an infinitely flat plate under combined shear and direct stress, whilst Selyugin [2] studied flexural anisotropic 

plates under combined loading using a special Galerkin-type solution and compared it with a high accuracy 

numerical solution, for cases of combined in plane compression, shear and in plane bending.  

          In the case of an anisotropic composite laminate under pure compression the nodal lines (i.e. lines of zero 

out of plane displacement) are skewed. In the presence of shear loading the skewing of these nodal lines can be 

increased or decreased according to the shear load direction, with consequent decreases or increases in the 

critical buckling load. This study explores this effect using the exact strip analysis software VICONOPT [3] 

which has the capacity to carry out buckling, post buckling and vibration analysis and optimum design for 

prismatic composite plate assemblies to determine critical buckling loads for composite plates under different 

combinations of loads. Examples for flat plates and stiffened panels with different aspect ratios and stiffener 

sizes are studied, with results validated using the finite element software ABAQUS/Standard [4]. Composites 

are designed to minimize panel mass subject to critical buckling constraints involving specified loading 

combinations. 

 

2. CASE STUDY 

          Results are first presented for two rectangular composite flat plates under combined in plane compression 

(Nx) and shear (Nxy). The plates are made of T300-carbon/5208 epoxy tape material, of thickness 0.125 mm with 

Young’s moduli E1=181 GPa, E2= 10.3 GPa, shear modulus G12=7.17 GPa and Poisson’s ratio 12= 0.28. Plates 

1 and 2 have the symmetric layups [45,-45, 45, 90, 45,-45, 45, 0]s and [45, 45, -45, -45, 45, 45, -45, -45]s, 

respectively. Both plates have length a, width b=500 mm and total thickness 2 mm. Results are then presented 

for two stiffened panels made from the same material, each of length a and width b=400mm, and having four 

blade stiffeners of height 25mm, 100mm from each other and 50mm from the panel edges. In both panels the 

skin has the symmetric layup [45, -45, 0, 90]s. The stiffeners also have this layup in panel 1, while in panel 2 

they have the thicker layup [45, -45, 0, 90, 45, -45]s. Each of the plates and panels has simply supported edges. 
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 The results for flat plates and stiffened panels are denoted by FL i-j and ST i-j, respectively, where i (=1,2) 

indicates the different layups defined in this paragraph, and j (=1,2,3) indicates one of three aspect ratios 

considered: (1) a/b=1, (2) a/b=1.5, (3) a/b=2. 

  

3. SOFTWARE USED  

          VICONOPT [3] incorporates the earlier programs VIPASA [5] and VICON [6]. VIPASA analysis uses 

exact flat plate theory and an algorithm that guarantees convergence on critical buckling loads or natural 

frequencies [7]. The buckling and vibration modes are assumed to vary sinusoidally in the longitudinal 

direction. However, when shear or anisotropy is present the nodal lines are skewed and the solution becomes 

excessively conservative because it cannot satisfy simply supported end conditions [5]. VICON analysis 

overcomes this limitation by coupling VIPASA responses using Lagrangian multipliers to satisfy point 

constraints representing the required end conditions. VICON and VIPASA results are compared with finite 

element results from ABAQUS/Standard 6.12 software. The flat plates and panels with aspect ratio a/b=1 were 

modelled, respectively, using 400 and 1280 shell elements of type S4R5 [2]. 

 

5. DISCUSSION OF NUMERICAL RESULTS 

          Fig. 1 shows interaction curves for plate FL 2-3. The VICON results show that under pure compression 

the buckling load Nx is 9.64 kN/m, which increases to 9.99 (10.00) kN/m when accompanied by a positive shear 

load Nxy of 2.00 (4.00) kN/m. These increases occur because of the anti-clockwise skewing of the mode due to 

anisotropy is negated by the clockwise skewing due to the shear load, so that eventually the nodal lines become 

normal to the longitudinal edges of the plate and then skew in the opposite direction. It can be seen that there is 

good agreement between the critical buckling loads obtained by VICONOPT and ABAQUS, and it was noted 

that there is also good agreement between the mode shapes with the ABAQUS results showing the same pattern. 

Both programs show that the composite laminate can carry greater loads when the shear load acts to reduce the 

skewing which then reduce as the skewing occurs in the other direction. Shear loading in the same direction of 

the skewing also cause a reduction in buckling load  

The results for stiffened panel ST 1-1 are shown in Fig. 2. Although the buckling mode is different from that of 

the flat plates, the same effect is observed. The VICON compressive buckling load Nx increases from 33.5 kN/m 

to 34.3 (34.4) kN/m when accompanied by a positive shear load Nxy of 4.29 (8.60) kN/m, and similar results 

were obtained using ABAQUS. 

Figs. 3 and 4 summarise the interactions for all the plates and panels. In all cases the addition of a small positive 

shear load (which in this case acts to reduce the skewing) increases the compressive buckling load. Buckling 

load factors under combined compression and positive shear exceed those under combined compression and 

negative shear by 2%-8% for flat plates and by 3%-12% for stiffened panels. Fig. 5 illustrates that the maximum 

compression can be carried when there is no skewing in the buckling mode. 

 

6. CONCLUSIONS  

 The critical compressive buckling load increases slightly and then decreases for both flat composite 

plates and stiffened composite panels when the skewing of the buckling mode due to an applied shear 

load acts in the opposite direction to the skewing due to anisotropy.  

 Conversely the compressive buckling load decreases significantly when the shear and anisotropy 

effects act in the same direction to increase the skew in the buckling mode.      

 Critical buckling loads under combined compression and positive shear are significantly higher than 

those under combined compression and negative shear. 

 The increment in critical buckling load depends on the layup of the composite laminate, whose 

anisotropy can be optimised to carry a particular combination of compression and shear. 
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Fig. 1. Interaction curve for flat plate FL 2-3. 

 

 

Fig. 2. Interaction curve for stiffened panel ST 1-1. 

 

 

Fig. 3. Variation of ABAQUS buckling load factor with interaction ratio for all flat plates.  
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Fig. 4. Variation of ABAQUS buckling load factor with interaction ratio for all stiffened panels.  

 

 

         

 (a) Nxy/Nx = 0             (b) Nxy/Nx = 0.125           (c) Nxy/Nx = 0.375        (d) Nxy/Nx = -0.125   

 

Fig. 5. VICON mode shapes of stiffened panel ST 2-1 for four different interaction ratios.  
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ABSTRACT

Multiple crack simulation is of great importance in failure analysis since fracture in brittle materials in practice
usually comprises multiple cracks. Traditional numerical methods such as the extended finite element and the
element free Galerkin methods meet dilemmas when solving this kind of problem, as the computational expense
increases with the number of level set functions used for crack descriptions. The cracking particle method (CPM)
developed by Rabczuk, by which crack patterns are simplified and discretized through a set of cracking segments,
has shown to be a promising alternative. The branched crack problem, as a representative of multiple crack
problems, is studied here to demonstrate the advantages of the CPM. Cracking particles can be split multiply due
to the use of bilinear cracking lines and then the discontinuity at the intersection is fulfilled easily. An adaptivity
strategy is adopted to control the size of cracking segments and the number of degrees of freedom. Stress intensity
factors at the crack tips are calculated and show good agreement with previous results.

Key Words: branched cracks; cracking particle method; meshfree; adaptivity

1. Introduction
Multiple-crack problems are common in natural brittle fracture, but are still challenging to model with
current numerical methods, since crack propagation is a highly non-linear phenomenon. The finite
element method (FEM) is the most common numerical method that has been tried on crack problems,
however in its basic form requires that a crack edge propagates along element edges, otherwise there will
be an overestimation of fracture energy [1]. The extended finite element method (XFEM) was proposed
primarily to model cracks without reference to mesh arrangements but via enrichments [2]. A major
issue, however, is that it requires an explicit description of crack surfaces which is usually through level
set functions and this process becomesmore complex with an increase in numbers of cracks [3]. Meshless
methods only require nodal data to discretise a problem domain and can avoid many problems associated
with element-based methods, such as mesh distortion and volumetric locking [4]. These methods have
also been applied to crack simulation, combined in some cases with the level set method [5], then leading
to the same issues with the XFEM as mentioned above. The numerical manifold method (NMM) has also
been tried for multiple crack problems by separating the problem domain into “mathematical covers" and
“physical covers", but it is still a bottleneck to generate these covers effectively [6]. The cracking particle
method (CPM) was proposed to approximate a 2D crack path by the use of nodes with discontinuous lines
representing crack paths [7, 8], a method in which it is relatively easy to update cracks through adding
or deleting cracking particles, which makes it a promising way to handle cracks with complex patterns.
In this work, the branched crack is studied as a representative of multiple-crack problems. A modified
CPM is presented in which cracking particles can be split multiply. Numerical results are provided to
demonstrate the performance of the proposed methodology.

2. Formulations
Consider a branched crack problem in two dimensions (2D) as shown in Fig. 1(a). The equilibrium
equation in the domain Ω is

∇ · σ = 0 in Ω (1)
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with boundary conditions
σ · n = t̄ on Γt , (2)
u = ū on Γu , (3)

where σ and u are the Cauchy stress tensor and displacement vector respectively, and body forces are
not considered. n is the unit normal to the domain Ω, t̄ and ū are traction and displacement constraints
on the boundary Γ with Γ = Γt

⋃
Γu.

Figure 1: Problem statement: (a) sketch; (b) initial nodes.

In this work, the Element Free Galerkin method is used where Eqns 1 to 3 are discretised into a weak
form and the essential boundary conditions are imposed with Lagrange multipliers. The approximate
displacement at location x in Ω, uh (x) is given by a linear combination of shape functions Φi (x) and
nodal displacements ui as

uh (x) =
n∑

i=1
Φi (x)ui = ΦTu , (4)

where i is the node index with coordinate xi and n is the number of nodes. The shape functions Φi (x)
are determined via a moving least squares (MLS) approximation and a quartic spline weight function is
used, more details can be found in [4].

3. Crack description
In the CPM, crack surfaces are described by a set of cracking particles with discontinuous lines cutting
the support. The discontinuity at cracks was firstly achieved through enrichments in the original CPM
paper [7] and it has been shown that these enrichments can be removed by splitting cracking particles
into two parts [8]. However, it is very hard to describe a branched crack in that way. Here a multiple split
strategy is presented which is much simpler than approaches using level set functions,e.g. in [3, 5].
A point D at the branch point with a circular support as in Fig. 2 is split into three nodes D1, D2 and D3
and the support of node D is cut by three crack branches. Point D1 belongs to crack AD and DB, Point
D2 belongs to crack DB and DC and Point D3 belongs to crack DC and DA. Nodes D1, D2 and D3 are
not connected to each other. The visibility method [4] is used to handle relationships among all nodes,
through which discontinuity at crack surfaces is achieved.

4. Adaptivity
An a posteriori adaptivity strategy, as found in [10], is employed here to handle the contradiction between
accuracy and calculating efficiency. Sound nodal arrangements with a high density of nodes around crack
surfaces and fewer nodes away from cracks can be set up automatically. An error estimator for each cell
(with subdomain Ωi) is based on the difference between the “projected” stress σ (to approximate the
unknown exact stresses [9]) and the calculated stress σh using the error energy norm

‖Ei ‖ =
{

1
2

∫

Ωi

(σp − σh)TD−1(σp − σh)dΩi

}1/2
, (5)
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Figure 2: Multiply split cracking particle: (a) original support; (b) supports after being split.

with the elastic constitutive matrix being

D = E
1 − ν2


1 ν 0
ν 1 0
0 0 (1 − ν)/2

 for plane stress . (6)

Cells with large errors are divided into four sub-cells by a quadtree structure and four sub-cells with
small errors are combined together to recover an original cell.

5. Numerical results
The dimensions of the branched crack problem in Fig. 1 are h = w = 50mm, θ = 45◦ and a = b = 25mm
with initial node arrangements in Fig. 1 (b). The material properties are Young’s modulus E = 200GPa
and the Poisson’s ratio ν = 0.3. A pair of uniform tensions are applied with σ = 200N/mm as shown
under plane stress conditions.

The adaptive steps of the branched crack problem are shown in Fig. 3. During this process, three groups
of nodes generate automatically around three crack tips, and the crack opening is achieved as in Fig. 3
(d). Global errors during the adaptive steps are shown in Fig. 4 (a) and the convergence rate achieved
using the adaptive refinement is shown to be higher than that using uniform refinement. From Fig. 4 (b,
c and d), it can be seen that calculated stress intensity factors around crack tips agree well with [3], and
the difference with [5] is reasonable since those results were calculated without enrichments.

Figure 3: Adaptive steps of branched crack problem: (a) step 1; (b) step 3; (c) step 5; (d) final deformation enlarged
by 100 times.

6. Conclusions
A new CPM is presented here which is able to handle multiple crack problems. A cracking particle
belonging to more than one crack is split multiply and then the discontinuity at crack surfaces can be
achieved through the visibility criterion, which is much simpler than through several groups of level set
functions. An adaptivity strategy is introduced into the CPM to improve efficiency. A branched crack
problem is studied here to demonstrate the performance of the new CPM and good agreement can be
obtained compared with previous results.
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Figure 4: Verification of results: (a) global error; (b) KI of node A; (c) KI of node B; (d) KII of node B.
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ABSTRACT 

A self-compacting and industrially competitive version of CARDIFRC mix II has been developed. In this paper 

we describe the mechanical, fracture and fatigue performance of this ultra-high performance fibre reinforced 

concrete (UHPFRC).  

 

Keywords: UHPC; Self-compacting; Bi-linear stress-crack opening relation; fatigue life; endurance limit.  

 

1. Introduction  

CARDIFRC is the trade name of two main groups of ultra-high performance fibre-reinforced concrete 

mixes – Mixes I and II – differing primarily in the maximum size of quartz sand used (0.6 mm in Mix 

I, and 2 mm in Mix II) [1,2].CARDIFRC Mix II has been converted to a self-compacting and 

industrially competitive ultra-high performance fibre-reinforced concrete (UHPFRC). Mix proportions 

are given in Table 1.  In this paper, full mechanical, fracture and fatigue characterisation (i.e. size-

independent fracture energy and the corresponding bi-linear stress-crack opening relationship, and 

endurance limit) of this UHPFRC is provided. 

 
Table 1. Mix constituents of the self-compacting UHPFRC version of  

CARDIFRC Mix II (kg/m3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Constituent    Dosage (kg/m3) 

 Cement 450.3 

Silica fume 169.5 

GGBS 258.0 

Quartz sand: 

9-300μm 

0.212-1 mm 

 

158.0 

318.9 

1-2 mm 639.7 

Water 141.8 

Superplasticizer (SP) 58.5 

Fibres: 30 mm Dramix (Vol. 2.5%) 195.0 

Water/cement 0.20 

Water/binder 0.16 

SP/water 0.41 

Slump flow spread (mm) 705 

t500 (s) 2.73 
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2. Mechanical properties 

Compression tests were carried out on cube specimens according to BS EN 12390-3 (2009), whereas 

split tensile tests were performed on cylindrical specimens according to BS EN 12390-6 (2009). In 

addition, the modulus of elasticity was measured on a cylindrical specimen according to BS 1881-121 

(1983) and the modulus of rupture of beam specimens was determined according to BS 1881-118 

(1983). Table 2 shows the mechanical properties of the UHPFRC, together with the coefficient of 

variation (CoV in %). 

 
Table 2. Mechanical properties of the self-compacting UHPFRC version of  

CARDIFRC Mix II 

 

 

 

3. Fracture properties  

The fracture performance is characterised in terms of size-independent fracture energy obtained by the 

boundary effect model and the corresponding bilinear stress-crack opening relationship obtained by 

using the non-linear hinge. For this, six prisms 100 x 100 x 500 mm were casted with the self-

compacting UHPFRC. After curing, three prisms were notched to a depth of 10 mm and the remaining 

three to a depth of 60 mm using a diamond saw (width approximately 2 mm). They were tested in three-

point bending over a loaded span of 400 mm. The test was controlled first by a feedback signal from a 

crack mouth opening displacement (CMOD) gauge until the gauge reached its limit (around 3.5 mm), 

where after the control switched to mid-point displacement control. The load-CMOD was recorded until 

the gauge reached its limit, but the load-mid-point displacement continued to be recorded until the 

displacement reached 30 mm. The load had still not dropped to zero.  The area under the load-deflection 

plot was therefore corrected to account for the unrecorded work-of-fracture using the procedure of 

Elices et al. [3]. The total work-of-fracture was divided by the projected fracture area (i.e. area of 

initially un-cracked ligament) of the notched specimen to calculate the specific fracture energy Gf (a/W) 

corresponding to a/W = 0.1 and 0.6. Finally, the size-independent specific fracture energy GF was 

determined using the appropriate relations of Hu and Wittmann [4] and the simplified boundary effect 

model of Abdalla and Karihaloo [5]. The values are reported in Table 3. The size-independent specific 

fracture energy is 36300 N/m compared to about 20000 N/m for the original Mix II measured in axial 

tension. 

 
Table 3. Mean size-dependent fracture energies for a/W = 0.1 and 0.6 and size-independent specific fracture 

energy of UHPFRC version of CARDIFRC Mix II (bi-linear model) 

 

Notch(mm) Mean Gf (N/m) al (mm) GF  (N/m) 

10 30190 
30.3 36300 

60 22600 

 

 

The unknown parameters of the bi-linear stress-crack opening diagram (the direct tensile strength, the 

critical crack opening and the co-ordinates of the knee in the bi-linear diagram) are identified in an 

inverse manner by minimizing the root mean square error between either the recorded and predicted 

load-CMOD or the load-deflection diagram at many values of the applied central load using the non-

linear hinge model of Olesen [6]. The results are shown in Figure 1. The parameters of the tension 

softening curves obtained using the non-linear hinge model correspond to the measured Gf (0.1) and Gf 

(0.6), but not to GF.                                                                                               

Compressive 

Strength (MPa) 

Split cylinder  

Strength (MPa) 

Modulus of Rupture 

(MPa) 

Modulus of 

Elasticity  (GPa) 

148.0 (4.5%) 18.5 (6.0%) 20.0 (0.7%) 45.2 (0.2%) 
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Abdalla and Karihaloo [7] proposed a simple method for the determination of the bi-linear softening 

diagram corresponding to the size-independent GF of concrete mix by scaling the average parameters 

of the tension softening diagrams corresponding to the size-dependent fracture energies Gf (0.1) and Gf 

(0.6). This scaling procedure was followed in this work, giving the tension-softening diagram also 

shown in Figure 1. 

 

 
Figure 1. Bi-linear stress-crack opening relationships corresponding to 𝑎/𝑊=0.6, 0.1 and GF 

 

 

4. Fatigue properties 

Fatigue test under tensile cyclic loading was conducted on un-notched three point bend beams. Tests 

were performed in the sinusoidal load ranges between 0.6 – 4.0 kN, 0.6- 4.5 kN, and 0.6 – 5.5 kN, 

corresponding to 9.69 - 64.62%, 9.69 - 72.70% and 9.69 - 88.85% of the static three-point flexural 

strength. This meant that the mean stress level on the specimens during cyclic loading increased with 

the increase in the upper load limit (Table 4). This has a marked effect on reducing the fatigue life. The 

cyclic load-central deflection traces of the specimens were recorded every minute, i.e. every 300 cycles. 

From these the change in compliance of the specimens could be calculated. It was found that the 

endurance limit of the UHPFRC is around 64% of its static three point flexural strength at a mean stress 

level of 37.1% of this strength (Figure 2). This corresponds to an endurance limit close to 80% of the 

static three point flexural strength at zero mean stress. 

 

Table 4. Increase in the mean stress level with increasing upper limit load 

 

Upper Stress 

limit (%) 

Mean Stress 

(MPa) 

64.62 8.18 

72.70 9.07 

88.85 10.85 

 

 

 

 

 

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

S
tr

es
s 

(M
P

a
)

Crack-opening (mm)

Stress-crack opening (a/W=0.1)

Stress-crack opening (a/W=0.6)

Stress-crack opening

corresponding to GF

131



 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Fatigue life against stress range (logarithmic scale) 

 

5. Conclusions 

1. A self-compacting UHPFRC based on CARDIFRC Mix II was developed and fully characterised 

from both the mechanical and fracture points of view. As expected, the resulting UHPFRC has inferior 

compressive, tensile and flexural strengths than the original CARDIFRC Mix II. This is due to the 

absence of thin small brass-coated steel fibres (4.5% by volume; 6 mm long) in the UHPFRC. The 

UHPFRC is however much tougher thanks to the use of a larger volume fraction (2.5% against 1.5%) 

of longer steel fibres (30 mm against 13 mm). 

2. An inverse approach based on the non-linear hinge model for crack growth from a pre-existing notch 

was used to identify the parameters of the bi-linear stress-crack opening relation of the UHPFRC.  

3. The endurance limit of the test material is around 64% of its static three point flexural strength (Figure 

2) at a mean stress level of 37.1% of this strength. This corresponds to an endurance limit close to 80% 

of the static three point flexural strength at zero mean stress. 
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ABSTRACT 

The nonlinear systems of equations resulting from the finite element modelling of quasi-brittle material are 

most-frequently solved using Newton-based incremental-iterative schemes. However, the poor convergence 

characteristics and frequent numerical breakdowns of those solutions schemes, when solving problems 

involving quasi-brittle materials, make the nonlinear finite element analysis of such materials a truly challenging 

undertaking. Recently, Alnaas and Jefferson [1] proposed an algorithm, named the smooth unloading-reloading 

(SUR) method, which circumvents these problems by employing a tangent matrix that is always positive 

definite but which is exact with respect to the nonlinear UR function. The present paper describes a further 

development of this method in which an acceleration technique is introduced into the solution algorithm. The 

performance of three alternative acceleration methods is reported in this paper. The main conclusion from the 

work is that all three acceleration methods result in a reduction in solution time for a range of problems.     

 

 

Keywords: Nonlinear FE analysis; quasi-brittle materials; damage, robustness, incremental-iterative 

  

1. Introduction  

Numerical difficulties often arise in the finite element simulation of quasi-brittle materials. Such 

problems are associated with material softening behaviour and the loss of positive definitiveness of 

the tangent stiffness matrix. These difficulties often manifest as breakdown of the nonlinear 

incremental-iterative solution process [2].  

As a response to these stability and convergence difficulties, researchers have developed solution 

algorithms that avoid multiple iterations. These methods include the ‘Sequentially Linear Approach’ 

(SLA), which was introduced by Rots [3] and improved later by others. The SLA method uses a ‘saw-

tooth’ function to replace the post-peak softening function. Another approach, which avoids using 

multiple iterations, is the implicit-explicit “IMPL-EX” approach of Oliver et al [4]. In the IMPL-EX 

method, a projected state variable (e.g. a damage parameter) is used to determine a predicted 

consistent tangent matrix that is exact for the current increment but for which a correction is made in 

the subsequent stress-recovery phase.  

Recently, Alnaas and Jefferson [1] developed a new approach called smooth unloading-reloading 

‘SUR’ approach to work with an incremental iterative nonlinear FE solution scheme. This approach 

circumvents stability and convergence problems by employing a tangent matrix that is based on a 

smoothed unloading-reloading function. This function has a small positive gradient at its intersection 

with the principal softening evolution function. A key feature of this method is that it always uses a 

positive definite stiffness matrix. The authors have shown the approach to be numerically robust, 

reasonably efficient and accurate.  

This paper describes three accelerations techniques to improve the convergence properties of the 

recently developed SUR approach for a finite element damage model, when applied to quasi-brittle 

fracture problems.  

  

2. Smooth unloading-reloading (SUR) method  
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The SUR approach uses a target function material )p(rsf and a smooth unloading-reloading (SUR) 

function )effr,p(rpσ ,  as illustrated in Figure 1. As can be seen, the smooth unloading-reloading 

function has two parts: I) when ppeff rar  , for which  linear unloading reloading with a slope 

)Eω-(1 pf  is assumed: and II) when ppeff rar  , for which nonlinear unloading-reloading is a 

assumed. The SUR depends on the damage evolution parameter ( pr ). 

 
Figure 1: Target and unloading-reloading damage functions. 

 

The target and smooth unloading-reloading functions are given in equations (1) and (2), respectively.  
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where effr is the effective damage parameter, E is Young’s modulus, tf  is the tensile strength, 0r  is 

the effective end of the softening curve, kr is the damage evolution parameter at the peak of the 

uniaxial stress curve. c1=5, 0.70a  p   and 0.75ν  . See Ref [1] for more details of the SUR method. 

  

3. Acceleration techniques for the SUR method 

In this paper, three acceleration techniques are described for  improving the convergence performance 

of the SUR solution procedure. These acceleration techniques are described below. 

 

3.1   Predictive-SUR technique  

The concept of the predictive-SUR algorithm relies on two parameters, namely the damage evolution 

parameter ( pr ) and the number of iterations (it). The predictive function is based on two assumptions: 

I) The relationship between the number of iterations (it) within a time step and the iterative change in 

the damage evolution parameter (
-1ititi ppp rrΔr  ) decays in semi-log space and approaches 0, once 

stable convergence has been achieved: II) when the slope of (it vs log (
ipΔr )) curve starts decreasing, 

a trial prediction of the damage evolution parameter ( ppr ) can be computed using equation (3). Once 

the normalised difference between two consecutive predictions e.g. (
ippr ) and (

1-ippr ) is less than 5%, 

then pr  is set to the most recently computed trial value, i.e. ppp rr  .  
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3.2   Fixing approach  

The second acceleration technique named ‘fixing’ is based on a two stage algorithm, in which a 

damage evolution parameter is updated from the last converged increment in Stage-1 iterations, and 

then it is fixed in Stage-2 iterations within a step.  In this acceleration approach, 3 and 5 iterations in 

Stage-1 were investigated. 

 
3.3   Slack tolerance technique   

This technique uses a slightly slacker convergence tolerance at key stages in a computation. The 

slacker tolerance (1% for the L2 norm of out of balance residual forces) is temporarily triggered when 

the number of iterations within an increment exceeds a certain limit (e.g. 5 iterations). Subsequently, 

the convergence tolerance reverts to the standard tighter tolerance of 0.001%. 

 

4.1   One-dimensional example  

The one-dimensional bar shown in Figure 2 was used. The bar was divided to three linear elements of 

equal length, with the middle element being assigned a small amount of initial damage such that 

damage only occurred in this central element. A prescribed displacement 0.2 was applied evenly over 

40 and 100 increments in the analysis. The material properties of the bar are: E=20GPa, Poisson’s 

ratio (=0.2), tf =2.5 MPa, fracture energy (Gf =0.10 N/mm) and tolerance value for out-of balance 

force and displacement norms is 0.0001%Ψ  . 

 

 
Figure 2: 1-D bar example 

 

The resulting stress-displacement responses from the various analyses are indistinguishable from each 

other, as can be seen in Figure 3a.  

 

  
                              a                                                                             b 

Figure 3: (a) Stress-displacement response, (b) total number of iterations that needed for each solution. 

 

In all sets of analyses, results showed that the three acceleration techniques achieved converged 

solutions in fewer iterations than the standard SUR solution, see Figure 3b. Furthermore, the ‘fixing 

algorithm’, with 3 iterations in Stage-1, was on average a little more efficient than the others, as can 

be noticed in Figure 3b.   

 

L=100 mm 

ux = 0.2 mm 

Cross-sectional area  ‘A = 100 mm2 

135



 

 4.2   Two-dimensional double notched example  

 
The second example is a 2-D double notched specimen subjected to mixed mode loadings by 

prescribed displacement, as shown in Figure 4a. The analysis was undertaken using 40 and 100 

prescribed displacement increments. The material properties of the specimen are: E=20 GPa, =0.2, 

tf =2.5 MPa, Gf =0.10 N/mm and 0.001.Ψ   

 

 
                              a 

 
                               b 

Figure 4: (a) Dimensions of the 2D-double notched specimen, (b) Damage contour plot 

 

  
                                a                                                                             b 

Figure 5: (a) Stress-displacement response, (b) total number of iterations that needed for each solution. 

 
As you can see in Figure 5b, the three acceleration approaches require fewer iterations to achieve convergence, 

relative to the standard SUR method. Also, stress-displacement curves for all solutions are indistinguishable 

from each other, see Figure 5a.     

 

Conclusion 

The principle finding of this paper is that all three methods require less computer time than the standard SUR 

method, with no appreciable effect on the accuracy of simulations.  
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ABSTRACT

This paper presents a quasi-static configurational force (CF) brittle fracture propagation method, [1], using the
discontinuous Galerkin (dG) symmetric interior penalty (SIP) method, [2]. The method is derived from the first
law of thermodynamics with consideration of the Griffith fracture criterion [1]. The criterion is evaluated by
finding the difference between the power applied to the domain and the rate of internal energy change at every
point in the domain. If a node within the element mesh satisfies the criterion, a crack will propagate in the CF
direction. Around the crack tip the advantage of element specific degrees of freedom in dG methods enables
simple p-adaptivity to determine the CF in the spatial domain. In the material domain r-adaptivity is implemented,
where the CF direction is used to align element edges, which are then split to propagate the crack.

Key Words: Crack propagation; configurational force; discontinuous Galerkin; symmetric interior penalty;
rp-adaptation

1. Introduction

Fracture propagation is the generation of new surfaces in a domain through crack growth. Numerical
implementations of brittle fracture propagation is relatively rare and remains to be one of the most
significant challenges in solid mechanics. Numerical frameworks must be able to predict the initiation
of a crack and the subsequent path. A promising technique, known as r-adaptivity, which mitigates
influence from the mesh on the direction of the crack path has been presented by Miehe et al., [1, 3,
4]. The method is based on the concept of material configuration force, [5, 6, 7], with the use of a
Griffith brittle fracture failure criterion to determine crack growth. The unique aspect of the method is
the realignment of an element face with the direction of the configurational force vector at the crack tip.
The face is then split to propagate the crack.

In this paper the SIP dG finite element (FE) scheme, [8], is used to apply the r-adaptivity method in con-
junction with hierarchical shape functions for p-adaptivity [9]. The connectivity between elements in the
dG space is generated through dG face stiffness terms, not shared degrees of freedom. The implication is
that new surfaces can be generated by removing dG face terms between elements, in the global element
stiffness matrix. The second implication is adjacent elements can have varying degrees of freedom with-
out concern over hanging nodes. Moreover, it is simple to incorporate new higher order elements into an
already existing data structure as it is only necessary to ensure the new degrees of freedom are unique
to a single element and that new dG face stiffness terms are calculated for the higher order element’s
connectivity to its adjacent elements.

In this paper the SIP dG method is initially defined as the scheme to model the CF crack growth. This is
then followed by a definition of the CF, the growth rate and the corresponding consistency conditions.
Next the method for applying rp-adaptivity within a SIP dG framework is outlined. Lastly results are
represented to validate CF values and the crack propagation path against analytical solutions.
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2. Discontinuous Galerkin method for linear elasticity

Here we introduce SIP dG for the linear elasticity problem,

−∇ · σ(u) = f in Ω, n · σ(u) = gN on ∂ΩN and u = gD on ∂ΩD . (1)

Ω is a polygonal domain and f is a force vector in [L2(Ω)]2. Ω is divided into elements K . We set
Wh = {w ∈ [L2(Ω)]2 : ∀K,w |K ∈ PpK (K )} where PpK (K ) is the space of polynomial functions of
degree at most pK > 1 on K . The elementwise approximation of u is defined uh ∈ Wh . (1) is weakly
satisfied by uh such that a(uh , v) = l (v). Here, a(uh , v) =

∑
K ∈Ω aK (uh , v) and l (v) =

∑
K ∈Ω lK (v)

where,

aK (uh , v) = (σ(uh ),ε (v))K − 〈{σ(uh )},~v�〉∂K\∂Ω − 〈~uh�, {σ(v)}〉∂k\∂Ω + β〈h−1~uh�,~v�〉∂K\∂Ω, (2)

and
lK (v) = ( f , v)K . (3)

β is a penalty term for linear elastic SIP dG defined by [10], h is the element face length, and {·}, ~·�,
(·, ·) and 〈·, ·〉 are defined in [2]. The displacement boundary conditions are applied in the strong form.

3. Evaluation of the configurational force for fracture mechanics

Miehe et al., [1], provide a robust derivation based on the work on the configuration force by Eshelby
[5, 6, 11], to determine the configurational force as,

GI = lim
|C |→0

∫

C

Σ · ndS, (4)

where σ = ∂εψ̂(ε ) and Σ = ψ̂(ε )1 − hd
>σ are the symmetric Cauchy stress tensor and non-symmetric

Eshelby stress tensor, n is an inward normal to the crack, ψ̂(ε ) is the free energy function, C is a
surface around the crack tip and hd is the displacement gradient. The method is cast within an arbitrary
Lagrangian-Eulerian description of motion requiring a reference material domain and spacial domain.
The velocity of the crack, ∆aI , is controlled by the isotropic Griffith failure criterion function φ̂(GI ) =

|GI | − gc ≤ 0 where gc is the material parameter specifying the critical energy release pre unit length.
Propagation of the crack tip is controlled by the following consistency conditions,

∆aI = ∆γI
GI

|GI | , where ∆γI ≥ 0, φ̂(GI ) ≤ 0, and ∆γI φ̂(GI ) = 0. (5)

If the Griffith failure criterion is satisfied then ∆γI = Hc , where Hc is the length of the face to be split.

4. RP-adaptivity

For our simulations hierarchical shape functions are employed for both the material and spacial domain.
All elements are triangular and have a shape function order of 1 except those at the crack tip with an
order p. The configurational force is evaluated at the crack tip using the domain method presented by
Denzer et al., [12]. If |GI | ≥ gc is true then the crack will propagate in the direction G I/|G I | and the
rp-adaptivity method will be applied, see Figure 1.

The r-adaptivity step occurs in two stages. First, the face in the material domain most aligned to the CF
direction is rotated about the crack node to be exactly parallel with the CF direction, [1]. Secondly, the
crack surface is propagated by removing dG face stiffness terms from all future stiffness calculations for
the manoeuvred face.

To initiate p-adaptivity all components of (2) for elements 1-6, and all external elements sharing faces
with elements 1-6, are recalculated and steered back into the global stiffness matrix. This is necessary to
accommodate changes in element topology, crack surfaces and element order. Management of the data
structure is relatively simple, the only consideration being degrees of freedom must be unique to a single
element.
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Figure 1: The rp-adaptivity for the element mesh at the crack tip with its corresponding sparsity matrix.
Sparsity components with a grey box and X are removed dG face stiffness terms to increase the crack
length. Black components are elements which undergo a reduction in polynomial order, white no change,
and grey an increase.

5. Experimental results
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Figure 2: a) CF values for a force applied to a static crack, inset the experimental setup and mesh. b) CF
angle for a propagating crack with a displacement boundary condition. CF values were calculated using
the method presented by Denzer et al. [12], with a radius of 0.05 m.

A plane stress experiment using the SIP dG method was performed to validate CF values at the crack tip
of a stationary crack against a known solution provided by [13]. The experimental setup is described in
Figure 2a, the geometric parameters a b and l have values 0.1 m, 0.5 m and 1 m respectively. The plate
has a Young’s modulus of 208 GPa and Poisson’s ratio of 0.3. The tensile stress, P, was 10 Mpa.

The unstructured mesh consists of triangular element generated using Triangle, [14]. The element face
length is varied around the crack tip. The element polynomial order of elements that share a node at the
crack tip is defined p, all other elements have an order 1. The CF force values for varying element length
and polynomial order is displayed in Figure 2a.

In comparison to the analytical solution of 256.65 N/m, the results converge to a value with an error
≈ 8%. The error value similar to those expressed by [1] for the same experiment. Faster convergence is
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achieved for meshes with higher element order around the crack tip.

A second experiment was performed to test how varying polynomial order of elements on the advancing
crack tip effected the validity of the CF angle against the expected value of 0o , as shown in Figure 2b.
The problem was set up with the same geometric and material parameters as before, however an axial
load in the form of a 0.1 m displacement boundary condition on either end of the plate is applied instead
of P. All elements other than those at the crack tip have a polynomial order 1. The element length at the
crack tip was 0.01m.

6. Conclusion

This paper has presented an rp-adaptivity method to model small strain quasi-static configurational-
force-driven crack propagation. Problems are restricted to two-dimensions with linear geometric and
material properties. A comparison of the CF values between analytical solutions and those calculated
from surface integrals is presented. The application and results of applying the SIP dG method with
hierarchical shape functions for a propagating and stationary crack have been presented.
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ABSTRACT 

As part of a study undertaken to assess the impact of high-pH fluid circulation on the shear strength behaviour 

of a compacted soil with different additives and due to the complexity of the existing constitutive theories, a 

new approach was used, based on an evolutionary polynomial regression, for modelling the processes. EPR is an 

evolutionary-based data mining technique with the capability of generating transparent and structured 

representation of behaviour of materials and systems from measured data without any need for the data to be 

processed. EPR model developed and assessed using data from a set of triaxial tests. The outcome from 

developed model was compared to the experimental results expressing good consistency. 

  

Keywords: mechanical behaviour of soils; chemicals; evolutionary data mining 

  

1. Introduction  

Cuisinier et al [1, 2] conducted a study to investigate the influence of circulation of high-pH water on 

the hydromechanical behaviour of compacted materials to be used for backfilling. During the study 

the geomechanical behaviour and the microstructure of the considered materials were followed over a 

period of alkaline water circulation of 12 months. The influence of the alkaline fluid on the 

geomechanical characteristics of the materials as a result was seen to directly relate to the nature of 

the additives. The geomechanical behaviour of the sand – argillite mixture has, for instance, remained 

almost stable during the period of alkaline water circulation while, over the same period, dramatic 

modification of the lime – argillite mixture was observed. The next stage in the study was to identify 

the coupling parameter(s) between the chemical stress induced by the circulation of alkaline water and 

changes in the hydromechanical behaviour of the tested mixtures, however, the large number of tests 

on various mixes proved the process to be complex [3].  

Therefore, a new approach was implemented, based on evolutionary polynomial regression (EPR) to 

model the complex hydromechanical behaviour of the soil during circulation of the alkaline fluid.  

EPR is a data mining technique, based on evolutionary computing, aimed to search for polynomial 

structures representing a system [our paper]. The key idea behind the EPR is to use evolutionary 

search for exponents of polynomial expressions by means of a genetic algorithm (GA) engine [4]. The 

main advantage of EPR over other data mining techniques such as neural networks is that it provides a 

transparent and structured representation of the behaviour of the system in the form of a clear 

mathematical expression that is readily accessible to the user. EPR has shown its potential in 

application in modelling of complex behaviour of soils [5-9]. 
 

2. Evolutionary Polynomial Regression (EPR) 

EPR is a data-driven method based on evolutionary computing, aimed to search for polynomial 

structures representing a system. A general EPR expression can be presented as [4]: 
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where y is the estimated vector of output of the process; aj is a constant; F is a function constructed by 

the process; X is the matrix of input variables; f is a function defined by the user; and n is the number 

of terms of the target expression. The general functional structure represented by F(X, f(X), ai) is 

constructed from elementary functions by EPR using a Genetic Algorithm (GA) strategy. The GA is 

employed to select the useful input vectors from X to be combined. The building blocks (elements) of 

the structure of F are defined by the user based on understanding of the physical process. While the 

selection of feasible structures to be combined is done through an evolutionary process, the 

parameters aj are estimated by the least square method. This technique uses a combination of the 

genetic algorithm to find feasible structures and the least square method to find the appropriate 

constants for those structures. In particular, the GA allows a global exploration of the error surface 

relevant to specifically defined objective functions. By using such objective (cost) functions some 

criteria can be selected to avoid the overfitting of models, push the models towards simpler structures 

and avoid unnecessary terms representative of the noise in the data. An interesting feature of EPR is 

in the possibility of getting more than one model for a complex phenomenon. A further feature of 

EPR is the high level of interactivity between the user and the methodology. The user physical insight 

can be used to make hypotheses on the elements of the target function and on its structure. Selecting 

an appropriate objective function, assuming pre-selected elements based on engineering judgment, 

and working with dimensional information enable refinement of final models. The level of accuracy at 

each stage is evaluated based on the coefficient of determination (COD) i.e., the fitness function as: 
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where Ya is the actual output value; Yp is the EPR predicted value and N is the number of data on 

which COD is computed. If the model fitness is not acceptable or the other termination criteria (in 

terms of maximum number of generations and maximum number of terms) are not satisfied, the 

current model goes through another evolution in order to obtain a new model. Detailed explanation of 

the method can be found in [4, 5]. 

 

3. Database used in developing the EPR model and model outcomes 

Results obtained from 33 consolidated undrained triaxial tests on samples of argillite (MA), lime-MA, 

sand-MA, bentonite-MA mixtures, subjected to different periods of circulation of alkaline water, were 

considered in developing and validating of the EPR model. Of the total of 33 cases, 29 cases related to 

different circulation times (i.e. 0, 3, 6, 12 months) were used for training of the EPR model. Of these 

29 cases, 11, 5, 2 and 11 cases were related to no circulation, 3 months, 6 months and 12 months of 

circulation of the alkaline water through the samples, respectively. The remaining cases relating to 

different soil and circulation times were kept unseen during the model development process and were 

used in the validation stage of the developed model. Parameters involved in the model development 

which were used as input for the EPR model were dry density, alkaline water circulation time, axial 

strain, pore pressure, effective confining pressure, porosity of macro-pores, porosity of micro-pores, 

and the specific surface of the soil particles. The only output was considered to be the deviatoric stress 

[3]. 

Figures 1 shows typical prediction results from the EPR model for lime-argillite mixture at confining 

pressure of 141 kPa after 6 months of circulation for training data. The results are compared with 

actual measurements. It can be seen that the EPR model has been able to capture the behaviour of the 

mixtures with a good accuracy. Figure 2 also presents results predicted by the developed EPR model 
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for a testing data series that was kept unseen to EPR in training stage for lime-argillite at confining 

pressure of 274kPa after 6 months of circulation of alkaline water.  

 

 

 
Figure 1: Results from the EPR model – lime-argillite, confining pressure =142kPa 

(training data) 

 

 

 

          
Figure 2: Results from the EPR model – lime-argillite, confining pressure =274kPa 

(testing data) 

 

 

 

It can be seen that the developed model has presented high capabilities in generalising the training 

stage of the model development to conditions that were not introduced to the EPR during the stage 

that the training process took place.   

 

4. Discussion and conclusions 

The research was conducted to model the impact of alkaline fluid circulation on the mechanical 

behaviour of argillite mixes with different additives because of lack of sufficient constitutive 

relationships able to describe the behaviour of different mixtures in a unified framework. The work 
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aimed at developing a model based on an evolutionary-based data mining technique, evolutionary 

polynomial regression (EPR), to represent and predict complex hydromechanical behaviour of soils 

during circulation of an alkaline fluid.   

The presented predictions from the developed EPR model showed that the model, which was trained 

from pure experimental data (with no pre-processing), was capable of capturing and representing 

many physical characteristics of the behaviour of the different mixtures considered in the study and 

the effect of the alkaline fluid circulation correctly, and with a high accuracy for training data. In 

order to validate the generalization capabilities of the developed model, unseen cases of data which 

were not presented to the EPR at the training stage was presented to the model. The predicted 

outcomes showed strong capabilities of the model in providing predictions for cases that were not 

previously known to the model. 

An interesting feature of EPR is in the possibility of getting more than one model for complex 

phenomena. The best model is then chosen on the basis of its performances on a test set of unseen 

data. In general, EPR based modelling has several advantages including it provides a simple and 

straightforward framework for modelling of all materials. It does not require any arbitrary choice of 

the constitutive (mathematical) model, yield function, plastic potential function, flow rule etc. As EPR 

learns the material behaviour directly from raw experimental data, it is the shortest route from 

experimental research (data) to numerical modelling. Additional advantage of EPR model is that as 

more data becomes available, the material model can be improved by re-training the EPR. 
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ABSTRACT

Inclusion of manufactured fibres into a soil has been shown to significantly increase its shear strength and modify
its dilative behaviour. The primary mechanism for strength increase is due to the frictional interaction between
individual fibres and soil particles. Each fibre resists the movement of soil around it and this has an overall effect
of increasing the shear strength. This paper presents the initial development of a micro-mechanics based soil-fibre
model which uses concepts from the well-known shear lag model and is extended to include fibre de-bonding.
The distribution of fibre orientations is taken into account by use of a distribution function which can be modified
according to different soil-fibre preparation techniques. The micro-mechanical model is homogenised using a
spherical integration technique and inserted into a single point constitutive driver using the rule of mixtures. The
hardening soil model was chosen as a matrix material for this study as it captures the non-linear stress-strain
response and failure limit observed in triaxial compression tests. The proposed soil-fibre model is then compared
against triaxial compression test data of a well graded sand with differing fibre contents of Loksand fibres and
different confining stresses. Preliminary simulations of the experimental tests show promising results.

Key Words: soil fibre composite; debonding; orientation distribution; constitutive model; triaxial tests

1. Introduction
Adding fibres to a soil can significantly improve some of its properties. Several studies have shown
to increase ultimate shear strength in sands in triaxial compression tests , and a decrease in dilatancy
[6, 4, 12]. The strength of the composite is also heavily dependent on the distribution fibre orientations
[11] such that the fibres aligned with the direction of the largest extension have the largest effect on the
strength, hence the sample preparation method can have some effect on the composite strength [9].

Several soil-fibre models have been developed in recent years; namely by Maher and Gray [10] who used
a statistical distribution function to model the variation of fibre orientations. Diambra et al. [6] used a
similar basis for their model which also included an empirical debonding function. Diambra and Ibraim
[7] improved this model by using shear lag theory [5] as a basis for debonding.

2. Behaviour of a single fibre
The matrix strain εma surrounding the fibre drives the composite analysis (Figure 1). Balancing the
interface shear forces and the internal tensile forces on an infinitesimal length of fibre gives the well
known shear lag equation [5]. Manipulation of the shear lag equation and substitution of the fibre
boundary conditions leads to a relationship for the fibre slip.

S (x, εma) =
εma

β cosh (βl f /2)
sinh (βx) (1)

Where β is a material constant relating to the geometry and stiffness of the fibre and soil; it also includes
a constant ks relating the interface slip to the interface shear stress.
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Figure 1: Soil-fibre composite cylinder

σ f a(x, εma) =
−2ksεma

r fβ2 cosh (βl f /2)
(cosh (βx) − 1) (2)

After extensive loading, the interface will reach a shear stress limit τb (Figure 2), this is the debonding
shear stress which can be found from the peak tensile load during a fibre pullout test. As the shear stress
is always maximum at the fibre ends, debonding occurs first at the ends of the fibre and moves towards
the centre with additional loading. The total length of this debonded region is 2lb.

σ f a τ

x
0

(a) Fully bonded

σ f a τ

x
0

τb

l f
2 − lb

(b) Partially debonded

Figure 2: Tensile fibre stress σ f a (—) and interface shear stress τ (—) distributions for bonded and
partially debonded fibre along the length of the fibre.

Using a similar approach to the fully bonded case, the partially debonded slip relationship is given in
Equation (3).

S =



τb

ks

sinh (βx)
sinh (β(l f /2 − lb))

if 0 < x ≤ l f /2 − lb
τb

ks
if l f /2 − lb < x ≤ l f /2

(3)

Again, the fibre tensile stressσ f a for the debonding case can be found by substituting the slip relationship
in (3) into the shear lag equation and integrating. The stress distribution within the fibre for full and
partial bonding can be found in Figure 2.

3. Continuum homogenisation
To analyse the global effect of fibre inclusion, the effects of a single fibre are averaged; taking into account
the distribution of orientations and the volume fraction v f . The distribution of fibres on the horizontal
plane is uniform, and the vertical directions are assumed to follow the distribution (4) [11] where θ is
the angle from horizontal. The constants A = 0, B = 0.57, n = 7 were determined by comparing with an
experimental distribution study [14] for the sand and fibres used in this investigation .

ρθ = A + B| cosn θ| (4)
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The fibre stress relation is then integrated over its length, and over the surface of a sphere using the
numerical approach by Baz̆ant and Oh [1] with nd = 21 sampling directions. χ(θid) is a transformation
vector and wid is a sampling weight.

σ f = v f

nd∑

id=1

ρ(θid) · χ(θid)T
∫ l f /2

0

2
l f
σ f a(x, εma) dx · wid (5)

4. The hardening soil model
The soil model chosen to be used alongside the fibre model is the hardening soil model [2, 13]. The
model extends the hyperbolic soil model from a hypo-elastic one to an elasto-plastic one. The hardening
soil model makes use of multiple yield surfaces, however, this study uses only a modified version of the
hardening shear surface. The original yield surface is shown in Equation (6), its modification (which is
to be presented in future work) focusses on the robustness of the model, as well as developing a total
strain formulation suitable for use in commercial finite element analysis software.

f =
qa

E50

q
qa − q

− 2q
Eur
− γp (6)

An explanation of the terms used here may be found in [2]. The plastic potential function is the Drucker-
Prager cone [8] with a constant dilatancy angle.

5. Comparison with experimental results and discussion
The unreinforced sand exhibits a non-linear stress / strain relationship during triaxial loading with an
upper limit to the available shear stress. This is reflected well in the predicted results whereby soil failure
is reached at approximately 5% axial strain (Figure 3a). The strength is under-predicted by 10% and is
most likely due to the chosen material parameters. The soil undergoes an initial compression then dilates
from 2.2% axial strain. The predicted model also follows this trend but to a different dilating gradient.
This is almost certainly due to the simplified dilatancy rule used in the hardening soil model and the lack
of a cap surface.
Adding fibres to the soil appears to increase the shear strength indefinitely. The predictions capture the
rate of strength increase well. Increased fibre content also reduces dilatancy in the experimental results;
this is reflected in the prediction however the limitation with the dilatancy rule does not allow the model
to give accurate results here. Also, none of the experimental results presented so far show and significant
debonding characteristics, therefore it is not possible to determine the effectiveness of the debonding
relationship described in Equation (3).
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Figure 3: Triaxial test experimental results (dashed) and predicted (solid); for unreinforced sand (red)
and with 0.3% fibre content by volume (blue); experimental results by Chatzopoulos [3]
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6. Conclusions
The soil-fibre composite model described here performs to some degree as expected from experimental
results. However, limitations in the underlying soil model may be dominating over any shortcomings in
the fibre model. Therefore, further work will focus on completing the re-formulation of the hardening
soil model and testing of the soil-fibre model under different conditions.
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ABSTRACT 

Seepage plays a crucial role in the installation of suction caisson foundations and this has been considered by 

several researchers via experimental, numerical and analytical studies. In most of the available numerical and 

analytical studies, the actual seabed profile has been modelled using a number of assumptions and considering a 

limited number of idealised conditions to simplify the problem. However, it is well established that the 

behaviour of seabed, and soil in general, is a complex and nonhomogeneous one and that these assumptions can 

affect the reliability of the results.  This paper examines the installation of suction caisson foundation into a 

realistic and natural seabed profile. It identifies the changes in seepage flow at different stages of installation 

and the role of crucial parameters such as permeability on the installation process is discussed. The results show 

that a significant increase in resistance to penetration occurs at the interface layers.             

 

Keywords: suction caisson; installation; natural seabed soil; permeability 

  

1. Introduction  

Suction caissons are relatively new types of foundations which have applications in offshore oil and 

gas industry as well as offshore wind farms. They are upturned buckets of cylindrical shape made 

from steel. Installation of these foundations in seabed soil is achieved by pumping out water trapped 

in the caisson hollow space which enables their penetration into the seabed after initial penetration 

under self-weight. Seepage occurs in permeable soils during suction caisson installation, as discussed 

by Hogervorst [3], leading to a reduction in the soil effective stress and hence its resistance to 

penetration [8]. However, in soils with low permeability, installation is mainly achieved by the 

difference between pressure inside and outside the caisson, caused by pumping out the trapped water 

in the caisson cavity, and the effect of seepage is limited [8, 1]. Installation in multi-layered soil 

profiles, e.g. very low permeable soil overlaid by sand, is expected to be more challenging since the 

reduction in resistance to the caisson tip penetration is restrained by restrictions of flow in the lower 

less permeable layer. It is unclear to what extent the lower less permeable layer impacts the seepage 

flow and thus the resistance to the suction caisson tip penetration. Installation aspects of suction 

caissons in homogeneous clay [2] or granular materials [4] are extensively studied by many 

researchers. However, limited documentation, references or guidelines are available for installation in 

stratified soils [5, 6].  In the present paper, a finite element (FE) model is developed to study the effect 

of a multi-layered seabed on the installation process of suction caisson foundations. The results are 

compared with those obtained from installation in a single layer soil and the differences are 

highlighted. 

2. Formulation of the Normalised Seepage Problem  

In order to draw conclusions regardless of specific dimensions, an FE model of a suction caisson 

normalised with respect to the caisson radius (R) is developed. The caisson height and penetration 

depth into seabed are denoted as L, and h respectively. The first case represents caisson installation in 

homogeneous soil with permeability k and saturated unit weight γsat. For the second case of a two-

layer soil profile, the depths of the upper and lower layers are taken as 2m and 4m respectively. The 

permeability of the upper layer is taken as 10 times higher than that of the second layer. Figure 1, 

shows a vertical section through the meridian plane of the caisson-soil system where a cylindrical 

system of coordinates Rzz /*  , and Rrr /*   is used. For the caisson penetration depth, the 

dimensionless parameter Rhh /*   , is adopted [7]. 
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Figure1: Normalised Geometry and Finite Element Model; Homogeneous (left) and Layered (right) 

 

To study the effect of porewater seepage on soil resistance to caisson penetration, lateral pressures on 

inside and outside caisson wall caused by seepage is investigated. Under seepage conditions produced 

by an applied suction, the lateral effective pressure ( h ) acting on the caisson wall at depth z, inside 

and outside the caisson is respectively given by: 
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where K is the coefficient of lateral earth pressure,    is the effective unit weight of the soil, 

~  is the enhanced effective stress caused by the effect of shear resistance that develops on 

the soil-caisson interface and  ),( Rgi
 ,and ),( Rgo

  denote the vertical component of the 

pressure gradient on the inner and the outer sides of the caisson wall respectively. Seepage 

causes the frictional resisting force acting on the caisson wall to decrease by a magnitude 

sF   given as a function of the normalised penetration depth *h  by the expression: 
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and δ denotes the angle of friction at the interface soil-caisson. Suction magnitude at mudline 

level inside the caisson cavity are denoted by s . In the next section, the normalised decrease 

of frictional resistance ( *

sF ) is calculated using the results of the FE models and the above 

relationships. 

3. Results and Discussion 

Figures 2a and 2b, show the distribution of normalised excess pore water pressure P* around 

the caisson for the normalised penetration depth h* =1 and 3 in a homogeneous seabed. 
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Water seepage cause by suction produces a hydraulic gradient which on both faces of the 

caisson wall varies with depth. Figures 2c, and 2d show the distribution of P* for the seabed 

with layered soil profile at the same depths. From these figures it can be seen that the 

contours of excess pore water pressure have been affected due to the presence of a less 

permeable layer. This will accordingly have an impact on the penetration resistance as it can 

be seen in the next section. Figure 3a, and b depicts the contours of vertical component of the 

scaled pressure gradient */** zpg   for normalised penetration depth h* = 1, and 3, 

corresponds to a homogeneous seabed. It can be observed that the highest gradient 

magnitudes are concentrated around the caisson tip. At shallow penetration depths, high 

gradients around the caisson wall affect the whole penetration depth. As the penetration depth 

increases, these gradients tend to localise around the caisson tip. For comparison, Figure 3c, 

and 3d shows similar contours for a seabed layered profile. From these figures, it can be seen 

that discontinuity in the permeability profile at the interface between the two layers is 

reflected in the profile of the pore pressure gradient. This in turn affects the magnitude of 

frictional soil resistance as a function of normalised depth as will be shown later. 

 

Figure 2: Excess pore water pressure for h*=1, 3; (a, b):  homogeneous; (c, d): layered soil. 

 

 

 
 

Figure 3: Normalised pressure gradient for h*=1, 3; (a, b):  homogeneous; (c, d): layered soil. 
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Figure 4 shows clearly that the reduction in the magnitude of lateral friction resistance ( *

sF ) 

increases as the caisson passes through the layer with higher permeability. An increase (i.e. 

50%) in resistance to penetration occurs at the interface between the soil layers. This result 

shows clearly that the suction pressure required could be affected by sudden changes in 

permeability in layered soils. 

 

 
Figure 4: Effect of Suction-Induced Seepage on Soil Resistance at Caisson Wall 

 
4. Conclusions 

This study considered the effect of soil profile permeability on the prediction of soil resistance to 

caisson penetration. Two soil profiles were considered, namely homogeneous soil with constant 

permeability and a layered soil profile where low permeable soil is overlaid by a 2-meter thick layer 

of high permeable soil. The effect of suction-induced seepage on soil resistance to caisson penetration 

was investigated using the normalised solution of seepage around the caisson wall. It has been 

observed that taking into account the actual variation of permeability in layered soils may lead to a 

more accurate estimation of the critical suction. 
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ABSTRACT 

This paper investigates how the layout of injection boreholes can influence the effectiveness of carbon 

sequestration and enhanced methane recovery in a coalbed. A numerical model for high pressure gas transport 

with kinetically-controlled adsorption and desorption is used to predict the carbon dioxide storage and methane 

displacement behaviour in two simulation scenarios. In the first scenario, carbon dioxide is injected using a single 

borehole located at the centre of the domain, whereas the second scenario considers a four-spot layout for the 

injection boreholes. Both simulations consider the same arrangement of boreholes for the recovery of the displaced 

methane. It is demonstrated that the four-spot layout increases the amounts of carbon dioxide stored and methane 

recovered in the simulation period, although the increase in carbon dioxide storage is somewhat offset by 

interference between the injection boreholes. 

 

Keywords: carbon sequestration; coalbed methane recovery; borehole layout; coupled modelling 

 

1. Introduction 

Geological carbon sequestration is set to play an integral role in the transition to the low carbon future 

by preventing the atmospheric emission of carbon dioxide generated in the energy and industry sectors. 

Coalbeds are among the candidate storage reservoirs since coal typically has a strong preference to 

retain substantial amounts of gas in the adsorbed phase [1]. Moreover, the injection of carbon dioxide 

into a coalbed may also serve to enhance the displacement and recovery of in situ methane to provide a 

supply of unconventional gas. 

Gas transport, storage and displacement in coal involves seepage flows through the network of 

naturally-occurring fractures as well as diffusive transport, adsorption and desorption in the porous rock 

matrix [1,2]. The injection and recovery of gas changes the effective stress and subsequently causes 

physico-mechanical coal deformation [2]. In addition, chemo-mechanical deformation caused by the 

adsorption-induced swelling or desorption-induced shrinking of the coal solids can have a considerable 

feedback on the gas transport behaviour. The coal-gas interactions described play an important role in 

governing carbon dioxide storage and methane displacement in coalbeds. However, it is also important 

to understand how the application of the technology is influenced by some of the key engineering factors 

involved. The present work therefore investigates the role of the injection borehole layout in 

determining the performance of carbon sequestration in coal with enhanced methane recovery. 

The investigation is carried out by applying the reactive gas transport module of the coupled thermo-

hydro-chemo-mechanical (THCM) model COMPASS. An overview of the theoretical formulation for 

reactive gas transport and its numerical implementation is provided below, followed by a description 

and discussion of the numerical simulations conducted as part of this work. 

2. Theoretical formulation 

The coupled THCM model, developed by Thomas and co-workers [e.g. 3], forms the basis for the 

numerical simulations presented in this work. The model applies a mechanistic approach to solving for 

heat transfer, moisture and chemical/gas transport, and mechanical behaviour and has been applied to 
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simulate the reactive transport of multicomponent chemicals and gas in a range of geoenvironmental 

applications. The application of the gas transport module in this work has been based on the assumption 

that: i) the coalbed is completely dry, ii) coal is a homogenous, isotropic and elastic material, iii) a 

single continuum, equivalent continuum approach is valid, and iv) the coalbed is isothermal. 

The governing equation describing the reactive transport of the 𝑖𝑡ℎ gas component can be expressed as: 

𝜕𝑛𝑐𝑔
𝑖

𝜕𝑡
+ 𝜌𝑠

𝜕𝑠𝑔
𝑖

𝜕𝑡
= −∇ ∙ [𝑐𝑔

𝑖 vg] − ∇ ∙ [𝑛𝜏𝑔𝐷𝑔
𝑖 ∇𝑐𝑔

𝑖 ] (1) 

where 𝑛 is the porosity, 𝑐𝑔
𝑖  and 𝑠𝑔

𝑖  are the concentrations in the free and adsorbed phases, respectively, 

𝑡 is time, 𝜌𝑠 is the density of the solid phase, ∇ is the gradient operator, 𝜏𝑔 is the gas tortuosity factor, 

and 𝐷𝑔
𝑖  is the diffusion coefficient. Darcy’s law is employed to calculate the bulk gas velocity, vg, which 

in combination with the real gas law gives: 

vg = −
𝐾

𝜇𝑔
∇𝑢𝑔 = −

𝐾𝑍𝑅𝑇

𝜇𝑔
∑ ∇𝑐𝑔

𝑗
𝑛𝑔

𝑗=1
 (2) 

where 𝐾 is the intrinsic permeability, 𝜇𝑔 is the bulk gas viscosity, 𝑢𝑔 is the bulk gas pressure, 𝑅 is the 

universal gas constant, and 𝑇 is the temperature. The compressibility factor, 𝑍, is the ratio of the real 

and ideal molar volumes and expresses deviations of gas compressibility from the ideal gas law. 

Gas retention behaviour at the coal surface is included as a kinetically controlled reaction formulated 

using a first-order kinetics model, giving [4]: 

𝜕𝑠𝑔
𝑖

𝜕𝑡
= 𝑘𝑟

𝑖 (𝑠𝑔,∞
𝑖 − 𝑠𝑔

𝑖 ) (3) 

where 𝑘𝑟
𝑖  is the sorption rate. 𝑠𝑔,∞

𝑖  is the adsorbed amount at equilibrium with the free gas phase obtained 

using the extended Langmuir isotherm model, given by: 

𝑠𝑔,∞
𝑖 =

𝑛𝐿
𝑖 𝑏𝐿

𝑖 𝑍𝑅𝑇𝑐𝑔
𝑖

1 + 𝑍𝑅𝑇 ∑ 𝑏𝐿
𝑗
𝑐𝑔

𝑗𝑛𝑔

𝑗=1

 (4) 

where 𝑛𝐿
𝑖  is the Langmuir adsorption capacity and 𝑏𝐿

𝑖  is the reciprocal of the Langmuir pressure. 

Appropriate constitutive relationships have been employed in the model to accurately describe the real 

gas compressibility and viscosity. The former is included using the Peng and Robinson [5] equation of 

state (EoS). The gas viscosity is calculated via the dense gas model of Chung et al. [6]. Coal deformation 

due to effective stress changes and adsorption/desorption-induced matrix swelling/shrinking has been 

described using the following model by Palmer and Mansoori [7]: 

𝐾

𝐾0
= (

𝑛

𝑛0
)

3

= [1 +
1

𝑛0𝑀
∑ (𝑢𝑔 − 𝑢𝑔,0)

𝑛𝑔

𝑗=1

+
1

𝑛0
(

𝐾

𝑀
− 1) ∑ (

𝜀𝐿
𝑗
𝑏𝐿

𝑗
𝑋𝑔

𝑗
𝑢𝑔

1 + 𝑢𝑔 ∑ 𝑋𝑔
𝑘𝑏𝐿

𝑘𝑛𝑔

𝑘=1

−
𝜀𝐿

𝑗
𝑏𝐿

𝑗
𝑋𝑔,0

𝑗
𝑢𝑔,0

1 + 𝑢𝑔,0 ∑ 𝑋𝑔,0
𝑘 𝑏𝐿

𝑘𝑛𝑔

𝑘=1

)
𝑛𝑔

𝑗=1
]

3

 

(5) 

where the subscript 0 refers to the initial condition, 𝑀 is the axial modulus, 𝐾 is the bulk modulus, 𝜀𝐿
𝑖  

is the Langmuir volumetric strain, and 𝑋𝑔
𝑖  is the free gas mole fraction. 

A numerical solution of the governing gas transport equations is achieved by applying the finite element 

method with Galerkin weighted residuals for spatial discretisation and a mid-interval backward-

difference scheme for temporal discretisation. The sequential non-iterative approach (SNIA) is adopted 

to couple the gas transport and kinetically-controlled adsorption/desorption terms. 
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3. Problem setup 

The simulations have been performed for carbon dioxide injection and methane recovery from a 500 m 

deep, hypothetically isolated coalbed of 200 m long by 200 m wide and 1 m thick. Two arrangements 

were considered for the injection of carbon dioxide, namely: i) a single injection borehole (Test A), and 

ii) a four-spot layout with a spacing of 50 m (Test B). The 0.1 m radius injection boreholes were located 

symmetrically at the centre of the coalbed. The recovery of methane was considered in both Tests with 

a borehole in each corner of the coalbed. Owing to the symmetry of the problem, the simulation domain 

represented one of the four 100 m by 100 m quadrants of the coalbed. The domain was discretised using 

around 500 triangular elements in Test A and around 600 elements in Test B, with elements 

concentrated around the boreholes. The initial condition in both Tests was pure methane at a uniform 

pore gas pressure of 5 MPa and an isothermal temperature of 298 K. The injection of carbon dioxide at 

5 MPa was prescribed at the injection boundary (borehole) with the gas recovery boundary (borehole) 

fixed at 1 MPa. Since the coalbed was assumed to be isolated, all other boundaries were closed. A 3 

year simulation period was considered. The set of material parameters applied, presented in Table 1, 

was formed through a combination of laboratory characterisation [8] and literature survey [e.g. 2,9]. 

Table 1 Summary of material parameters used in the numerical simulations. 

Parameter Value Source 

Initial porosity, 𝑛0 (-) 0.1 [9] 

Initial permeability, 𝐾0 (m2) 1.0 × 10−16 [8] 

Coal density, 𝜌𝑠 (kg) 1495.9 [8] 

Axial modulus, 𝑀 (Pa) 4.16 × 109 [2] 

Bulk modulus, 𝐾 (Pa) 2.81 × 109 [2] 

 CO2 CH4  

Sorption rate, 𝑘𝑟
𝑖  (s-1) 3.60 × 10−4 5.00 × 10−5 [8] 

Langmuir constant, 𝑏𝐿
𝑖   (Pa-1) 0.20 × 106 0.45 × 106 [8] 

Langmuir capacity, 𝑛𝐿
𝑖  (mol kg-1) 1.26 1.09 [8] 

Langmuir volumetric strain, 𝜀𝐿
𝑖   (-) 0.021 0.009 [8] 

4. Numerical results 

Figure 1 presents the results of the numerical simulations in terms of the distributions of carbon dioxide 

and methane in the gas phase at the end of the 3 year simulation period. The results are given for a cross 

section of the domain taken along the diagonal passing through the gas injection and recovery boreholes. 

The steep decline in the concentration of carbon dioxide in the vicinity of the gas injection boreholes, 

predicted in both Tests, is attributed to the dissipation of the injected gas away from the borehole 

boundary. Similarly, it can be seen that a steep decline in the methane concentration developed in the 

vicinity of the gas recovery boreholes. As expected, the displacement of methane by carbon dioxide 

followed a similar trend in both Tests due to the seepage-driven displacement of free gas in the pores 

and the preferential adsorption of carbon dioxide ahead of methane. As the carbon dioxide advanced 

into the coalbed, the kinetically-controlled displacement of the adsorbed phase resulted in the mixing 

front of the gases gradually widening. 

By the end of the simulation period, 8.44 × 106 mol of carbon dioxide had been stored in Test B 

compared to 3.52 × 106 mol in Test A. Likewise, 6.96 × 106 mol of methane had been recovered in 

Test B compared to 3.57 × 106 mol in Test A. The respective amounts of carbon dioxide stored and 

methane recovered were therefore 140% and 95% higher for four injection boreholes compared to a 

single borehole. Interference between the injection boreholes can be seen towards 𝑥 = 0 m in Figure 

1b and restricted the carbon dioxide storage to considerably less than a four-time increase (i.e. an 

increase of 300%). Moreover, Figure 1 shows that an earlier breakthrough of carbon dioxide in the 

recovered gas would occur in Test B. This would necessitate an earlier termination of methane recovery 

and may result in a lower overall displacement, or ‘sweep’, efficiency compared to that at the time of 

breakthrough in Test A. This premise will be studied in future work. 

156



 

   

Figure 1 Distributions of carbon dioxide and methane taken along the diagonal of the domain passing through 

the gas injection and recovery boreholes after 3 years for: (a) Test A, and (b) Test B. 

5. Conclusion 

This paper has presented a numerical investigation of carbon sequestration in coal using different 

injection borehole layouts. In addition, some of the main physical and chemical phenomena responsible 

for the observed gas storage and displacement behaviour have been discussed. Based on the 

observations made, it can be concluded that the layout of the injection boreholes is a key engineering 

factor influencing the performance of carbon sequestration in coal with enhanced methane recovery. 

The four-spot layout delivered significant increases in the amounts of carbon dioxide stored and 

methane recovered, although the increase in carbon dioxide storage was somewhat offset by 

interference between the injection boreholes. The next step will be to expand the study to consider a 

number of different borehole spacings and different reservoir conditions. 

Acknowledgements 

The work described here has been carried out as part of the GRC's Seren project, which is funded by 

the Welsh European Funding Office (WEFO). The financial support is gratefully acknowledged. 

References 

[1] White, C. M., et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery - a 

review. Energy & Fuels, 19(3), 659-724, 2005. 

[2] Zhang, H., Liu, J. and Elsworth, D. How sorption-induced matrix deformation affects gas flow in coal seams: 

a new FE model. International Journal of Rock Mechanics and Mining Sciences, 45, 1226-1236, 2008. 

[3] Thomas, H.R. and He, Y. Modelling the behaviour of unsaturated soil using an elastoplastic constitutive 

relationship. Géotechnique, 48, 589-603, 1998. 

[4] King, G.R., Ertekin, T. and Schwerer, F.C. Numerical simulation of the transient behavior of coal-seam 

degasification wells. Society of Petroleum Engineers Formation Evaluation, 1, 165-183, 1996. 

[5] Peng, D-Y., Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fund., 15, 59-64, 1976. 

[6] Chung, T-H., Ajlan, M., Lee, L.L. and Starling, K.E. Generalized multiparameter correlation for nonpolar 

and polar fluid transport properties. Industrial and Engineering Chemistry Research, 27, 671-679, 1988. 

[7] Palmer, I. and Mansoori, J. How permeability depends on stress and pore pressure in coalbeds: A new model, 

Society of Petroleum Engineers Reservoir Evaluation and Engineering, 1 , 539-544, 1998. 

[8] Hadi Mosleh, M. An experimental investigation of flow and reaction processes during gas storage and 

displacement in coal. PhD Thesis, Cardiff University, 2014. 

[9] Rodrigues, C.F. and Lemos de Sousa, L. The measurement of coal porosity with different gases. 

International Journal of Coal Geology, 48, 245-251, 2002. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 20 40 60 80 100 120 140

G
a

s 
C

o
n

ce
n

tr
a

ti
o
n

 (
k

m
o

l 
m

-3
)

Distance (m)

Carbon dioxide | Test A

Methane | Test A

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 20 40 60 80 100 120 140

G
a

s 
C

o
n

ce
n

tr
a

ti
o
n

 (
k

m
o

l 
m

-3
)

Distance (m)

Carbon dioxide | Test B

Methane | Test B

(a) (b) 

x x 

157



Material Modelling I

158



Proceedings of the 24th UK Conference of the
Association for Computational Mechanics in Engineering

31 March - 01 April 2016, Cardiff University, Cardiff

A MULTI-SCALE GRADIENT ELASTICITY MODEL
WITH DISPERSION CORRECTION

*Harm Askes1 and Dario De Domenico2

1Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
2Department of PAU, Università Mediterranea Reggio Calabria, Via Melissari, Reggio Calabria 89124, Italy

*h.askes@sheffield.ac.uk

ABSTRACT

We postulate a new gradient elasticity formulation with three higher-order terms and, thus, three independent
length scale constants. The formulation has one higher-order stiffness term and two higher-order inertia terms. It
is shown that this formulation is better able to capture the wave disperion characteristics as seen in nano-scale
experiments or layered composites. We derive a C0 finite element implementation based on a newly developed
operator split, which allows the governing fourth-order partial differential equations to be rewritten in a set of fully
coupled second-order partial differential equations. The fundamental unknowns of these coupled equations are the
micro-scale and macro-scale displacement; thus, this is intrisically a fully coupled multi-scale formulation. With
the reduction of the order of the equations, finite element implementation becomes straightforward.

Key Words: gradient elasticity; wave propagation; length scale; wave dispersion; multi-scale

1. Introduction
Wave propagation through heterogeneous media is characterised by the occurrence of dispersion, meaning
that the different harmonic wave components travel with different velocities. If this is to be captured with
computer simulations, classical elasticity theory is only effective if every individual micro-structural
constituent is modelled separately — but such an approach is usually deemed prohibitive in terms of
associated computer costs. As an alternative, gradient elasticity theory can be used. Compared to classical
elasticity theory, additional spatial derivatives of relevant state variables (such as stresses, strains and/or
accelerations) are included in the field equations. These additional terms are accompanied by material
length scales that represent the micro-structure of the material. An overview of various gradient elasticity
formulations is given in [1].

A popular gradient elasticity theory was formulated by Aifantis in the 1990s and can be written, using
index notation, as

Ci jkl

(
uk, jl − ℓ2uk, jlmm

)
+ bi = 0 (1)

where ui are the displacements and bi are the body forces. Furthermore, Ci jkl contains the usual elastic
constants and ℓ is a micro-structural length parameter. The Aifantis model has been shown to be effective
in removing singularities from stress and strain fields such as occur at the tips of sharp cracks or
dislocation cores. However, its use in dynamics is not recommended due to the appearance of unbounded
phase velocities [1]. Instead, in [3] it was argued that in a dynamics context gradient enrichment should
be applied simultaneously to the stiffness terms and the inertia terms. Thus, a model is obtained according
to

ρ
(
üi − αℓ2üi,mm

)
= Ci jkl

(
uk, jl − γℓ2uk, jlmm

)
+ bi (2)

where ρ is the mass density of the material. Dimensionless constants α and γ have been added so that
different weights can be assigned to the two higher-order terms. It was shown that the latter model
provides a reasonable approximation of the dispersive behaviour of discrete lattice model [3], however
further improvement is possible as will be explored below.
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2. A gradient elasticity model with two acceleration gradient terms
An effective and simple improvement of the dispersive behaviour of gradient elasticity models can be
achieved by adding one more acceleration gradient term. We postulate

ρ
(
üi − αℓ2üi,mm + βℓ

4üi,mmnn

)
= Ci jkl

(
uk, jl − γℓ2uk, jlmm

)
+ bi (3)

where β is yet another dimensionless weighting constant.

To assess the behaviour of the above models in dynamics, a dispersion analysis is carried out by
substituting a trial solution u(x, t) = U exp (i (k x + ωt)) into the one-dimensional equation of motion.
Here, k and ω are the wave number and angular frequency, respectively, whereas U is the amplitude.
After some straightforward algebra, we obtain the following dimensionless expression:

(
ωℓ

ce

)2
=
χ2

(
1 + γ χ2

)

1 + α χ2 + β χ4 (4)

where ce ≡
√

E/ρ is the one-dimensional wave velocity of classical elasticity and χ ≡ kℓ is the wave
number normalised with respect to the material length scale.

In Figure 1 we have plotted the dispersion curves for a range of parameter values. Firstly, the case α , 0
with β = γ = 0 corresponds to a model with only one higher-order inertia term and leads to a horizontal
asymptote for the dimensionless frequency. Next, the case α , 0 and γ , 0 but β = 0 leads to a
model with one higher-order stiffness term and one higher-order inertia term; in case α , γ the model
is dispersive with a slant asymptote. Taking β , 0 alongside α , 0 and γ , 0 leads again a horizontal
asymptote, but there may also be an inflection point in case β > αγ. Figure 1 includes the case where
β < αγ which leads to a monotonically increasing curve, as well as the case β > αγ which predicts a
curve that is concave for lower wave numbers and convex for larger wave numbers — the latter is in line
with certain experimental results [4].
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Figure 1: Dispersion curves — normalised frequency against normalised wave number for α = 5, β = 0 and γ = 0
(dotted); α = 5, β = 0 and γ = 1 (dashed); α = 5, β = 2 and γ = 1 (dash-dotted); α = 5, β = 20 and γ = 1 (solid)
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3. Symmetric multi-scale formulation
The equations of motion given in expression (3) contain fourth-order spatial derivatives. This can be
problematic for subsequent finite element implementations, which are usually based on C0-continuous
interpolations. Whilst it is certainly possible to formulate C1 finite elements for gradient elasticity [5],
here we will follow another approach. An operator split has been developed by which the fourth-order
spatial derivatives are rewritten in terms of second-order spatial derivatives; this leads to auxiliary
equations which, as we will show, can be symmetrised.

First, the right-hand-side of Eq. (3) is rewritten according to

ρ
(
üM
i − αℓ2üM

i,mm + βℓ
4üM

i,mmnn

)
= Ci jklum

k, jl + bi (5a)

uM
k − γℓ2uM

k,mm = um
k (5b)

Superscripts M and m have been used to indicate macro-scale and micro-scale displacements, respec-
tively; this nomenclature is motivated in [2]. Substituting Eq. (5b) back into Eq. (5a) would of course
lead to Eq. (3), but instead we will take the double time derivative of Eq. (5b):

üM
k − γℓ2üM

k,mm = üm
k (6)

This acceleration format can then be used to rewrite various terms in Eq. (5a), namely

αℓ2üM
i,mm =

α

γ

(
üM
i − üm

i

)
(7)

and, in multiple stages,

βℓ4üM
i,mmnn =

βℓ2

γ

(
üM
i,mm − üm

i,mm

)
=
β

γ2

(
üM
i − üm

i

)
− βℓ

2

γ
üm
i,mm (8)

Substituting Eqns. (7) and (8) into Eq. (5a) and multiplying Eq. (6) with ρ
(
α/γ − β/γ2 − 1

)
leads to

ρ

(
αγ − β
γ2 üm

i −
βℓ2

γ
üm
i,mm −

αγ − β − γ2

γ2 üM
i

)
= Ci jklum

k, jl + bi (9a)

ρ
*.,−
αγ − β − γ2

γ2 üm
i +
αγ − β − γ2

γ2 üM
i −

(
αγ − β − γ2

)
ℓ2

γ
üM
i,mm

+/- = 0 (9b)

4. Spatial and temporal discretisation
The advantages of Eqns. (9) are that they contain at most second-order spatial derivatives (so that C0

finite element interpolations can be used) and that they are symmetric: the coefficient of üM
i in Eq. (9a)

is equal to the coefficient of üm
i in Eq. (9b). The latter means that symmetric system matrices can be

formulated, which facilitates computer storage.

On the other hand, with the various mathematical manipulations explained above, it is no longer possible
to retrieve Eq. (3) because the displacement format of Eq. (5b) has been replaced by the acceleration
format of Eq. (6). However, this also means that the inf-sup condition does not apply to Eqns. (9) since
the equations are no longer “reducible”. This implies that there are no constraints on the shape functions
used for the two displacement fields.

Using the same shape functions N for uM
i as well as um

i leads to a system of semi-discretised equations as


αγ−β
γ2 M + βℓ2D −αγ−β−γ2

γ2 M
−αγ−β−γ2

γ2 MT αγ−β−γ2

γ2 M + (αγ−β−γ2)ℓ2

γ D


[

d̈m

d̈M

]
+

[
K 0
0 0

] [
dm

dM

]
=

[
f
0

]
(10)
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with the usual definitions of the mass matrix M and stiffness matrix K, i.e.

M =
∫

Ω

NT ρN dV (11)

and
K =

∫

Ω

BTCB dV (12)

where B is the usual strain-displacement matrix containing shape function derivatives and C is the
matrix equivalent of the tensor Ci jkl. Furthermore, matrix D has the structure of a diffusivity matrix and
is defined by

D =
∫

Ω

3∑

i=1

∂NT

∂xi
ρ
∂N
∂xi

dV (13)

Finally, the force vector f contains the effects of all externally applied forces.

Inspection of Eq. (10) shows that lumping of the mass matrix leads to cancellation of all gradient effects.
As a consequence, lumping is not an option and there is therefore little value in using an explicit time
integrator that is only conditionally stable. Instead, the use of an implicit time integrator is recommended.

5. Conclusions
In this short paper we have reported the formulation of an enhanced gradient elasticity model with one
higher-order stiffness term and two higher-order inertia terms. The model is capable of capturing a range of
dispersion characteristics. Despite the presence of two terms that contain fourth-order spatial derivatives,
it is possible to reformulate the model such that no higher than second-order spatial derivatives are
included. This turns out to be a multi-scale formulation whereby micro and macro-scale displacements
are the primary unknowns.

We have also carried out a number of parameter identification studies to relate the new constitutive
parameters to the properties of a discrete lattice and those of a laminate. Furthermore, variationally
consistent boundary conditions have been derived, and numerical results for a number of initial-boundary
value problems have been obtained. These results will be presented in a forthcoming journal publication.
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ABSTRACT 

Self-healing cementitious materials could greatly improve the durability properties of concrete structures 
relative to those constructed with conventional cementitious composites. However, there is a need to understand 
better the healing processes, to predict accurately experimental behaviour and to determine the impact on 
mechanical properties. Micromechanical modelling, with a two-phase Eshelby inclusion solution, is chosen as a 
suitable framework within which to explore such a response in cementitious materials. A constitutive material 
model is described, consideration is given to a self-healing model framework and how the mechanical strength 
recovery of a micro-cracked material can be simulated with a simplified volumetric micromechanical model.  
 
Keywords: micromechanics; micro-cracking; healing; cementitious 
  
1. Introduction  
Micromechanics is a technique are used to describe engineering material properties based on basic 
continuum mechanic concepts; conservation of mass and balance of momentum and energy. 
Micromechanical models allow the individual material properties, damage and inelastic response to be 
modelled at the same length scale whilst also linking to the macroscale. This paper simulates a two-
phase composite material which has a matrix phase and inclusions. The particular focus is on building 
a framework for simulating healing in a cracked material.  
 
In recent years much research has been undertaken on the subject of self-healing in cementitious 
materials [1], [2]. A number of models have been developed for simulating self-healing behaviour 
[3]–[6]. The majority of the mechanical healing models developed to date are phenomenological in 
nature and have been applied in finite element codes using the smeared crack concept. However, the 
present authors favour more mechanistic approach. In cementitious materials, the development of 
material properties and recovery can be linked to the hydration process, particularly for early age 
crack healing. Hydration processes and damage have been considered in a coupled model [7] where 
the evolution of healing was linked to both the degree of hydration and to the value of the damage 
parameter at time of healing. 
 
A micro-scale model naturally captures the early stages of micro-cracking and the extent of damage in 
the fracture process zone around a macro-crack by considering the behaviour of the composite 
components. A model which can represent micro-cracks is ideally suited for including self-healing 
behaviour by healing these explicit cracks. 
 
2. Essential components of the micro-mechanical model  
A cementitious material with aggregate particles and cement paste is represented using a two phase 
composite with inclusions (Ω) and a matrix (M) phase. A detailed description of the basic 
micromechanical model can be found in [8], [9]and [10]. The essential components of the micro-
mechanical model are shown in the following constitutive equation and are taken forward to establish 
a framework for instructing healing: 
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 : ( )M  aσ D ε ε   (1) 
 
σ  is the average stress and ε  is the total strain in the composite. MD  is the composite elastic tensor 
whose properties are computed using the classical Eshelby [11] solution and the Mori-Tanaka 
homogenization scheme for non-dilute inclusions [12]. aε  is the total additional strain resulting from 
anisotropic micro-cracking using the approach of Budiansky and O’Connell [13]. A local stress-strain 
relationship for the micromechanical model is defined in equation (2), in which the added strain is 
taken to be the equivalent of a micro-cracked band in the material. 
 
  1L L L s D ε   (2) 
 

Ls  is the equivalent local stress tensor and Lε  is the equivalent local strain tensor, both of which are 
expressed in a reduced vector form that considers only those components that are non-zero. LD  is a 
3x3 matrix containing the non-zero components the local stiffness tensor. The local compliance tensor 
is defined as 1

L L
C D .   is the micro-crack variable for each direction, taking the values between 

0 for uncracked and 1 for the fully micro-cracked state. The elastic local strain can be subtracted from 
the local strain within the micro-crack band ( )Lε  to give the additional strain resulting from the crack 
in one direction. 
 
3. Self-healing model framework 
The local constitutive relationship presents itself as a convenient form for including healing. The 
healing restores the stiffness of a proportion of the damaged component of material. An offset or 
‘solidification’ strain is included to ensure that the healing material solidifies in a stress free state. The 
healed local stress is given in equation (3). 
 
      1 1Lh L Lh h th Lh Lh sh      s D ε D ε ε   (3) 
 
The healing proportion is defined by the parameter h, which takes the values between 0 for no healing 
and 1 for fully healed. A subscript h is added to the terms to show the healing equivalent terms.  Lhs   
is the equivalent local stress tensor after healing,  Lhε  is the local equivalent strain tensor after healing 
and th  is the micro-cracking parameter at the time of healing. LhD  is the local stiffness of the healed 
material and sε  is the ‘solidification’ strain. Since this newly healed material can also undergo micro-
cracking, a term is also included to simulate this further micro-cracking, where h  is the healed 
micro-cracking variable.  
 
4.   Self-healing model volumetric example 

A volumetric isotropic model is used here to give an insight into how the model responds to a 
strain path. The single phase volumetric constitutive relationship is shown in equation (4), which has 
the same basic form as that given in equation (3).  

 
      1 1M h th Mh sK h K             (4) 
 

MK and MhK  are the bulk modulus of the material before and after healing. All other terms remain as 
previously defined. The material properties used are shown in Table 1. The original and healed micro-
crack initiation and evolution criteria are based on the form adopted by Mihai & Jefferson [8] and are 
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based on; tv  which is the volumetric strain at first uniaxial micro-cracking and 0v  which is the 
volumetric uniaxial local strain in the effectively fully micro-cracked state. This model is subjected to 
a volumetric strain increment where both micro-cracking parameters are calculated directly.   

Table 1: Material properties for volumetric model response 
 

MK  
2( / )N mm   

MhK  
2( / )N mm  tv   tvh  0v  0v  h 

11429   5714   54.17 10   58.33 10  36.67 10  56.67 10  0.5  
                            
The volumetric strain is incremented until the original material reaches a point on the load-
displacement (stress-strain) softening curve equal to half the peak stress, after which the strain is 
returned to zero. This strain response is shown in Figure 1. The healing here is assumed to take place 
when the sample is unloaded which occurs when there is zero stress and zero strain. For the time 
strain plot shown in Figure 1, this unloading point occurs at a pseudo-time t = 1000(s). At this point 
the s  is zero and the th  is fixed. The new material incorporating the healing is then subjected to 
further strain increments up to and beyond the initial peak strain, until the strain is four times the 
original unloading strain. Figure 2 shows the stress strain response of the volumetric healed model. 
The first loading phase, up to t = 1000(s), can be seen where the stress returns along a linear line to 
zero. The second loading phase shows a bi-linear line returning to the softening curve (in stress-time 
space) of the healed material. This increase in stress directly relates to the healed material. The first 
steep gradient is due to the elastic response of the healed material and the second flatter gradient is the 
sum of stresses in both materials. The peak stress after healing is reached at the same strain at which 
the model was first unloaded, this being t = 1500(s).   

      Figure 1: a) Volumetric strain driver b) Typical volumetric stress strain healing response  
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5. Conclusions 
A two phase composite micro-mechanical constitutive model, that includes anisotropic micro-
cracking, provides an excellent basis for the development of a model for cementitious materials that 
includes self-healing behaviour. The relative simplicity of this micromechanical healing model 
combined with the fact that it requires a small number of physically meaningful parameters shows that 
it is suitable for simulating a wide range of two-phase cementitious materials. The volumetric 
example shown is useful to illustrate the mechanisms that occur during the micro-cracking and 
healing processes.  
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ABSTRACT 

In the aviation industry, high strain rate deformation can occur during bird strike or events associated with 

engine failure such as fan blade detachment. Understanding the material flow behaviour and deformation 

mechanisms active at high strain rates will allow both microstructural and chemical optimisation of candidate 

alloys    

 

An explicit hyperelastic-viscoplastic single-crystal rate dependent material model is outlined for use with HCP 

granular structures such as titanium. The material model allows for slip on all of the thirty slip systems present 

in the HCP crystal[1]. Crystallographic orientation is controlled through the input of Euler angles which in turn 

defines the initial slip system configuration. Each of the five families of slip systems can have specific material 

properties assigned to them. 

 

To form an accurate simulation of the granular microstructure the geometry of the sample needs to be 

considered. Two and three dimensional Representative Volume Elements (RVE’s) are created through the use of 

NEPER and Gmsh. These RVE’s are based on data provided from Electron Backscatter diffraction (EBSD) of 

Ti-6Al-4V.  

 

A single element plane strain case is outlined and compares the results between the original 2 dimensional code 

and the new three dimensional model. The simulation compares the XY, XZ, and YZ orientations of the three 

dimensional case to the XY plane of the two dimensional case, resulting in a relative error of zero.    

 

Keywords: Crystal viscoplasticity; HCP crystals; titanium modelling 
  

1. Introduction  

Aero engine manufacturers face the problem of designing components for high strain rate scenarios 

such as bird strike, while at the same time trying to reduce the weight of the components. Materials 

that exhibit high strength to weight ratios such as titanium are therefore a logical choice. Gaining a 

more in depth understanding of titanium’s microstructure can help to develop the material's properties 

on a macro scale.  

 

In Ti-6Al-4V the alpha phase is the predominant phase within the microstructure, this alpha phase has 

a HCP crystal structure. In plastic deformation slip can occur on any or all of the thirty slip systems 

that are present within the crystal. These thirty slip systems fit into five slip families as seen in figure 

1 [1], each of these five families has its own Critical Resolved Shear Stress (CRSS) which govern the 

point of slip.     
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Figure 1: HCP Slip planes. 

A two dimensional hyperelastic-viscoplastic material model has been adapted to form a three 

dimensional HCP crystal stress update routine with strain rate sensitivity. EBSD is used to gain micro 

structural data to inform the creation of RVE’s. These RVE’s can then be meshed and used in a finite 

element environment.    

 

When completed, this model will allow an insight into the micro scale deformations which are 

difficult to observe in reality, thus giving a deeper understanding of the deformation characteristics of 

the material. 

 

2. Material model  

The model outlined is based on the multiplicative split of the deformation gradient as seen in equation 

1; this is then coupled with a compressible Neo-Hookean description of the elastic region. This is 

paired with a viscoplastic model to provide a hyperelastic-viscoplastic explicit stress update routine. 

A brief description of the model is given here, for the full model see [2]. 

 

                                                              (1) 

 

The compressible Neo-Hookean hyperelastic law is used to govern the reversible behaviour of the 

material, with the stresses being found through the use of the hyperelastic potential. The advantage of 

using the compressible Neo-Hookean is that it leads to a simple format for the return mapping 

equations originally proposed by Miehe [3][4]. Other elastic laws could be used but due to metals 

having small elastic distortions this would lead to having little effect upon the numerical results [2].   

  

To have a multi-surface definition for the yield criterion it is necessary to split the physical slip 

surface of the crystal into mirrored parts. This means having 60 slip systems in the HCP crystal. The 

setting of these slip systems for HCP crystals has been added to the model proposed by de Souza Neto 

[2] along with the expansion to three dimensions. Each family of slip systems in the HCP crystal has 

an individual CRSS value which allows for the formulations of the yield surfaces as shown in 

equation 2 [2].  

 

        
        

                                                                   (2) 

 

Where   
  is the CRSS for slip system α. If hardening is present then the CRSS value of the slip 

system α depends on the history of the deformation. In this work a linear hardening law is adopted to 

govern the evolution of the CRSS value of each slip system.    is the Schmid resolved shear stress in 

the slip system α [2]. 

 

The rate of deformation can have significant effects on the mechanics of the material, especially in 

metals, therefore a suitable slip rate law is needed. In this work the Perić slip rate law is used and can 

be seen in equation 3 [2].  
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                                           (3) 

 

 

The constants    and   are the viscosity and rate-sensitivity parameters respectively. An exponential 

map based integration algorithm combined with a local Newton Raphson algorithm is used to 

calculate the stresses.  

 

3. Titanium grain structure 

An EBSD data set for Equiaxed Ti-6AL-4V is provided by Timet UK. The EBSD map shown in 

figure 2 is the result of this analysis. The EBSD data also provides orientations of the grains in terms 

of Euler angles, along with grain size information.  

 

 

Figure 2: Ti-6Al-4V EBSD map. 

This data is then used to help create Representative Volume Elements (RVE’s) for simulations. To 

create the RVE’s an open source program called NEPER is used, which uses Voronoi tessellations to 

create the grain structures. A more in depth explanation of NEPER can be seen in [5].  Statistics for 

the created RVE can also be outputted, which allows for cross checking. This ensures that the 

statistical grain size of the RVE and the EBSD data match. This, however, does not check for a 

geometrical match of the microstructure, therefore features such as macrozones are currently not 

captured. Figure 3 shows two dimensional and three dimensional RVE’s created from the EBSD data. 

The statistical data from the created RVE’s matched well with the average grain size in the EBSD 

data.   

 
Figure 3: Two dimensional and three dimensional RVE’s created from NEPER. 

The grain geometries that are created by NEPER are then meshed in Gmsh, with each grain being 

seen as a volume. This allows each of the grains to have material parameters associated to it.   

 

169



 

4. Elastic tests 

A single element is constrained so that all nodes are fully defined to provide a plane strain case. The 

three dimensional case is compared to the already existing two dimensional code. A 0.1 (10%)tensile 

displacement is then applied. A bulk and shear modulus are prescribed as 106.4GPa and 43.9GPa 

respectively. The simulation is run for 100 increments of equal size. The comparison of results 

between the original two dimensional code and the three dimensional code are given in table 1. It can 

be seen in the table that there is no difference between the two codes.  

The three dimensional cube is also tested on the different faces (XY, XZ, YZ) with the same 

properties as before, the values of the results for each of these faces matches each other and the 

original two dimensional code.  

   
Table 1: Stresses obtained from elastic testing of a single element. 

 

 XX (GPa) YY (GPa) ZZ (GPa) 

2D code 15.11 6.89 6.89 

3D Code 15.11 6.89 6.89 

Relative error 0.00 0.00 0.00 

 

5. Conclusions 

An outline of the material model has been presented, this model allows for the material parameters to 

be specified for each of the five families of slip systems. EBSD data has been used to inform the 

creation of RVE’s that can capture the nature of titanium microstructures.  

 

Tests on single element plane strain case of the elastic deformation have been carried out and 

compared to the original two dimensional code which has been validated in [2]. It can be seen that 

there is no difference between the two codes with the relative error being zero.   
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ABSTRACT

Contraction of cells leads to stress fibre formation in the cytoplasm. They extend along the length of the cell,
terminating at focal adhesions. Modelling the growth of stress fibres coupled with focal adhesions, assumed to
be made up of high and low affinity integrins, results in a bio-chemo-mechanical problem. Solving the coupled
system of equations in a staggered manner restricts the time step used. In this contribution, we present a monolithic
approach which relaxes this restriction. The stress fibre is assumed to obey the Hill type growth, where the stress
depends on the strain rate, even in non-muscle cells, which we approximate through a non-linear model. We have
also implemented the feedback within the system, which is a fundamental nature of all living organisms.

Key Words: Focal Adhesion, Staggered, Monolithic, Non-linear Hill Model, Feedback

1. Introduction

Cells are the fundamental units of all cellular organisms. Response of cells to external stimuli is a topic
which has been dealt thoroughly, yet not understood completely. The role of mechanics in cellular be-
haviour has been established almost half a century ago [8]. The advancements in experimental techniques
have been successful in quantifying such a role [6]. Bolstering the experimental progress with numerical
modelling is the recent trend in various disciplines, including bio-mechanics. With studies emphasising
the understanding of the functioning of cells in a mechanical perspective, numerical models are being
developed. Such models involve a coupled system of equations, to be solved with boundary conditions
matching the experimental observations. The solution schemes used to solve the governing equations
play a prominent role in the overall analysis. In this contribution, we consider the continuum model [13]
as a base and solve the system of equations with different numerical schemes.

2. Cell motility, contractility and focal adhesion

Cell motility is mainly responsible for processes such as wound healing and growth. Assuming cells to
crawl and not swim [12], the process involves continuous reorganisation of the cellular shape and internal
skeletal structure [9]. The cellular integrity is maintained by a special structure called the cytoskeleton.
Apart from its scaffolding and cell shaping properties, it acts as a dynamic structure which resists,
generates and transmits cellular forces. The forces in the cytoskeleton results in contractility of the cell.
This in turn decides the connectivity of the cell membrane to the extracellular matrix (ECM), at focal
adhesions (FA) [4]. The tension dependent assembly of actin and myosin, forming stress fibres, extend
along the length of the cell. The formation of stress fibres involves a series of biochemical activities [11],
for which the concentration of calcium ions in the cytoplasm is of utmost importance [10]. At FA, the
forces are transferred from and to the cell, resulting in a continuous reorientation of the cytoskeleton.
The proteins present at FAs, called integrins, are responsible for sensing the properties of the ECM.
Thus, the formation of FAs along with stress fibre growth decides the direction and magnitude of the
movement of cells.

172



3. A bio-chemo-mechanical model

In the recent past, there have been many mathematical models developed to explain the experimental
observations of cell contractility. Each of these models could simulate a few set of experiments. Some of
the models were developed by assuming the cell as a continuum, while some other modelled it in a dis-
crete sense. Tensegrity models of cells [5], chemo-mechanical models with and without focal adhesions
[13] [1] [7] or the modelling of focal adhesions alone [2] are some of the important types of models
considered in the past. In this contribution, the mathematical model developed in [13] is considered and
the resulting system of equations and its solution scheme is studied.

Noting the importance of calcium in the formation of stress fibres, an ad-hoc signal representing the
concentration of calcium activates the system. The stress fibres ending on the cell membrane result in
the formation of focal adhesions satisfying the mechanical equilibrium. Focal adhesions are assumed
to be made up of high affinity integrins ξH and low affinity integrins ξL, where only the high affinity
integrins form bonds with the ECM, while the low affinity integrins are allowed to diffuse. The integrins
are governed by thermodynamic equilibrium, and hence they are interconvertible. The active stress is
assumed to follow Hill type growth and passive stress follows from the elastic contribution. In [13] the
active stress σ is estimated using a linear piecewise continuous equation:

σ

σ0
=



0 ε̇
ε̇0
< − η

k̄v

1 +
k̄v
η

(
ε̇
ε̇0

)
− η

k̄v
≤ ε̇

ε̇0
≤ 0

1 ε̇
ε̇0
> 0

(1)

where, ε̇ is the strain rate, η is the stress fibre concentration, σ0 is the isometric tension in the stress fibres
and k̄v is a parameter representing the fractional reduction in stress when the strain rate is increased by
ε̇0. Thus, the bio-chemical behaviour is converted to a mathematical problem, where, the mechanical
equilibrium and the diffusion equations are solved in a coupled setting. In [13], a staggered solution
scheme is used for the solution of the system of equations. It was found that the staggered scheme
restricts the time step that can be used. Hence, a monolithic solution approach has been developed
which is discussed in the next section.

4. Monolithic solution approach

In the staggered approach, the mechanical equilibrium equation is solved assuming the concentration
of high affinity integrins to be constant. Then, the diffusion equation is solved to update the integrin
concentration. In the monolithic approach, the equations are coupled to form a larger stiffness matrix.
The advantages of the monolithic approach are that the solution involves only one matrix decomposition
and the time step being used can be increased without affecting the result.
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Figure 1: ∆t = 1.0s
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Figure 2: ∆t = 6.0s

Analysis results according to the monolithic and the staggered solution approach
for different time steps ∆t ( — staggered, - - - monolithic ).
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It can be seen from Fig. 1 and Fig. 2 that, as the time step is increased, the solution of the monolithic
approach remains more stable compared to the solution from staggered approach. The values of the
reference integrin concentration ξ0, length of the cell l and other parameters used are taken from [13].

5. Hill model

The Hill model used in [13] provides piecewise continuity, Eq. (1). The computational experiments
revealed numerical instabilities when the strain rate conditions changed its regime. Hence in this contri-
bution, we changed to the following non-linear Hill model for the active stress growth :

σ

σ0
= 1 +

k̄v

η


ε̇√

ε̇2 + ε̇2
0


(2)

which has proven full stability throughout the computations performed. In [13], it has been assumed
that the low affinity integrins diffuse along the cell membrane, while high affinity integrins are fixed. In
our computations, we found that the growth of focal adhesions shows a similar response even when the
diffusion is neglected. In addition, in order to enforce the condition of thermodynamic equilibrium by
the interconversion of these integrins and keeping in view the bio-chemical simplifications made in the
model, the diffusion of low affinity integrins becomes obsolete. Hence, we have neglected the diffusion
of low affinity integrins in further calculations.

6. Feedback cycle

When an external signal acts upon the cell, a series of biochemical reactions results in the release of
calcium to the cytoplasm which forms stress fibres. The stress fibres further result in the growth of FAs.
The growth of FAs is also a type of stimulus which releases calcium again. Hence, the process becomes
cyclic, due to which, there is a need for a feedback loop within the system of equations. This problem of
providing feedback has been solved in [3], where the calcium growth is put in a feedback loop. We use
this feedback mechanism in combination with the non-linear Hill model to solve the 1-D cell problem
as provided in [3].
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Figure 3: Without feedback
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Figure 4: With feedback

A 1-D cell is placed on a substrate and a prescribed displacement is applied to the right end of the cell.
Sensing the external stimulus, the focal adhesions start forming near the right end. It can be seen from
Fig. 3 that the high affinity integrins are formed on the left end prior to the right end, which do not
match the physical observations. In contrast, the results including the feedback mechanism match very
well with the experiments, Fig 4. Hence, a feedback mechanism becomes essential for a reliable analysis
result.
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7. Summary and future work

Most of the models that have been developed to explain the cellular processes are phenomenological
models. The solution schemes used to solve the governing system of equations plays a very important
role in obtaining the right solution. In this contribution, we have demonstrated that the monolithic solu-
tion scheme provides a stable result irrespective of the time step chosen. A continuous non-linear Hill
type model has been used for the active stress growth. A Feedback mechanism within the cell was im-
plemented and compared with the system without feedback. In future, the model has to be extended to
2D and different solution schemes are to be compared. Motivated from [11], spiking in calcium signals
has to be considered and the effect on the formation of stress fibres will be studied. The current model
has to be further developed in order to make it suitable to explain cell motility.
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ABSTRACT 

Presented is the development of a simulation that allows for preliminary investigation of impact to a 

10 day old infant head.  A computer-aided drafting (CAD) model is reconstructed from high 

resolution computerised tomography (CT) scan images and meshed for finite element analysis (FEA); 

soft tissue responses were defined using recently derived material properties.  It is anticipated that the 

FE model will be used to investigate the paediatric head response during impact conditions, to provide 

a better understanding/prediction of injury biomechanics. 
 

 

Keywords: Finite element analysis; 3D rendering; image extraction; impact simulation; injury prediction 

  

1. Introduction  

Traumatic brain injury (TBI) is the leading cause of death and disability among the paediatric 

population [5]. Most TBI is a result of either a fall, or motor vehicle interaction [4].  Injury 

biomechanics research plays a vital role in providing guide lines that can inform design engineers and 

reduce head injuries by developing preventions strategies. Additionally, an understanding of the head 

impact response and injury mechanisms can help clinicians distinguish between accidental and 

inflicted TBI. Computational models of the head, associated with injury biomechanics, represent a 

powerful tool that can be used to achieve all these goals.   

Many researchers have focused on the biomechanics of adult head injury, using finite element models 

(FEMs). In paediatric impact biomechanics, however, FE paediatric head models are few due to 

several limitations the limited availability of material property data, quantitative age-dependent 

anatomical data, and paediatric impact response data.  

 

2.   Methodology 

2.1 Geometrical Acquisition and Meshing Generation 

Axial head CT scans of a 10 days old infant were selected and construct cranial geometry using 

Mimics Software (Materialise; Leuven, Belgium). Mimics softweare uses gray scale image values 

from CT scans to segment the model into regions by defining a threshold value.  All pixels within the 

upper and lower threshold of grayscale were defined into the region of interest, and regarded as the 

cross - section of three dimensional (3D) geometry.  Certain tissues have a distinguished threshold, 

such as the cranial bones (parietal, occipital, and frontal bones) and skull base that has a particularly 

intricate geometry, including the multiple foramina, processes, internal cavities and branching 

structures, which were segmented using the threshold filter.  The cervical vertebrae and mandible 

were removed.  Other tissues displayed similar gray value intervals making their segmentation, based 

on threshold values, difficult.  In this case an interactive segmentation method was applied to isolate 

single tissues from surrounding tissues, such as the brain.  Fontanelle and sutures, which consist of 

fibrous connective tissues, filled the gap between skull plates. Possessing gray scale values very close 

to the cranial bones made segmentation, using the segmentation tools, problematic. They were created 

and developed by using wrapped, Boolean operations and manual editing tools.  A detailed 3D 
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representation of major tissues within the head was developed, including cranial bones, skull base, 

sutures, fontanelle and brain as shown in Figure 1.  Subsequently, the autoremesh function was 

applied by the Mimics Remesher (3-matic v10) with different quality parameters and element mesh 

size, to optimise the mesh quality and reduce the number of elements, to achieve more accurate results 

with a reduced computational time.  

 

   
Figure1: Finite element (FE) mesh of the cranial bone, and sutures of a 10 day old infant through an (a) front 

oblique view, (b) front boss view, and (c) front oblique view of 10 day old infant brain. 

 
2.2 Material Properties  

Previous attempts at producing validated infant head models have represented the material properties 

of the cranial bone as homogeneous and isotropic [6 &8]. At birth, however, paediatric cranial bone 

has a visible fibre orientation due to the bone trabecula, supported by the orthotropic response in 

foetal cranial bone reported by McPherson & Kriewall [7].  High-rate testing of infant bone  

conducted by Coats & Margulies [1] also revealed that infant bone is inhomogeneous, with the 

parietal and occipital bone having different stiffness properties.  These differences in the elastic 

modulus between the parallel and perpendicular specimens confirm the significant anisotropic 

material proprieties in the immature cranial bone. Thus, infant cranial bones were modelled as 

orthotropic- elastic, with different elastic moduli parallel and perpendicular to fiber orientation.  The 

suture was modelled as elastic - isotropic, whilst a gelatin substance was used for the brain [3].   

 

2.3 FE Simulation 

The environment in the FE solver (Abaqus/ ExplicitTM 6.12) was established, following 

development of the FE model. A frictional contact coefficient of 0.2 was used to model the 

interaction between the FE head and a rigid plate [2].  A tie constraint was applied, for the 

interaction between the skull-sutures, and skull-brain.  General contact sliding was used to 

model the interaction between the head model and rigid plate.  The model was rotated and 

translated (Figure 2), so its position corresponded with the rigid surface for a specific impact 

location on the head.  The model was dropped from 30cm onto the occipital region with an 

impact velocity of 2.4 m/s, as shown in Figure 2, to provide a comparison with Coats & 

Margulies [2], who investigated an impulse force-time response for a 1.5 month old infant 

head model. It is anticipated that the FE model will be validated with additional experimental 

response data, to provide an effective tool for quantifying nature and magnitude of skull and brain 

deformation and subsequent prediction  of  the risk of injury during a traumatic event. 
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Figure 2: Illustration of (a) the boundary value problem of an occipital impact to a 10 day old infant head (with 

skull, sutures, and brain), and (b) Finite element (FE) simulation of the same. 

 

3. Results and Discussion 

Impact to the occipital region was simulated for a fall of 30 cm height, resulting in a velocity equal to 

2.4 m/s (Figure 2).  The results, presented in Figure 3, represent the energy dissipation of the model 

during a 20 ms FE simulation. The total energy is relatively constant throughout the simulation. 

Energy output can be used to evaluate whether an Abaqus/Explicit simulation is predicting an 

appropriate response. Evaluating the energy curve, at the beginning of the simulation the components 

of the head are in free fall, meaning relatively high kinetic energy (ALLKE).  The initial impact 

deforms the head, reducing the kinetic energy; thereafter, the continuing head deformation causes 

transfer of kinetic energy to internal energy (ALLIE) within the head i.e. the internal energy increases 

as the kinetic energy decreases. Another important energy output variable is the total artificial energy 

(ALLAE), which is a substantial fraction of the internal energy. Artificial strain energy should not be 

a substantial percentage of the overall internal energy of the system.  In this case, it is a very small 

percentage of the overall internal energy and thus, the model is considered to be valid, at least from 

the perspective of element behaviour and possibility of error due to meshing. The peak impact force 

from our model (a 10-day old child), is similar to the impact force reported by Coats & Margulies (1.5 

month old child), as described in Figure 4 [2].  Both of these models show very similar material 

responses, though there is a difference in impulse force response that is perhaps related to subtle 

variations in anatomy, age and non linear geometrical differences.  The mass of 1.5 month old model 

was 0.87 kg, while the head model of 10  day  old equated to 0.46 kg; thus, higher impact forces and 

shorter durations appeared in the impulse force – time responses, which was 3.54 Ns for 1.5 month 

old child and 1.82 Ns from our simulation. 

 

4. Conclusions  

High resolution CT scan images were used to construct a finite element model of a 10   day  old infant  

head, consisting of accurate geometries for the skull, sutures, fontaneelles and brain.  Obtaining the 

sutures from CT images was shown to be possible by using thresholding and manual editing. The HU 

range for the sutures is relatively large and further studies need to be conducted to obtain a more 

precise and accurate HU range. Preliminary results are presented to show how the paedatric head 

tissue boundaries were segmented to build a detailed, accurate anatomical model.  We have 

successfully meshed our existing model and, in combination with low strain rate material response 

data, provide relatively accurate results versus reduced computational time. 
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Figure 3: Energy - time curves for an occipital impact from a 

30cm height drop. 
Figure 4: Force-time contact curve for the occipital 

area from a 30 cm height drop. 
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ABSTRACT 

Understanding the mechanical behaviour of the knee joint is essential in the design of treatment for patients 

with knee OA or people with knee injuries.  Previous research has often overlooked the stresses and strains in 

the cartilage soft tissue that causes pain, while walking or bending legs, as a result of the rubbing between the 

upper leg bone (Femur) and the lower leg bone (Tibia). Simulating a human knee joint using the Finite Element 

Method can show not only how much stress the knee joint cartilage takes due to human bodyweight, but the 

distribution of stress throughout the cartilage as well.  This paper presents a 3D FE model of a knee joint, 

created from geometry obtained from a human CT scan.  The effect of OA has been modelled by halving the 

Young’s Modulus of OA cartilage, whilst maintaining the same boundary conditions.   A comparison of OA 

knee & healthy knee has been completed, and results show that the stress in the cartilage increases by 1Mpa as 

a result of OA.  Good agreement was found in both results, and the location thereof, between presented and 

other published work. 

 

Keywords: knee osteoarthritis (knee OA); cartilage; orthosis; FEA 

  

1. Introduction  

Knee anatomy and functions 

Human walking is the result of a complex process involving the brain, spinal cord, peripheral nerves, 

muscles, bones and joints [9]. Human walking requires the coordination of multiple muscles and 

joints to simultaneously move the legs in a periodic pattern, support body weight and maintain 

dynamic stability. Coordination may be simplified by taking advantage of the passive dynamics of 

the legs which can perform all of these functions automatically [9]. 

 

Knee diseases –OA 

Osteoarthritis (OA) is a disease which influences the body joints. The most common affected joints are 

in the hands, spine, knees and hips. Knee OA is a degenerative, painful disease that if left untreated it 

can have crippling effects on those affected. Unfortunately, nearly every aging person develops knee 

OA to some extent [5]. OA causes damage to the articular cartilage (protective surface of the knee 

bone) and mild swelling of the tissues in and around the joints. OA is one of the most common causes 

of disability in the world. It is regarded as a whole joint disease with a multifactorial aetiology, 

including increased mechanical stress, ligament derangements, cartilage degradation, subchondral 

bone changes and muscular impairments [10]. However, not all knee pains are associated with OA, 

there are other diseases e.g. patella tendonitis, chrondromalacia, Osgood-Schlatter disease or gout that 

can also cause pain to the knee, either acute or chronic [6]. In addition, obesity and lower limb 

misalignment have also been associated with increased risk for knee OA [8]. In OA patients, the 

cartilage (connective tissue) between the bones gradually degrades leading to painful rubbing of bone 

on bone in the joints. Sitting between the upper and lower leg bones at the knee joint are rubbery pads 

of tissue called menisci. These cushion the bones, acting as shock absorbers. The menisci can become 

worn as one gets older, and are commonly the reason for knee pain in middle-aged people. A 

meniscus can also be torn after suddenly twisting the knee joint, resulting in pain, swelling and 

occasionally the locking of the knee. The illness is caused by muscle weakness, ligaments, nerves, 

degenerative bone disease or cerebrovascular disease.  Current treatments include medical procedures 

or surgical treatment including physiotherapy. The damage of these symptoms may cause tearing in 

the cartilage soft tissue due to the force of body weight, resulting in activities such as walking, 
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running or squatting causing great pain to the patient. In some cases, rehabilitation may be impossible 

and some older patients with OA, not fit for surgery, will continually suffer in pain. 

A number of devices exist that assist walking and provide knee pain relief, ranging from staff to 

robotic devices. Several knee braces are currently available on the market that not only deal with OA 

but also with other diseases or injuries. Some braces may not be comfortable to wear or slim enough 

to put under dress. Furthermore, as the complexity of the devices increase, so too does their cost to 

the extent that some are unaffordable to some patients. The main focus of the research undertaken is 

towards the design of a new knee bracing system, which allows effective control of the transfer of 

forces through the knee joint. This can reduces the amount of force that is transferred through the 

joint and hence reduce the pain and improve mobility. The study of knee anatomy and the mechanical 

behaviour of knee is an important part of this research. 

 

This paper presents the study of mechanical behaviour of knee joint, in order to better understand the 

function and behaviour of human knee joint and its load bearing mechanism. This will allow the 

distribution of stresses in the cartilage to be determined, and in turn, the effects of OA on the stress 

distribution throughout the cartalage to be assessed. 

 

A finite element model of a knee joint is developed and analysed. The model of a genuine human 

knee joint is constructed from a CT scan, using a digital imaging suit, ScanIP software from 

Simpleware Ltd. Three masks are created to define the femur, cartilage and tibia shown as yellow, 

purple and blue respectively, in Figure 1a. The constructed model is then analysed using the finite 

element code ABAQUS 6.13-1.  

 

Boundary conditions and material properties are both applied based on published information [1, 3]. 

By way of boundary conditions, both displacements and rotations at the bottom surface of the tibia 

are fixed in all directions.  The displacement is fixed for the femur and tibia in Y direction, shown in 

Figure 1b.  Different material properties are considered for bone and cartilage, however they are both 

assumed to be linear elastic. The Young’s moduli of bone and cartilage are considered as EBone = 18.6 

GPa, and ECartilage= 12 MPa with Poisson’s ratios of vBone = 0.3 vCartilage= 0.46 respectively. The 

property of the OA cartilage was redefined with a reduction of 50% of ECartilage , E OACartilage = 6 MPA 

and Poisson’s ratio vOACartilage= 0.49, as used in [10]. The geometry of the model, loading and 

boundary conditions are shown in Figure 1b. Contact elements are used in the model to tie the 

cartilage to the femur and tibia.  Quadrilateral (8-noded) elements and structured meshing are used in 

the discretisation of the domain. The system is subjected to a vertical load of 392 N, (pressure of 0.3 

MPa), representing the weight of an average person going through a leg. 

  
(a)                                 (b) 

Figure 1 (a) 3 Masks created with ScanIP, (b) Geometry, loading and boundary conditions  
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2. Result and Discussion 

 

Figure 2 shows the geometry before and after loading, in the healthy knee model. The model 

is not perfectly aligned, instead it is skewed (shown in Figure 2a), and hence it is deflected 

by the loading.   

 

 
Figure 2 (a) unloaded geometry, (b) deformed geometry 

 

 

The results of the healthy and OA knees are shown in Figures 3a and 3b respectively.  A 

similar stress distribution is found in both cases; however a difference in the maximum stress 

of 1 MPa is recorded in the OA case.  This is due to the weakened cartilage collapsing 

between the two bones.    

 

  
(a)                                 (b) 

Figure 3 (a) Deformed Healthy knee, (b) Deformed OA knee 
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Figure 4 shows the distributions of vertical stresses and deformations in the cartilage, for 

both healthy (4a) and OA knee joints (4b). In both cases, there is an area of high stress in the 

right hand section, as a result of the off – cantered model.   This is a result of the femur and 

tibia colliding and compressing the cartilage located between the bones.   

 

  
(a)                                 (b) 

 
Figure 4 (a) Deformed Healthy cartilage, (b) Deformed OA cartilage 

 

Strong agreement is found between the increase in stress (due to the onset of OA), and the 

location of the maximum stress, between these results and those published in [10].  

Discrepancies can be assigned to differing material properties, boundary conditions and 

geometry.  Moreover, the location of the maximum stress, and the stress distribution found in 

the OA cartilage matched that of [10].  Further work will aim to refine the model, and in 

particular the boundary conditions.  The use of a ‘slip’ boundary condition will be 

investigated, to better simulate the knee joint, and a dynamic model will be developed, in 

order to study the effect of the gait cycle on the knee joint.   
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ABSTRACT 

For structures with uniform cell size, wall thickness, and shape, the fundamental question arises whether the same 

volume of cell wall material has the same effect when arranged as many small cells or as fewer large cells. A 

combination of finite element modelling (FEM) and experimental work was conducted to investigate the effect of 

the number of cells for a fixed volume of nonlinear hyperelastic material subject to large uniaxial tension. Three 

different structural geometries were analysed using FEM, with all models created within the FEBio software suite. 

For all structures analysed, the computer results show that the stiffness of the cell walls increases as the number of 

cells increases while the total volume of solid material is fixed, suggesting that the stiffness of the overall structure 

also increases. Experimentally, digital image correlation (DIC) was employed to investigate the behaviour of 

silicone structures of neo-Hookean material under tensile loading. This allowed displacement and strain maps to be 

created over the surface of the specimen whilst observing also the mechanical behaviour of the overall structure. The 

experimental results were compared to the FEM results to validate the computer models and to show the influence of 

the local finite deformation effects in the cell walls on the global mechanical performance of the structures.  

 

Keywords: cellular bodies; constitutive behaviour; hyperelastic material; finite elastic deformation.  

1. Introduction  

In many natural load-bearing structures, support requirements are typically met through a combination 

of increase in cell number or size and sustained sclerification (thickening and lignification) of the cell 

walls [1]. For example, dicotyledon stems (e.g. magnolias, sycamores) increase their diameter 

primarily by cell division which ultimately form the characteristic annual rings, while monocotyledon 

stems (e.g. lilies, palms) prevent mechanical failure through a combination of initiation of growth 

with a stem that is sufficiently wide for future supply and support demands, and increase in stem 

diameter and strength by sustained cell wall expansion and lignification, predominantly toward the 

stem periphery and base (Figure 1). Even though some monocot plants attain tree stature comparable 

with arborescent dicotyledons and conifers their stems are relatively slender. By contrast, tall dicot 

trees have bigger stem diameters relative to their height than small trees, although the wood density 

representing the relative quantity of the cell wall in a given volume of wood made up of cells and 

lumens does not vary significantly among wood species [2].  

 

  

 
 

Figure 1. Schematic of cross-section of dicotyledon and monocotyledon stem. 
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For living cellular structures, there are many physiological and ecological factors that determine their 

material properties and influence their mechanical support system. Nevertheless, for structures with 

uniform cell size, wall thickness, and shape, the fundamental question arises whether the same volume 

of cell wall material has the same effect when arranged as many small cells or as fewer large cells. In 

the case of small strain deformations, thresholds on stiffness or strength can be set as constraints in 

the mechanical design or development process [1, 2]. However, when large strains and stresses occur 

during functional or physiological changes, finding a suitable criterion that accounts for the nonlinear 

properties of the deforming cell wall is needed [3,4].  
 

2. Finite Element Modelling  

Finite element modelling (FEM) was used to investigate the effect of varying the number of cells in 

periodic cellular structures made from a fixed volume of elastic material. Model structures with three 

different cell geometries, namely stacked, staggered, and diamond cells, respectively, were designed, 

as illustrated in Figure 2. The structures were created in SolidWorks, meshed in Gmsh, and imported 

into the FEBio software suite [5], and a mesh refinement study was performed for each structure. 

 

  
                                         (a)                                        (b)                                        (c) 

 

Figure 2. Examples of model structures with (a) stacked, (b) staggered, and (c) diamond cells 

investigated using FEM. 

 

Every structure was made from a single piece of elastic material which occupied a thin square domain 

of (dimensionless) side one in the X- and Y- directions, and 0.1 in the Z-direction. Cells were equal in 

size throughout the structure. Both Mooney-Rivlin and neo-Hookean hyperelastic models were used 

for the cell wall material. The lower external horizontal face was free to slide in the X- and Z-

direction, and fixed in the Y-directions. The upper external horizontal face was subject to a prescribed 

vertical stretch of 50% in the Y-direction, was free to slide in the X- and Z-direction. The remaining 

external and internal cell faces were allowed to deform freely.   

 

For these cellular structures of hyperelastic material subject to large strain deformations, a nonlinear 

elastic modulus representing the mean ratio between the Cauchy stress and logarithmic strain (the sum 

of all the small strain increments) in a principal direction associated with the largest change of 

curvature was identified. For all structures analysed, the computational results show that the stiffness 

of the elastic cell walls as measured by this apparent elastic modulus increases as the number of cells 

increases while the total volume of solid material is fixed, suggesting that the stiffness of the overall 

structure may also increase. The results for structures with staggered cells of neo-Hookean material 

are shown in Figure 3. Due to its behaviour, this nonlinear elastic modulus can provide a viable 

criterion for finding the optimum wall thickness or number of cells in periodic structures of nonlinear 

elastic material. 
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Figure 3. The mean elastic modulus for staggered cells of neo-Hookean material, with the results 

corresponding to structures with different number of cells while the total volume of material is fixed. 

 

3. Tensile Testing 

Seamless periodic cellular structures of silicone rubber were moulded with the moulds manufactured 

by 3D printing. The silicone used was a neo-Hookean material with defined properties of 0.74 MPa 

for Young’s modulus and 0.48 for Poisson’s ratio. The structures were mounted into a Zwick testing 

machine using specially made specimen holders, as shown in Figure 4 (a), and tested up to a 

maximum tensile load of 70N, at a rate of 1mm/min. To accurately measure the overall displacement 

of the structure, optical images were taken at every 5N load increments, and the displacement was 

measured using ImageJ, an open source image processing software.  

 

                                         
(a)                                                            (b) 

Figure 4. (a) Stacked cellular structure of neo-Hookean material with the random speckle pattern 

applied and the structure held within the test fixtures used for tensile testing. (b) The DIC set-up, with 

a two camera system used to capture 3D images and a light source providing homogeneous light to 

the specimen. 

 

Digital image correlation (DIC) was employed to map the displacement across the surface of the 

specimen. DIC is an optical technique that maps the displacement field across the surface of a 

specimen and can thus be used to compute strains. In order to measure the displacement across the 

specimen, a high contrast speckle pattern is required. For this study, the speckle pattern was created 

on the surface of the silicone structure by applying a base layer of white face paint followed by the 

application of a random black pattern using black face paint. A two camera DIC system was used to 

enable three dimensional (3D) data to be captured for the uniaxial tensile test [6] (see Figure 4 (b)), 

and local displacements and strains in the cell walls were recorded at every 5N load increments.  
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The results from the DIC data showed similar displacement and strain maps when compared to the 

FEM data. In particular, for staggered cellular structures, areas of low strain were found along the cell 

walls at the centre of the cell, while areas of high strain were obtained diagonally between the corners 

of the cell (see Figure 5). Further experimental work is on-going to provide a thorough quantitative 

validation of the FEM models for structures with different geometries as shown in Figure 2. 

 

                                                                                           
(a)                                                                                   (b) 

Figure 5. Example of (a) DIC and (b) FEM data for structure with staggered cells, with images 

showing results at 18% elongation in the vertical direction. 

 

4. Conclusion  

In order to derive important insights into the mechanical behaviour of cellular structures of nonlinear 

elastic material subject to large strain deformations, the numerical performance of a nonlinear elastic 

modulus for periodic structures of hyperelastic material was examined. Computationally, this apparent 

modulus suggests that the cell walls in structures with many small cells are stiffer than in those with 

fewer large cells if the total volume of material remains unchanged. The mechanical behaviour of 

structures made from a neo-Hookean material and subject to uniaxial loading was also studied 

experimentally using DIC, and the experimental data showed similar displacement and strain maps as 

for the computed FEM models. The influence of the local finite deformation effects on the global 

stiffness behaviour of these structures remains to be established. 
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ABSTRACT

A solid-shell element which does not possess rotational degrees of freedom (DOFs) and which is applicable to
thin plate/shell problems is considered. The element approximation is constructed in prisms, where displacements
on the upper and lower surfaces are approximated in the global coordinate system. In addition, two other fields
are defined in the shell natural (local) coordinate system that represent the components of the displacement vector
in both the current shell normal direction and the current shell tangent plane. To each field, an arbitrary order of
approximation can be defined, and all fields reproduce a complete and conforming polynomial approximation basis
for the solid prism element. It is not necessary to augment the formulation with an assumed natural strain (ANS)
field or enhanced assumed strain (EAS) field or to use reduced integration, making the element ideally suited for
geometrically and physically nonlinear problems.

Key Words: solid shell, large deformations, hierarchical approximation

1. Introduction
In standard thin shell formulations, the approximation through the thickness is assumed to be linear or
higher order, i.e. the normals to the mid-surface in the initial configuration remain straight but not normal
during the deformation. In the proposed formulation the thickness of the element is not constant and the
normal stress in through-thickness direction is considered. For this reason, the kinematics of this solid-
shell element is richer than the kinematic assumed in Kirchhoff - Love plate theory. In formulating this
element, we do not aim to reproduce classical shell kinematic, thereby avoiding the problem of element
locking. This work builds on a substantial body of published work by a number of different authors,
most notably [4]. However this implementation proposes a new formulation exploiting hierarchical,
heterogeneous and anisotropic approximation spaces.

2. Hierarchical approximation in prism
In constructing the approximation space in a prism we apply a similar procedure to that shown in [2] for
tetrahedra. Nodal basis functions using barycentric coordinates are given by

φv = λv, Lφ
v = φvζ, Uφ

v = φv (1 − ζ ) (1)

where right subscript Lφ
v and Uφ

v indicates shape functions on lower and upper triangles respectively
and λv denotes the barycentric coordinates. Convective coordinate ζ ∈ [0, 1] is the coordinate through
the prism thickness. ζ = 0 defines the lower prism triangle and ζ = 1 the upper prism triangle.

The edge hierarchical approximation basis is constructed as follows

β0i = λ0λi, φet
l
= β0iLl (λi − λ j ), Lφ

et
l
= φel ζ, Uφ

et
l
= φel (1 − ζ ), (2)

where i and j are nodal indices on a triangle. Ll is the Legendre polynomial of order l. If p is the order
of the polynomial for the triangle, then 0 ≥ l ≥ p − 2 and the number of DOFs on an edge is p − 1. The
triangle approximation basis is constructed by

β0i j = λ0λiλ j, φtl,m = β0i jLl (λ0−λi )Lm (λ0−λ j )ζ, Lφ
t
l,m = φ

t
l,mζ, Uφ

t
l,m = φ

t
l,m (1− ζ ) (3)
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If p is the order of the polynomial on a triangle, then 0 ≥ l,m, l + m ≥ p − 2 and number of DOFs on
triangle is (p − 1)(p − 2)/2.
The edge through-thickness basis function is given by

β00 = λ0λ0, φ
eq
l
= β00ζ (1 − ζ )Ll (2ζ − 1) (4)

where λ0 is the barycentric coordinate for the node of the triangle to which the edge through thickness
is adjacent. If p is the order of the polynomial in the prism, then 0 ≥ l ≥ p − 2 and the number of DOFs
on edge is p − 1. The quadrilateral through thickness basis function is

β0i = λ0λi, φ
q
l,m
= β0iζ (1 − ζ )Ll (λ0 − λi )Lm (2ζ − 1) (5)

where 0 and i indicate nodes on opposite corner nodes of a quadrilateralwith its own canonical numbering.
If p is the order of the polynomial in the prism, then 0 ≥ l,m, l +m ≥ p − 4 and the number of DOFs on
the quadrilateral is (p − 3)(p − 2)/2. The bubble prism basis functions are given by

β0i = λ0λiλ j, φ
p
l,m,k

= β0i j ζ (1 − ζ )Ll (λ0 − λi )Lm (λ0 − λ j )Lk (2ζ − 1) (6)

where 0, i, j are indices of nodes on the triangle. If p is polynomials order in prism, then 0 ≥ l,m, k, l +
m + k ≥ p − 5 and number of DOFs of the prism is (P − 5)(P − 4)(P − 3)/6.

3. Geometry approximation in reference configuration
A pragmatic approach is to generate the input mesh surface using a standard mesh generator. In case of
non-planar surfaces, the geometry can be defined by 6-noded or higher-order triangles. The geometry
defined by the surface mesh is then projected using a hierarchical basis onto the prism. Thus all approx-
imations for the shell geometry using a hierarchal basis shown below is directly inferred from the input
triangular mesh. The only additional information required is the shell thickness.
The reference position of points on the shell mid-surface, in the global Cartesian coordinate system, is
given on the triangular mesh by

MZ(ξ, η) = 3φv (ξ, η)Zv + 3φet (ξ, η)Zet + 3φt (ξ, η)Zt =
∑

g=v,et , t

3φg (ξ, η)Zg (7)

where Zv,et , t are DOFs on vertices, edges and triangles. Left upper-script 3φ indicate that it is matrix of
base approximation functions for vector field, where size of vector is three. In addition we define on the
surface mesh a field of unit length director vectors [6], as follows

MV(ξ, η) =
∑

g=v,et , t

3φg (ξ, η)Vg (8)

Finally reference position vector in prism element is given by in global Cartesian coordinate system

Z(ξ, η, ζ ) = MZ(ξ, η) + aMV(ξ, η)(ζ − 1
2

) =
∑

s=L,U

∑

g=v,et , t

3φg
s (ξ, η, ζ )Zg

s (9)

where a is the shell thickness, which may not necessarily be constant.

4. Curvilinear systems in reference and current configuration
The vector coefficients in the Cartesian coordinate system are Z I and zi for the current and reference
configuration, respectively. For simplicity, we use both coordinate systems with the same base vectors
and origin. In addition we use local curvilinear coordinate base for reference configuration, where vectors
of the base areEα and vector of covariant coefficients in that base are X A. The field ofEα is consequently
approximated using hierarchical approximation as follows

ME0,1(ξ, η) =


∑

g=v,et , t

3φg (ξ, η)Eg
0,1,

 II ME2(ξ, η) =
{
Spin[ME0(ξ, η)]ME1(ξ, η)

}
II (10)
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where Spin[·] is a spin operator acting as a vector product and Eg
0,1 are coefficients of the approximation

functions.
The local curvilinear coordinate base in the current configuration, convected by the motion of the shell
mid-surface is given by

ea = eai ii = MF i
I
M EAI δaAii (11)

where MFi
I (ξ, η, ζ ) is component of the gradient of deformation, i.e. for the discretized system, the

gradient of deformation is additively decomposed into a part resulting from through-thickness DOFs and
a part resulting from DOFs on the triangles. The latter part is used to push the base vectors.

5. Displacements and physical equations
In the following approach, for convenience, we use the local shell coordinate system to evaluate the
physical equations. The Cartesian global coordinate system is used to express coefficients of DOFs on
entities adjacent to the upper and lower triangles. For DOFs on entities through the shell thickness,
i.e. edges through the thickness, quads and the prism itself, the current curvilinear (convected) shell
coordinate system is used to express coefficients of the displacement vector.
The position of a material point in the current configuration is given by

zaia = ZJ IJ + uJ IJ + veJ2 IJ (12)

where displacements are additively decomposed into a global and through thickness component. The
displacement u is approximated in the global coordinate system as

uJ (ξ ) =
∑

s=L,U

∑

g=v,et , t

3φg
s (ξ )ug,Js =

[
3φ(ξ )

]
uJ . (13)

Note that displacement DOFs in vector u are in global Cartesian coordinate system, thus this solid shell
element could be assembled with other tetrahedral elements without the need for any linking/transfer
elements. The displacement v = veJ2 IJ is approximated in the local conservative system following global
mid-surface deformation. The vector of displacements through the thickness is given by

v(ξ ) =
∑

g=eq,p

1φg (ξ )vg,a =
[
1φ(ξ )

]
v. (14)

Note that the vector of values of DOFs v is in the local, curvilinear current (conservative) coordinate
system. Those degrees of freedom are associated with edges, quads and volume of prism itself, thus are
inside volume of shell structure and are not adjacent to any other DOFs except those of the considered
shell.
Consequently the vector of internal forces is

fintu (u, v) =
∫

Ω

[
∇Z I

3φ
]

PI
i (u, v)dΩ and fintv (u, v) =

∫

Ω

[
∇X A

1φ
]

PA
2 (u, v)dΩ, (15)

where PI
i and PA

a are Piola - Kirchhoff tensors in the Cartesian and local convected curvilinear system.
Consequently fintu and fintv are internal force vectors associated with DOFs adjacent to triangles (upper
and lower) in a global cartesian system and DOFs adjacent to edges through the thickness, quads and
prism itself in a local curvilinear coordinate system.
In the formulation presented here, the current curvilinear system follows the shell deformation given
by DOFs on upper and lower triangle. This, in some sense, leads to a co-rotational like formulation
[3]. As result it is noted that the tangent stiffness is non-symmetric. This observation is consistent with
that made by Crisfield [3], who adapted the co-rotational formulation whereby the coordinate systems
is rotated when shell is deformed. However, numerical experiments have shown that for the problems
addressed here, like for the co-rotational formulation, the tangent stiffness matrix becomes symmetric as
the iterative procedure reaches equilibrium, thus the matrix can be symmetrized without deteriorating
the rate of convergence.
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6. Example
In the following examples we present two classical tests of a pinched cylinder. The reference solutions
provided by [5] are reproduced. However, exploring the flexibility of the method, increasing the approx-
imation order in the shell plane or shell thickness, we are able to find a softer, converged solution, see
Figure 1.

Figure 1: Pinched cylinder without diaphragm tension on the left and with diaphragm compression on the right.
See [5] for more information about geometry, material parameters and reference solution. Analysed meshes are
available from [1].

7. Conclusions
The solid-shell element presented here has a number of properties. First, element DOFs do not posses
rotations, such that element could be used in conjunction with classical solid elements without the
need for any additional transfer elements. Second, the approximation basis is hierarchical. Such an
approximation allows for efficient construction of iterative solvers tailored for hp-adative code. Third, the
approximation basis is heterogenous, that is an arbitrary approximation order can be set independently
for each geometrical entity, i.e. edge, triangle, quad or prism. Fourth, local approximation of membrane
displacements and normal displacements through the thickness are independent from each other. Finally,
the physical equation for 3d solid can be used in the local shall coordinate system.
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ABSTRACT
Current industrial codes (e.g. PAM-CRASH, ANSYS, LS-DYNA) for the simulation of large-scale solid
dynamics are typically based on the use of traditional displacement-based finite element formulations.
However, these formulations present a number of shortcomings, namely, (1) reduced order of conver-
gence for strains and stresses, (2) poor performance in bending and shock dominated scenarios and (3)
appearance of numerical instabilities associated with volumetric locking and pressure fluctuations.

To circumvent these drawbacks, a system of first order hyperbolic conservation laws for large strain
solid dynamics was introduced [1–3]. Essentially, the formulation was established in terms of the linear
momentum and the deformation gradient tensor [3]. This paper builds on recent Total Lagrangian based
work [1] developed by the authors, by introducing a vertex centred Finite Volume Method on a mixed
Updated Lagrangian formalism, with the aim of further enhancing the robustness of the algorithm. In
the case of extremely high nonlinear deformations, the Updated Lagrangian framework provides extra
flexibility into the formulation, thus extending the range of applications to near incompressibility. For
computational efficiency, an adapted artificial compressibility approach is also introduced for truly and
nearly incompressible materials [2].

A series of numerical examples are presented in order to assess the robustness and the applicability
of the proposed framework, benchmarking it against alternative numerical strategies developed by the
authors in recent publications [1–3]. The overall scheme shows excellent behaviour in shock and bending
dominated nearly incompressible scenarios without spurious pressure oscillations, yielding second order
of convergence for both velocities and stresses.

Key Words: Fast solid dynamics ; Updated Lagrangian ; Finite volume ; Locking; Incompressibility

1. Introduction

Over the last few years, the authors have introduced a new mixed Total Lagrangian conservation-based
methodology, where the linear momentum p and the deformation gradient F are treated as primary
variables of a system of first order conservation laws. Both velocities, deviatoric stresses and volumetric
stresses display the same rate of convergence, which proves ideal in the case of linear finite elements.
This approach has been thoroughly analysed by the authors using a wide variety of spatial second order
discretisation techniques, namely cell centred upwind Finite Volume Method (FVM), vertex centred
Jameson-Schmidt-Turkel (JST) and upwind FVM, two step Taylor Galerkin and Petrov Galerkin Finite
Element Method (FEM). Moreover, the two-field p-F formulation was then augmented by incorporating
a new conservation law for the Jacobian of the deformation J to effectively solve nearly incompressible
deformations. The p-F-J formulation was also extended to account for truly incompressible materials
utilising a tailor-made fractional step Petrov Galerkin approach.

In this paper, the conservation-based p-F-J system through the use of either upwind or JST stabilisation
is revisited, but this time established in terms of Updated Lagrangian formalism. This framework leads to
a simpler expression for Jacobian evolution and, more importantly, further enhances the robustness of the
algorithm. For nearly and truly incompressible materials, an adapted artificial compressibility approach
is also introduced, with the aim of increasing computational efficiency.
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2. Governing equations

The motion of a continuum, which occupies a volume Ω0 in the reference configuration and a volume
Ω in the deformed configuration, expressed in Updated Lagrangian formalism is described through the
following p-F-J first order conservation laws:

d
dt

∫

Ω0

p dΩ0 =

∫

∂Ω

t da +

∫

Ω

f dΩ; (1a)

d
dt

∫

Ω0

F dΩ0 =

∫

∂Ω

(
p
ρ0
⊗ H−1

)
n da; (1b)

d
dt

∫

Ω0

J dΩ0 =

∫

∂Ω

p
ρ0
· n da; (1c)

d
dt

∫

Ω0

E dΩ0 =

∫

∂Ω

p
ρ0
· t da +

∫

Ω

1
ρ0

f · p dΩ. (1d)

where p := ρ0v is the linear momentum, ρ0 is the material density, v is the velocity field, σ is the
Cauchy stress tensor, f is the body force per unit current volume, F is the deformation gradient (or fibre
map), H := JF−T is the cofactor of the deformation gradient (or area map), J is the Jacobian of the
deformation (or volume map), E is the total energy per unit undeformed volume and t represents the
nominal traction related through the Cauchy stress tensor σ and the spatial unit outward normal vector n.
Crucially, the fibre map evolution (1b) needs to satisfy an additional set of compatibility conditions (also
known as involutions), namely CURLF = 0. In the context of isothermal process, the energy equation
(1d) is redundant and is decoupled from the p-F-J system (1a-1c). However, equation (1d) can still be
employed when measuring the amount of numerical dissipation introduced into the system.

For closure of the above system (1), appropriate initial and boundary conditions, as well as a constitu-
tive model, are supplemented. For simplicity, a nearly incompressible neo-Hookean material is used by
relating Cauchy stress σ with the geometrical measures {F, J}:

σ = σdev(F) + p(J)I; σdev = µJ−5/3
F

[
b − 1

3
(F : F)I

]
; p = κ(J − 1), (2)

where p is the pressure, JF := det F is the Jacobian evaluated directly from the deformation gradient,
b := FFT is the left Cauchy-Green strain tensor, µ and κ are the shear and bulk moduli.

3. Finite volume spatial discretisation

From the spatial discretisation viewpoint, the above set of hyperbolic conservation laws (1) is semi-
discretised using the vertex centred finite volume method widely accepted in fluid dynamics applications.
The introduction of appropriate numerical viscosity is of paramount importance due to the hyperbolic
nature of the system. In the following section, two variants of the numerical dissipative mechanisms are
discussed, namely a nodally conservative JST stabilisation (see Section 3.1) and an Upwind Riemann
solver stabilisation (see Section 3.2).

3.1. Jameson-Schmidt-Turkel (JST) nodally conservative stabilisation

Following Reference [3], one of the most effective options is to incorporate a nodally conservative nu-
merical viscosity (e.g. second order and fourth order stabilisations) into the system without amending
the flux computations. The fourth order term D4 (biharmonic) provides stabilisation against odd-even
decoupling phenomena, whilst the second order term D2 (harmonic) is activated with steep gradients,
capturing any discontinuity in the solution. For simplicity, we restrict ourselves to problems where no
physical shocks occur. For this reason, there is no need to consider harmonic stabilisations in our system:

Ωa
0

d pa

dt
=

∑

b∈Λa

1
2

(σa + σb)cab +
∑

γ∈ΓB
a

tγa
aγ

3
+D4(pa); (3a)

Ωa
0

dFa

dt
=

∑

b∈Λa

1
2ρ0

(
pa + pb

) ⊗ Cab +
∑

γ∈ΓB
a

1
ρ0

(
pγa ⊗ Nγ

) Aγ

3
; (3b)

Ωa
0

dJa

dt
=

∑

b∈Λa

1
ρ0

p · cab +
∑

γ∈ΓB
a

1
ρ0

pγa · nγ
aγ

3
+D4(Ja), (3c)
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where Cab and cab are the initial and current area vectors and D4(βa) represents the fourth order JST
dissipation defined as:

D4(βa) = −k(4)
∑

b∈Λa

Ψab(cp)θab(L(βb) − L(βa)); L(βa) =
∑

b∈Λa

θab(βb − βa); βa = {pa, Ja}. (4)

Here, k(4) is a user-defined parameter, Ψab(cp) is the spectral radius depending only on the volumetric
wave cp and θab is a geometrical weight used to preserve second order accuracy in unstructured meshes.
For the satisfaction of involutions, it is crucial to ensure that no dissipation is introduced in the fibre map
evolution (3b) by approximating the corresponding fluxes via central difference method [3].

3.2. Upwind stabilisation: Acoustic Riemann solver

In contrast to the JST stabilisations described above, a more refined approach by adding appropriate
conservative numerical viscosity through fluxes is introduced [1]. Naturally, discontinuity of the con-
servation variables across control volume interfaces leads to a Riemann problem. A suitable numerical
interface (acoustic) flux can be obtained by making use of the Rankine-Hugoniot jump conditions, of
standard use within the field of fluid dynamics:

Ωa
0

d pa

dt
=

∑

b∈Λa

tC ||cab|| +
∑

γ∈ΓB
a

tγa
aγ

3
; (5a)

Ωa
0

dFa

dt
=

∑

b∈Λa

1
2ρ0

(
pa + pb

) ⊗ Cab +
∑

γ∈ΓB
a

1
ρ0

(
pγa ⊗ Nγ

) Aγ

3
; (5b)

Ωa
0

dJa

dt
=

∑

b∈Λa

1
ρ0

pC · cab +
∑

γ∈ΓB
a

1
ρ0

pγa · nγ
aγ

3
, (5c)

where

tC =
1
2

(
σ− + σ+) n +

1
2

[
1
cp

(n⊗ n)(σ+ − σ−)n +
1
cs

(I − n⊗ n)(σ+ − σ−)n
]

; (6a)

pC =
1
2

(p+ + p−) +
1

2cp
(σ+ − σ−)n; σ−,+ = σ−,+dev + κ(J−,+ − 1)I. (6b)

Notice that this type of upwinding stabilisations (which depends on both volumetric wave cp and shear
wave cs) is derived with the consideration of wave directional character, being more accurate in compar-
ison to JST stabilisation [1].

Finally, the set of stabilised semidiscrete equations (see (3) and (5)) can then be explicitly integrated from
time step tn to tn+1. In this case, the explicit one-step two-stage Total Variation Diminishing Runge Kutta
(TVD-RK) time integrator [2] is preferred due to its excellent TVD properties. The geometry is also
advanced in time using the exact same time integrator in a monolithic manner. As described in [1, 3], the
scheme is suitably modified to guarantee the conservation of angular momentum. In the case of nearly
and truly incompressible materials, the volumetric wave speed cp can reach very high values leading to
prohibitively small time steps. This can have a very negative effect in the computational efficiency of
the algorithm. Taking inspiration from Reference [2], a tailor-made artificial compressibility algorithm
is also introduced for the three-field p-F-J mixed formulation.

4. Numerical examples

A column with a unit square cross section is subject to different loading conditions; a prescribed sinu-
soidal angular velocity (see Figure 1) and a linearly varying velocity along its height (see Figures 2 and
3). The examples show the applicability and robustness of the scheme in truly and nearly incompressible
bending dominated scenarios.
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(a) Explicit Updated Lagrangian p-F-J Upwind algorithm

(b) Explicit Total Lagrangian p-F-J Upwind algorithm

Figure 1: Illustrate the robustness of Updated Lagrangian formalism over Total Lagrangian formalism.

(a) Explicit Updated Lagrangian p-F-J Upwind (b) Explicit Updated Lagrangian p-F-J JST

Figure 2: Demonstrate the accuracy of the stabilisations: Upwind is less dissipative than JST.

Figure 3: Robustness of p-F-J Upwind artificial compressibility in truly incompressible material.

5. Conclusion
This paper introduces a second order Updated Lagrangian vertex centred finite volume algorithm in the
numerical simulation of large strain solid dynamics. A mixed formulation written in the form of a system
of first order hyperbolic equations is employed. The linear momentum p, the deformation gradient F
and the Jacobian J are regarded as primary conservation variables. The overall scheme shows excellent
behaviour in truly and nearly incompressible bending dominated scenarios without spurious pressure
oscillations, yielding second order of convergence for velocities and stresses.
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ABSTRACT

We propose an enriched finite element method for the solution of three dimensional transient heat diffusion prob-
lems. The steep gradient of the solution is captured by a suitable enrichment of the finite element space. We use
multiple exponential functions to enrich the solution space. This results in an efficient method, as is illustrated
in an example problem with known analytical solution. In this problem we compare the proposed scheme with a
standard FEM discretization. It is shown that the enriched FEM strongly reduces the necessary number of degrees
of freedom to achieve a prescribed accuracy.

Key Words: partition of unity method; 3D heat diffusion problems; enrichment functions

1. Introduction

For decades FEM has been used for solving complex problems in many engineering and scientific ap-
plications. This method has shown significant accuracy and robustness for complex problems governed
by steady-state PDEs. Solving time-dependent PDEs on complex geometries is still a substantial task
for FEM especially for 3D problems. To overcome these difficulties various generalized and meshless
numerical methods have been introduced in the recent decades. Partition of unity method PUFEM is one
of the important subclass of these methods which was introduced by Melenk and Babuska [1].

The Partition of Unity Method is used for a wide variety of engineering and scientific applications. Shadi
et al [2] solved two dimension transient heat diffusion problem using FEM and PUFEM. The authors
compared results for both the methods and showed the efficiency of PUFEM compared to FEM. A full
description of the use of PUFEM for different heat transfer applications can be found in their work. In
the current work we exploit the PUFEM to solve 3D transient diffusion problem and show its efficiency
as compared to FEM. In the proceeding section we present the formulation of the transient diffusion
problem with selected initial and boundary conditions followed by its weak formulation. In Section
3, we present partition of unity method to solve the problem considered with some numerical results
presented in Section 4. In Section 5 some concluding remarks are presented.

2. Weak formulation and numerical approximation

Given an open bounded domain Ω ⊂ R2 with boundary Γ and a given time interval ]0,T], we consider
the transient heat diffusion equation

∂u
∂t
− λ∆u = f (t,x), in ]0,T] × Ω (1)

where x = (x, y, z)T are the spatial coordinates, t is the time variable, λ > 0 is the diffusion coefficient
and f (t,x) represents the effects of internal heat sources/sinks. We consider an initial condition

u(t = 0,x) = U0(x), x ∈ Ω (2)
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where U0(x) is a prescribed initial field. We impose Robin–type boundary condition

∂u
∂n

+ hu = g, in ]0,T] × Γ (3)

Here n denotes the outward unit normal on the boundary Γ, and h ≥ 0 is the heat convection coefficient
on Γ, and g represents boundary sources.
To solve equation (1)-(3) numerically, the time interval is divided into Nt subintervals [tn , tn+1] with
duration ∆t = tn+1 − tn for n = 0,1, ...Nt and then discretized it using an implicit scheme

un+1 − un

δt
− λ∇2un+1 = f (tn+1,x) (4)

This can be rearranged as
−∇2un+1 + kun+1 = F (5)

where F and k are defined as

F = k
(
δt f (tn+1,x) + un

)
, k =

1
λδt

To solve equation (5) with FEM we first multiply the equation with a weighting function, W , and then
integrate over Ω

−
∫

Ω

W∇2un+1dΩ +

∫

Ω

W kun+1dΩ =

∫

Ω

W FdΩ (6)

Applying the divergence theorem, substituting the initial and boundary conditions and taking g=0, the
final weak form is given by

∫

Ω

(∇W · ∇un+1 + W k2un+1)dΩ +

∫

Γ

W hun+1dΓ=

∫

Ω

W FdΩ +

∫

Γ

Wg dΓ (7)

3. Solving the problem with FEM and PUFEM

To solve the weak form (7) with FEM, the domain Ω is approximated as a set of elements where the
temperature over each element is approximated using the nodal values and polynomial shape functions

u =

n∑

i=1

Niui (8)

In the PUFEM these nodal values ui are written as combination of enrichment functions. Here we pro-
pose using the following global exponential basis functions to enrich the solution space

Gq (x) =
e−

(
R0
C

)q
− e−

(
Rc
C

)q

1 − e−
(
Rc
C

)q , q = 1,2, ....Q (9)

With R0 :=| x − xc | being the distance from the function control point xc to the point x. The constants

Rc =

√
14

1.195 and C = 1
1.195 controls the shape of the exponential function Gq .

Considering the aforementioned enrichment, the nodal values might be rewritten as

ui =

Q∑

q=1

Aq
j

e−
(
R0
C

)q
− e−

(
Rc
C

)q

1 − e−
(
Rc
C

)q (10)

Using (10) to rewrite (8) we get

u =

M∑

j=1

Q∑

q=1

Aq
j Nj

e−
(
R0
C

)q
− e−

(
Rc
C

)q

1 − e−
(
Rc
C

)q (11)

Where FEM is now used to find the unknowns Aq
j instead of the nodal values, ui .
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Figure 1: 3D mesh used for FEM (left) and PUFEM (right)

4. Numerical Results

In this section, we present results for the transient heat diffusion problem given by (1) - (3) using the
classical FEM approach and the PUFEM approach. As a test example with consider a diffusion problem
in 3D domain Ω defined by (x ∈ Ω ; 0 ≤ x ≤ 2). For the proposed problem, reaction term f (t,x), the
boundary function g and the initial condition u0(x) are chosen such that the exact solution is given by

U (x, t) = x20(2 − x)20y20(2 − y)20z20(2 − z)20(1 − e−λt ) (12)

where t is the time variable and x = (x, y, z)T are the spatial coordinates. To quantify the error in both
FEM and PUFEM, we use the l2 norm error defined as

l2 =
| |u −U | |L2 (Ω)

| |U | |L2 (Ω)
× 100 (13)

where u and U are the numerical and exact solutions respectively. Our aim is to compare the results
of the proposed problem using the standard FEM and the PUFEM. For both the FEM and PUFEM
computations we use the parameter h=1, the heat diffusion coefficient λ=0.1 and the time step value ∆t
=0.001. All integrals over Ω are evaluated numerically using Gaussian quadrature with 20 integration
points in each direction for PUFEM and 2 integration points for FEM. A direct solver is used to solve the
resulting system of equations. For convergence of solution, we considered h-refinement for FEM and Q
refinement for PUFEM. In case of FEM, we started with a coarse mesh of 1000 elements having total
1331 degrees of freedoms (DoFs) with which we get l2 error of 8.7 % at t=0.05. We refined the mesh
gradually until we get l2 error of 0.62 % with 27000 elements having total 29791 DoFs. For the PUFEM
we used a fixed mesh of 216 elements and four different number of enrichment functions Q = 3,4,5 and
6 having total 1029, 1372, 1715 and 2058 DoFs respectively. In case of PUFEM we get a comparable
l2 error of 0.69 % with only 1715 DoFs. Figure 1 shows the meshes used to get a comparable error for
both FEM and PUFEM.

Figure 2 compares the convergence of FEM and PUFEM at different time intervals. On graph the log of
DoFs is plotted on the abscissa while on ordinate l2 error is plotted on logarithmic scale. It is clear from
the graphs that PUFEM converges much faster than FEM and gives better l2 error with lesser DoFs.
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Figure 2: L2 error for FEM and PUFEM with increasing no of DoFs

(a) exact solution (b) FEM (c) PUFEM

Figure 3: Temperature distribution in the middle of domain at t =0.05

Figure 3 shows the temperature distribution at t=0.05 for the exact, FEM and PUFEM solution with 4
enrichment functions. For both FEM and PUFEM we are getting the same temperature trends as that of
the exact solution but in case of PUFEM the total DoFs used to get the solution is only a small fractions
of that used to obtained the solution with FEM.

5. Conclusions

We used FEM and PUFEM to solve time-dependent heat diffusion problem in 3D domain. The solution
space was enriched with an approximate solution describing the heat diffusion decay. For a specified
no of DoFs, we calculated l2 error for both the methods. We concluded that for a comparable accuracy
PUFEM requires less DoFs than FEM. Numerical results show that with PUFEM the total DoFs are less
than 10 % of that used with FEM. Due to its higher accuracy and requiring less computational resources,
the PUFEM can be used as an attractive alternative for the solution of heat diffusion problems.
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ABSTRACT
An explicit Total Lagrangian mixed momentum/strains formulation [2], in the form of a system of first order conservation
laws, has been recently proposed to overcome the shortcomings posed by the traditional second order displacement-based
formulation, namely: (1) bending and volumetric locking difficulties; (2) hydrostatic pressure fluctuations; and (3) reduced
order of convergence for derived variables. Following the work of Bonet and Kulasegaram [4, 5], the main objective of
this paper is the adaptation of Corrected Smooth Particle Hydrodynamics (CSPH) in the context of Total Lagrangian
mixed formulation. Appropriate nodally conservative Jameson-Schmidt-Turkel (JST) stabilisation is introduced taking
advantage of the conservation laws. A mixed linear momentum/deformation gradient technique performs extremely well
in nearly incompressible bending dominated scenarios [1, 2] without the appearance of spurious pressure oscillations. As
both linear momentum and deformation gradient are used as primary variables of the system, equal order of approximation
is achieved in both fields. A series of numerical examples are carried out to assess the applicability and robustness of the
proposed algorithm.

Keywords: Conservation laws; SPH; Locking; Incompressibility; Fast dynamics; JST

1. Introduction

Dynamic explicit displacement-based finite element codes, based on low order finite element technology, are
commonly used for the simulation of large strain impact problems by aerospace, automotive, biomedical, de-
fence and manufacturing industries. In these codes, the 8-noded underintegrated hexahedral element is the
preferred option to model solid components. Many practical applications (i.e. crashworthiness and drop-impact
modelling), however, experience extremely large solid deformations accompanied by severe mesh distortion.
This may lead to poorly shaped elements unless some form of adaptive remeshing is applied.

From the viewpoint of spatial discretisation, the standard displacement-based formulation for low order ele-
ments is known to experience locking difficulties in nearly-incompressible, bending dominated scenarios. It is
also known that the use of linear interpolation within a finite element leads to second order convergence for the
primary variables, but one order less for derived variables. From the time discretisation point of view, the New-
mark method has a tendency to introduce high frequency noise in the solution field, especially in the vicinity of
sharp spatial gradients.

To overcome the shortcomings mentioned above, a mixed methodology [1, 2] is presented in the form of
a system of first order conservation laws, where the linear momentum and the deformation gradient tensor
are regarded as the two main conservation variables. In addition, this approach enables the deviatoric and
volumetric stresses (or strains) to converge at the same rate as the velocities (or displacements).

The main goal of this paper is the introduction of a stabilised Corrected Smooth Particle Hydrodynamics
(CSPH) methodology, tailor-made for this mixed formulation. The adoption of a system of first order con-
servation laws allows CFD techniques to be introduced for the very first time within the context of particle
methods, in the form of an adapted nodally conservative JST stabilisation [2]. JST will be used to provide ar-
tificial (numerical) dissipation and shock-capturing capabilities. In particular, the second order (harmonic) and
fourth order (biharmonic) operators employed in the JST stabilisation can be readily obtained by closed-form
differentiation of the interpolating kernel functions. A quintic kernel approximation [4, 5] is suitably used, due
to the presence of the biharmonic JST operator.
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2. Reversible elastodynamics

The motion of a deformable continuum body from an initial (or undeformed) configuration X ∈ V ⊂ R3 to
a current (or deformed) configuration x ∈ v(t) ⊂ R3 can be described by the relation x = φ(X, t), where φ
links each material particle in X to its current position x at time t during the motion. In the case of isothermal
process, a mixed formulation in the form of a system of first order conservation laws for elastodynamics can be
cast as [1, 2]:

∂p
∂t
− ∇0 · P(F) = ρ0b ;

∂F
∂t
− ∇0 ·

(
1
ρ0

p⊗ I
)

= 0. (1)

Here, p = ρ0v is the linear momentum per unit of undeformed volume, ρ0 is the material density, v represents the
velocity field, P is the first Piola-Kirchhoff stress tensor, b is the body force per unit mass, F is the deformation
gradient and I is the identity matrix. The notation ∇0 denotes the material gradient operator in undeformed
space, where [∇0]I ≡ ∂

∂XI
. In a more compact form, system (1) reads:

∂U
∂t

+
∂F I

∂XI
= S; ∀I = 1, 2, 3; (2)

where U is the vector of conservation variables, F I is the flux vector in the material direction I and S is the
source term described by:

U =

[
p
F

]
; FN = F INI =

[ −PN
− 1
ρ0

p⊗ N

]
; S =

[
ρ0b
0

]
. (3)

For closure of the above system (1), it is necessary to introduce an appropriate constitutive law by relating P
with F. For simplicity, a standard hyperelastic neo-Hookean model is used, whereby the first Piola P can be
decomposed into the summation of deviatoric, Pdev, and volumetric, Pvol , contributions:

P = Pdev+Pvol; Pdev = µJ−2/3
(
F − 1

3
(F : F) F−T

)
; Pvol = pH; p = κ(J−1); J = det F; H = JF−T .

(4)
3. Numerical methodology

In this section, the mixed p-F system described by equation (1) will be discretised in space using the CSPH
particle method with added dissipation from the JST technique (p-F JST-CSPH scheme). To achieve this, and
following the work of Bonet and co-authors [4, 5], the weak statement for the linear momentum evolution (1a)
must be obtained through the use of work-conjugate principles [1] and integration by parts:

∫

V
δv · ∂p

∂t
dV =

∫

V
δv · ρ0bdV +

∫

∂V
δv · tBdA −

∫

V
P : ∇0δv dV. (5)

Upon application of the particle integration on the above expression (5), and using the kernel approximation
∇0δv(X) =

∑
b∈Λb

X
Vb δvb ⊗ ∇0Wb(X) to express the arbitrary virtual velocity field δv, one obtains:

d pa

dt
= ρ0ba +

Aa

Va
tB
a +

∑

b∈Λb
a

Vb (Pb + Pa) ∇̃0Wb(Xa). (6)

where Vb is the volume fraction assigned to the particle in xb and Wb(X) is the kernel function value there.
Following References [3–6], the first Piola-Kirchhoff stress tensors {Pa, Pb} are further approximated by using
the coefficients directly from the particles. In (6), corrections are introduced on the kernel gradient to yield
∇̃0Wb(Xa), ensuring the correct evaluation of a gradient of a general linear function [4]. However, the above
semi-discrete formulation still suffers from the appearance of accumulated numerical instabilities over a long
term response. To put a remedy to this, in contrast to the dissipative mechanism introduced by Monaghan [4]
through viscous fluxes, here an adapted nodally conservative JST stabilisation D(pa) will be incorporated into
(6), mirroring CFD techniques [2]:

d pa

dt
= ρ0ba +

Aa

Va
tB
a +

∑

b∈Λb
a

Vb (Pb + Pa) ∇̃0Wb(Xa) + D(pa). (7)

202



The nodally conservative JST stabilisation is additively decomposed into a second order (harmonic) operator
D2(pa) and a fourth order (biharmonic) operator D4(pa):

D(pa) = D2(pa)+D4(pa) = κ(2)cp hmin

∑

b∈Λb
a

Vb
(
pb − pa

)
∆̃0Wb(Xa)−κ(4)cp h3

min

∑

b∈Λb
a

Vb
(
∆0 pb − ∆0 pa

)
∆̃0Wb(Xa),

(8)
where cp is the pressure wave speed, hmin is the particle spacing, κ(2) and κ(4) are user-defined parameters and
∆̃0 represents the corrected Laplacian operator [6]. In regard to the fibre map evolution (1b), the application of
particle collocation method [4] directly on (1b), along with the use of kernel approximation W, leads to:

dFa

dt
= ∇0v

∣∣∣
a ≈

∑

b∈Λb
a

Vb

ρ0

(
pb − pa

) ⊗ ∇̃0Wb(Xa). (9)

Finally, the set of stabilised particle equations (7) and (9) can then be explicitly integrated from time step tn

to tn+1. In this case, the explicit one-step two-stage Total Variation Diminishing Runge Kutta (TVD-RK) time
integrator [1, 2] is preferred due to its excellent TVD properties. Along with p and F, the geometry, x, is also
advanced in time using the exact same time integrator in a monolithic manner. As described in [1], the scheme
is suitably modified to guarantee the conservation of angular momentum.

4. Applications
A series of benchmark examples are assessed in order to test the applicability and effectiveness of the p-F
JST-CSPH mixed algorithm over the Total Lagrangian CSPH displacement based formulation [4, 5].

• Tension instability [5, 6]: a 1D bar is clamped on one end and left free at the other, where is given an
initial velocity of 5 m/s. Fig. 1a shows the velocity history at the free tip. The bar is discretised in space
using the p-F JST-CSPH method. The JST term here has a decisive effect towards the achievement of a
more accurate solution. The Total Lagrangian setting ensures the simulation does not suffer from tensile
instability, a recurring issue for solid mechanics SPH simulations.

• Bending scenario [1, 2]: a bottom end clamp is imposed at t = 0 s on a 3D column of length 6 m, with
unit cross section, initially travelling at constant side velocity v = 10 m/s. Fig. 1b testifies to the good
performance of the model in a bending dominated scenario.

• Robustness [1, 2]: the column of the previous example is subjected to a sinusoidal angular velocity and
its bottom is clamped. A comparison between fig. 1c (standard CSPH) and fig. 1d (p-F JST-CSPH)
illustrates the robustness of the mixed Total Lagrangian method [4, 5]: while the simulation in fig. 1c
fails after a few time steps, the one in fig. 1d accurately captures the structure behaviour.

• Extremely large distortions [6]: a rectangular region of 3 cm × 1 cm is punched with a constant vertical
velocity of −10 m/s on one-third of the top surface. As reported in [6], the standard CSPH method [4, 5]
is not capable of solving this problem, which involves extremely large distortions. This deficiency can be
alleviated using the proposed algorithm (see fig. 1e).

• Pressure instabilities [1, 2]: a 3D rubber cube of unit side length is left free at the top face and is con-
strained with rollers on the other sides. The right half of the domain experiences a prescribed punch
velocity of −100 m/s. As seen in fig. 1f, the p-F JST-CSPH algorithm eliminates the appearance of
non-physical pressure fluctuations in near incompressibility.

5. Conclusions
In this paper, a stabilised Total Lagrangian mixed formulation p-F JST-CSPH algorithm is introduced for
the numerical analysis of large strain solid dynamics. The methodology is based upon a system of first order
conservation laws, where the linear momentum p and the deformation gradient F are regarded as the primary
variables. A nodally conservative JST stabilisation is incorporated into the CSPH algorithm, taking advantange
of the conservation laws. Finally, results from numerical simulations of benchmark problems are presented in
order to demonstrate the applicability and robustness of the proposed methodology.
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(a) 1d tensile test, p-F JST-CSPH based model
(b) Bending simulation, p-F JST-CSPH based model

[1, 2]

(c) Robustness: Standard CSPH based model [4, 5] (d) Robustness: p-F JST-CSPH based model [1, 2]

(e) Large distortions: p-F JST-CSPH [1, 2]
(f) Pressure instabilities: [Top] Standard CSPH [4, 5];

[Bottom] p-F JST-CSPH [1, 2]
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ABSTRACT 

This paper presents a technique for the global layup optimization of laminated composite plates with initial 

buckling constraints based on lamination parameters. The method is computationally more efficient than 

previous solutions. The optimization problem is divided into two stages with continuous optimization followed 

by discrete optimization, in order to achieve the final optimum layup effectively using 0, 90, 45 and -45 plies. 

During the first stage, the optimal plate thickness and lamination parameters are obtained using VICONOPT, an 

exact finite strip software for the optimisation of prismatic plates and stiffened panels. In the second stage, a 

Matlab program based on the branch and bound method incorporating a layerwise technique is used to find the 

optimal stacking sequences to achieve the required lamination parameters obtained from stage 1. Moreover, the 

Matlab program is able to ensure the layup to be symmetric, balanced or both. 

 

Keywords: layup optimization, lamination parameter, branch and bound, buckling, composite  

  

1. Introduction  

Composite material is increasingly used in aerospace structures because of its improved specific 

properties and ability to be optimized for particular application. Currently, the industry is substituting 

laminated composites for more conventional aircraft materials, but their optimization is still a 

challenging task. Miki and Sugiyama [1] used lamination parameters to optimize orthotropic and 

symmetric composite plates, significantly reducing the number of design variables but the stacking 

sequence obtained was unable to satisfy the discrete constraint. Yamazaki [2] first solved this obstacle 

by using a two-step optimization method in which gradient-based optimization was used in the first 

step, with genetic algorithms (GAs) then used to implement discrete optimization in the second. 

Herencia et al [3] developed a finite element method with a closed form (CF) solution and an energy 

method (Rayleigh-Ritz) used to compute buckling constraints in the first step, and then a GA for the 

second step. In Liu and Butler’s work [4], GAs were also applied during the second stage, with 

VICONOPT (a buckling program based on the exact strip method and Wittrick-Williams algorithm 

[5]) used to minimise the panel’s weight at the first stage. Kennedy [6] used a branch and bound 

method which combined with a layerwise technique in the second step was able to match the optimal 

values of lamination parameters found by VICONOPT in the first step. 

 

2. Methodology 

In this paper, an alternative two stage process is implemented. During the first stage, lamination 

parameters are used as the design variables in VICONOPT. A linear optimizer which assumes local 

linear approximations to the buckling constraints is used in combination with a penalty function [6] to 

direct infeasible solutions towards feasible ones without violating any of the constraints. Thus the 

optimal lamination parameters {𝜉𝑗
𝑘} (𝑗 = 1,2,3; 𝑘 = 𝐴, 𝐵, 𝐷) and the laminate thickness h for the 

continuous problem are found. 

 

In the second stage, these lamination parameters are used as targets in a Matlab program which then 

finds the stacking sequences which give lamination parameters closest to these optimum values. The 

angles of each of the plies are restricted to four choices (i.e. 0° 90° 45° -45°), resulting in constraints 
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on the lamination parameters [7] described in Equation (1).  

 

                                      2|𝜉1
𝑘| − 𝜉2

𝑘−1≤0,   2|𝜉3
𝑘| + 𝜉2

𝑘−1≤0,   k = A, D                                           (1) 

  

Therefore the feasible region for  {𝜉𝑗
𝑘} (𝑗 = 1,2,3; 𝑘 = 𝐴, 𝐷) is triangular as shown in Figure 1. 

 
                                      𝜉2

𝐴, 𝜉2
𝐷                                                                      𝜉2

𝐴, 𝜉2
𝐷 

                                   1                                                                              1 

 

 

 

 
    -1        -0.5              0                 0.5          1                 -1     -0.5           0                0.5         1 
                                                                𝜉1
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𝐷                                                                𝜉3

𝐴, 𝜉3
𝐷 

 

 

                               
                               -1                                                                            -1  

 

                                   Figure 1: Feasible region for {𝜉𝑗
𝑘} (𝑗 = 1,2,3; 𝑘 = 𝐴, 𝐷) 

 

The Matlab program used can be used to constrain the layers to be symmetric, balanced or both. This 

programme which uses the branch and bound method calculates the contributions to the lamination 

parameter for each branch in different layers, as obtained from equation (2). 

 

                                                         [

𝜉1
𝑘

𝜉2
𝑘

𝜉3
𝑘

] = ∫ 𝑍𝑘
ℎ

2⁄
−ℎ

2⁄
[
cos 2𝜃
cos 4𝜃
sin 2𝜃

] 𝑑𝑧                                                       (2) 

 

where 𝑘 = 𝐴, 𝐵, 𝐷, 𝑍𝐴 =
1

ℎ
, 𝑍𝐵 =

4𝑧

ℎ2 , 𝑍𝐷 =
12𝑧2

ℎ3 , θ is the orientation of the fibres in laminas and z is 

the depth below the mid-plane. 

 
From the lamination parameters, objective function contributions (Γ) are obtained by calculating the 

difference between the actual lamination parameter (𝜉0°,±45°,90°)  and the required lamination 

parameter (𝜉𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑). Then from the summation of the objective function, the route to proceed with 

for the next branch (i.e. next layer) can be predicted, with the aim being to opt for a branch that is 

closest to the required lamination parameters.  

 

The layerwise technique employed in this program enhances the optimization process. The ply 

orientations are successively altered, working inwards from the outer plies which make the most 

important contributions to the flexural lamination parameters. Initially only two plies are altered at 

once, then four at once, and so on until in the final cycle all of them can be altered. Thus the branch-

and-bound method initially searches the stacking sequences by considering a small number of plies, 

so that good results can be obtained quickly by solving small problems. Subsequently, when 

considering larger numbers of plies, the previously found solutions give an upper bound on the 

objective function enabling many branches to be discarded without being explored. This layerwise 

approach helps to obtain the optimum layup efficiently whilst achieving a reduction in computational 

cost. 
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3. Examples and Results 

A simply supported laminated composite plate of width 100mm and length 150mm is subject to 

longitudinal compression with a compressive load 𝑃𝑑 of 10 kN and a shear load 𝑃𝑠 of 0.011 kN/mm. 

The initial buckling load 𝑃𝑐 for this plate is 10 kN. The ply thickness ℎ𝑝 is 0.1 mm and the initial 

laminate thickness is ℎ𝑖 1.6 mm. The initial ply orientations chosen for this example are arbitrary, the 

initial lamination parameters corresponding to this initial layup are: 𝜉1,
𝐴= 0.0625, 𝜉2,

𝐴= -0.125, 𝜉3,
𝐴= 

0.0625, 𝜉1,
𝐷= 0.0127, 𝜉2,

𝐷= -0.0723, 𝜉3,
𝐷= 0.0947,  𝜉1,

𝐵= -0.0078, 𝜉2,
𝐵= 0.1406, 𝜉3,

𝐵= 0.0859.  

 

For the normal case, the results are illustrated in Table 1. After the first stage, the required lamination 

parameters are obtained by VICONOPT. Due to the initial buckling load 𝑃𝑐  which is equal to the 

design load 𝑃𝑑 , the reduction in laminate thickness is slight, and after rounding the optimized 

thickness ℎ0 to the nearest integer number of laminate thickness, the thickness of the optimized plate 

is 1.6 mm. The optimal sequences are listed at the bottom of the table, the value Γ - the difference 

between the lamination parameters of this sequences and the required lamination parameters being 

only 0.1379. The initial buckling load after optimization is 10.21 kN and the Matlab solution time is 

141 seconds on a 4.00 GHz PC. 

 
Table 1: Results for normal case 

 
 𝜉1

𝐴 𝜉2
𝐴 𝜉3

𝐴 𝜉1
𝐷 𝜉2

𝐷 𝜉3
𝐷 𝜉1

𝐵 𝜉2
𝐵 𝜉3

𝐵 ℎ0 ℎ𝑖⁄  

 After stage 1 

  0.0918  -0.1280  0.0334  -0.2372  -0.3766  -0.0930  -0.0095  0.0429  -0.0093  0.991 

 After stage 2 

  0.0625  -0.125  0.0625  -0.2158    -0.3887  0.1006  0.0078  0.0469  -0.0234     1 

Ply 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Γ 𝑃𝑒, kN Time, s 

 90 -45 45 45 45 0  -45 0 -45 0 0 90  90 45 45 -45 0.1379 10.21 141 

 

Table 2 demonstrates the results for the symmetric case, in which the three lamination parameters 

𝜉1,2,3
𝐵  were forced to be zero to guarantee symmetric stacking sequences. In this case the final value of 

Γ is 0.2696 and the solution time is 0.4 second. 

 
Table 2: Results for symmetric case 

 
 𝜉1

𝐴 𝜉2
𝐴 𝜉3

𝐴 𝜉1
𝐷 𝜉2

𝐷 𝜉3
𝐷 𝜉1

𝐵 𝜉2
𝐵 𝜉3

𝐵 ℎ0 ℎ𝑖⁄  

 After stage 1 

  0.0431 -0.1143  0.0431  -0.2334  -0.3466   0.075       0       0       0  0.992 

 After stage 2 

       0       0       0  -0.1875    -0.3281  0.0703       0       0       0     1 

Ply 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Γ 𝑃𝑒, kN Time, s 

 45 90 -45 -45 0 45  90 0   0 90 45 0  -45 -45 90 45 0.2696 10.02      0.4 

 

The balanced case is shown in Table 3. The lamination parameter 𝜉3
𝐴 is forced to be zero to achieve 

the balanced layup. The final value of Γ is 0.367, solution time is 10 seconds.  
 

Table 3: Results for balanced case 

 
 𝜉1

𝐴 𝜉2
𝐴 𝜉3

𝐴 𝜉1
𝐷 𝜉2

𝐷 𝜉3
𝐷 𝜉1

𝐵 𝜉2
𝐵 𝜉3

𝐵 ℎ0 ℎ𝑖⁄  

 After stage 1 

  0.0349  -0.1526       0  -0.2458  -0.3199  0.1188  0.0152  0.0805  0.0552  0.994 

 After stage 2 

       0    -0.25       0  -0.2344    -0.3086  0.0586  0.0156  -0.0625  0.0469     1 

Ply 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Γ 𝑃𝑒, kN Time, s 

 90 -45 45 45 0  -45  -45 90   0 45 0 45  -45 -45 90 45 0.367 10.13 10 
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When the stacking sequence is required to be symmetric and balanced, the four lamination parameters 

𝜉3
𝐴, 𝜉1,2,3

𝐵 , must be zero during the two-stages of the optimization. Table 4 illustrates the results of this 

case in which Γ = 0.244 and the solution time for the second stage is 0.15 seconds. 
 

                                                  

                                                  Table 4: Results for symmetric and balanced case 

 
 𝜉1

𝐴 𝜉2
𝐴 𝜉3

𝐴 𝜉1
𝐷 𝜉2

𝐷 𝜉3
𝐷 𝜉1

𝐵 𝜉2
𝐵 𝜉3

𝐵 ℎ0 ℎ𝑖⁄  

 After stage 1 

  0.0383  -0.1099       0  -0.2422  -0.3512  0.0842       0       0       0  0.991 

 After stage 2 

       0       0       0  -0.2813    -0.375  0.1172       0       0       0     1 

Ply 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Γ 𝑃𝑒, kN Time, s 

 45 -45 90 90 45 -45   0 0   0 0 -45 45  90 90 -45 45 0.244 10 0.15 

 

The values of Γ in these four different cases are all close to zero illustrating the excellent 

performance of the Matlab program. All of the final sequences given by the second stage can carry the 

design load. The time to complete the optimization for these examples is short, especially when the 

layup is forced to be symmetric and balanced, showing the ability of the method to reduce the search 

time. 

 

4. Conclusions 

A new two-stage method to perform global layup optimization of laminated composite plates with 

initial buckling constraints has been presented. In the first stage, lamination parameters are used as 

design variables in VICONOPT to find the optimal plate thickness and required lamination 

parameters for stage two. The Matlab program used in the second stage employs the branch and 

bound method and a layerwise technique to find the optimal stacking sequences which can be forced 

to be symmetric, balanced or both. The results of four examples with different requirements presented 

in this paper show the versatility of this two-stage method, with the time taken for this global 

optimization illustrating its efficiency.   
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ABSTRACT

The roughness of crack surfaces of heterogeneous quasi-brittle materials such as concrete, bones, rock and wood
is linked to the spatial extension of the fracture process zone. Modelling of this zone is required to predict the
influence of size on the nominal strength of geometrical similar structures made of quasi-brittle materials or crack
spacing in reinforced structures. The aim of this study is to further investigate the link between the heterogeneity
of the material and the roughness of crack surface by means of discrete network analyses of the failure process of
heterogeneous quasi-brittle materials. In the present study, a 3D periodic unit cell of a irregular structural network
representing a heterogeneous material is subjected to direct tension. The material meso-structure is modelled by a
random field of the material strength mapped on the irregular network of discrete elements. The influence of the
standard deviation of the random fields on the crack roughness is investigated.

Key Words: Fracture; roughness; discrete; dissipation; heterogeneous material

1. Introduction
The fracture process in specimens made of heterogeneous quasi-brittle materials such as concrete, bones,
rock and wood, subjected to direct tension is characterised by a transition from distributedmicro-cracking
to a localised stress-free macroscopic crack separating the specimen, whereby the final stress-free crack
surface is rough. In [1], it was aimed to developed a procedure to link this roughness of the stress-
free crack surface to the width of the fracture process zone, which could then be used to calibrate the
interaction radius of nonlocal constitutive models for predicting the failure process of structures made
of these heterogeneous materials (Figure 1). The key of this approach was to determine a measure from
the roughness, which could be linked to the distribution of dissipated energy obtained from models to
be calibrated. This measure is the standard deviation of the height of the crack surface from the mean
crack plane. One of the assumptions of this approach was that the large majority of fracture energy
was dissipated by the localised crack and not the distributed micro-cracking. This was supported by 2D
numerical structural network analyses of specimenswith randommaterial strength properties subjected to
direct tension, and experimental results reported in the literature [2]. In [1], the new calibration approach
was applied to the fracture of a concrete beam subjected to three-point bending, which contained low
strength aggregates. The roughness of the crack surface measured in these experiments was small, which
was explained by low strength inclusions, which fractured during the tests. In the present study, the
roughness of crack surfaces obtained from direct tensile tests is further investigated by means of a
numerical approach based on a structural network model. The new contribution is the extension of the
previous 2D modelling approach to 3D and an investigation of the influence of the standard deviation of
the random material strength on the roughness.

2. Method
The method to computationally determine the roughness of crack surfaces of direct tensile tests is
presented here by describing the discretisation approach, constitutive model, random field and roughness
determination.

The spatial discretisation of the direct tensile specimens is performed using a 3D structural network
model described in [3], combined with a 3D periodic cell proposed in [4] (Figure 2). The structural
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Figure 1: Schematic overview of the calibration strategy of the interaction radius of nonlocal constitutive models:
Roughnessmeasurements from experiments or analyses (left top) are used to determine the distribution of dissipated
energy (left bottom). This distribution is used to calibrate the nonlocal constitutive model (right bottom) which is
then used in structural analysis. Adapted from [1].

(a) (b) (c)

Figure 2: 3D discrete network model: (a) 3D network element, (b) schematic periodic network in the cell with
elements crossing the boundary, and (c) 3D periodic cell of discrete elements.
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network element in Figure 2a has three translational and three rotational degrees of freedom at each
node. The spatial arrangement of the network is based on a Delaunay and Voronoi tessellation of a
periodically arranged set of random points following the approach described in [4]. The vertices of the
Delaunay tetrahedra are used as nodes for the structural network elements, which are placed on the edges
of the tetrahedra. The mid cross-sections of the network elements are the facets of the Voronoi polyhedra
associated with edges of the Delaunay tetrahedra [3]. The average element length is controlled by the
minimum spacing dmin of the randomly placed points used for the tessellations.

The degrees of freedom of the nodes of an element are linked by kinematic relationships to displacement
jumps at point C in Figure 2a, which enters the scalar damage model. The input parameters are the
modulus of elasticity E, the strain at tensile strength ε0 = f t/E and the displacement threshold wf
controlling the softening described by the damage model [1]. The strength envelope is an ellipsoid
determined by the tensile strength f t, the compressive strength fc = c f t and the shear strength fq = q f t.

The heterogeneity of the material is represented by an autocorrelated Gaussian random field of the strain
threshold ε0. The input parameters of the random field are the autocorrelation length la and the mean ε̄0
and a coefficient of variation cv of the Gaussian distribution. The values of the random field are mapped
onto the structural network. The autocorrelation length la is chosen to be greater than the spacing dmin
used for the network generation.

The roughness of crack surfaces from the analyses is determined from the weighted average and standard
deviation of the dissipated energy as described in [1]. Firstly, the dissipated energy and the heights (in the
direction of loading) of mid-cross-sections are determined. Then, the weighted mean z̄ and the standard
deviation ∆h of all heights is calculated.

3. Analyses and Results
The influence of the coefficient of variation of the random field of strength used for the direct tensile
specimen on the surface roughness was investigated. The structural network for a periodic cell of edge
length h = 0.1 m was discretised using dmin = 3 mm. For the random field, five coefficient of variation
values cv = 0.05, 0.1, 0.2, 0.4 and 0.6 were selected. Furthermore, the autocorrelation length was chosen
as la = 4 mm. The mean values of the input parameters are E = 30 MPa, ε̄0 = 0.0001 and wf = 0.00004,
c = 10 and q = 2. For each cv, 20 analyses with different networks and randomfields were performed. The
periodic cell was subjected to an incrementally applied axial displacement of 0.2 mm, while keeping the
average lateral stresses equal to zero. The axial stress-displacement curve and crack patterns at different
stages are shown in Figure 3 for one random analysis with cv = 0.2. The crack patterns are visualised in
the form of orange mid-cross-section at which energy is dissipated at this stage of analysis.

Initially, energy is dissipated throughout the specimen. However, very soon after the peak, the zone in
which energy is dissipated shrinks and the fracture process zone is mainly formed by one rough crack,
which dissipates the majority of energy. This evolution of the fracture process zone is very similar to the
2D results in [1]. According to the present simulations, the width of the fracture process zone is mainly
controlled by the roughness of the crack. It should be noted that because of the use of a periodic cell, the
location of this crack plane within the specimen depends only on the specific realisation of the random
field, and not the specimen boundaries.

The influence of the coefficient of variation cv on the roughness of the crack was investigate by evaluation
the weighted standard deviation ∆h of the mid-cross-sections. The preliminary analyses so far, show that
an increase of cv results in an increase of the roughness ∆h. The preliminary results indicate that stronger
inclusions represented by larger standard deviations result in rougher cracks.

4. Conclusions
3D structural network analyses of direct tension of a heterogeneous quasi-brittle material have shown that
the energy during the fracture process was mainly dissipated in a localised rough crack plane. Therefore,
the width of the fracture process was determined by the roughness of the crack plane. An increase of the
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Figure 3: Periodic cell subjected to direct tension: Stress versus displacement and crack patterns (orange mid-
cross-sections) at four stages of analysis.

coefficient of variation of the random field of tensile strength resulted in an increase of the roughness of
the crack plane.
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ABSTRACT 

In this paper, a progressive damage model for single-side bonded repaired composites laminates under 

compressive loading is introduced. Continuum damage model and cohesive zone model including stiffness 

degradation schemes are employed in the nonlinear FEM to predict the initiation and evolution of damage in the 

repaired structures. In proposed model, solid elements are applied for composite layers and cohesive elements 

for the adhesive. The numerical results of failure loads under compression shows consistency with experimental 

ones. The damage evolution is studied with analysis of loading process and failure propagation in adhesive. It 

indicates buckling deformation initiates the damage in plate and finally make the repaired structure crush. 

 

Keywords: bonded repair; composite laminates; compression; buckling; progressive damage 

  

1. Introduction  

Composite laminates are widely applied in high performance industries such as aerospace and other 

industries like automobile and civil construction due to its traits in weight loss, low energy cost and 

well developed mechanical behaviours. However, damage varying from production, appliance to 

maintenance cannot be totally removed, which could reduce the safety and reliability of structures. 

Considering the replacement costs of the damaged composite parts would be quite high, effective 

repair techniques have increasingly drew engineers’ attention. Bonded patch repair, through removing 

the damaged material and adhesively bonding several patches on outfaces of damaged structures, 

surmount the shortcomings of mechanical repair (e.g. reverting and fastening). Specifically, it can be 

divided into single bond (SB) on one side and double bonds (DB) on both sides. Since the peel stress 

on the boundary of bonded patches is quite high, it is generally applied as temporary repair in highly 

loaded structures and a permanent method for lightly loaded and slightly damaged parts.  

 

Considering composites structures are generally thin walled with modes of failure caused by 

compression, the compressive behaviour should not be ignored in designing process. This paper 

establishes a progressive damage model for SB repaired laminates under compressive loading. 

Continuum damage model and cohesive zone model are employed in the nonlinear FEM to predict the 

initiation and evolution of damage in the repaired structures. The finite element model is discretized 

by solid elements accounting for composite layers and cohesive elements for the adhesive. All the 

material softening laws and failure modes are implemented with ABAQUS UMAT code. The failure 

strengths are predicted comparing with experimental outcomes from Campilho [1]. Damage 

propagation of one typical specimen is also studied. 
 

2. Damage Model  
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Fibre failure, matrix failure and delamination failure in composites are all considered here with 

Hashin criteria [2] for the damage initiation under a three-dimensional state of stress in composites. 

The relations between failure modes are illustrated in Table 1. 
 

Table 1: Failure indexes corresponding to different failure modes 

 

Fibre failure in tension (
11 0σ  ) 2 2 2 21311 12

1

12 13

( ) ( ) ( )
T

σσ σ
e

X S S
    

Fibere failure in compression (
11 < 0σ ) 2 211

1( )
C

σ
e

X
  

Matrix cracking in tension (
22 0σ  ) 2 2 2 22322 12

2

12 23

( ) ( ) ( )

T

σσ σ
e

Y S S
    

Matrix cracking in compression (
22 < 0σ ) 2 2 2 22322 12

2

12 23

( ) ( ) ( )
C

σσ σ
e

Y S S
    

Delamination in tension (
33 0σ  ) 2 2 2 233 13 23

3

13 23

( ) ( ) ( )
T

σ σ σ
e

Z S S
    

Delamination in compression (
33 < 0σ ) 2 2 2 233 13 23

3

13 23

( ) ( ) ( )
C

σ σ σ
e

Z S S
    

*Note:1- and 2- axis are parallel and transverse to the fibres, respectively, while the 3-axis represents the 

normal direction, σij (i = 1, 2, 3; j=1,2,3) are the stress components in ij directions, XT、YT、ZT  are relative 

material strengths in tension, XC、YC、ZC are strengths in compression and Sij stand for shear strengths, and 

ei
2(i = 1,2,3) are relative damage indexes. 

 

After the initiation of damage in composites, damage variables are introduced in the continuum 

damage model to simulate its decreasing load capacity. 

2

min{1, },  
1

1,  2,  3
i

i i
e ε

d
ε







                                                          (1) 

Where   is the McCauley operator defined as  | | / 2a a a  , ε is the fitting parameter adjacent to 

1, and 2

ie  are attained from equation in Table 1. Therefore, the reduced stiffness matrix in damaged 

configuration is expressed as follows. 
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A bilinear cohesive zone model [3] is applied to model the mechanical behaviour in the adhesive 

between the plate and bonded patch. The damage initiation law is the following quadratic equation. 

2 2 2

n s t

n s t

1
t t t

T T T

     
       
    

                                                          (2) 

where ti (i=n,s,t) are the normal and shear tractions, and Ti (i=n,s,t) are the corresponding strengths. 

 

Damage evolution is modelled by quadratic fracture energetic criterion. 

2 22

s tn

C C C

n s t

1
G GG

G G G

    
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where 
iG (i=n,s,t) are the current strain energy release rate and C

iG are the corresponding critical 

energy release rate. When Eq.(3) satisfied, damage development occurs and stresses are released. 

 

3. Numerical models based on FEM  

To validate the efficiency of the proposed failure model, numerical studies based on FEM are 

established referring to the single bonded specimens tested by Campilho in experiments [1]. The 

geometrical dimension of the bonded repair laminates is shown in Figure 1(a). The stacking sequence 

of plate is [02/902/02/902]s. The thickness of adhesive is 0.2mm. 

 

                             
(a) Geometric dimension                                    (b) Finite element model (quarter) 

Figure 1: Dimension and finite element model of SB specimen 

 

The material system of composites applied in simulation is TEXIPREG HS 160 RM, and the adhesive 

material is Araldite®2015. All the properties are given in Table 2. 

 
Table 2: Mechanical Properties 

 

TEXIPREG HS 160 RM 

E11/GPa E22=E33/GPa ν12=ν13 ν23 
G12= 

G13/GPa 
G23/GPa XT/MPa XC/MPa 

YT= 

ZT/MPa 

YC= 

ZC/MPa 
S/MPa 

109 8.819 0.342 0.380 4.315 3.2 1401 1132 59 211 54 

Araldite®2015 

E/GPa ν G/MPa tn/MPa ts=tt/MPa Gn/J·mm-1 Gs=Gt/J·mm-1 

1.85 0.3 650 23 22.8 0.43 4.70 
 

 

Composite materials in the plate and patch are simulated with C3D8R solid elements in ABAQUS 

while COH3D8 cohesive elements are employed for adhesive layer. All the material softening law 

and failure modes are implemented with ABAQUS UMAT code. A typical finite quarter model is 

shown in Figure 1(b) to illustrate the discretization scheme. To ensure the accuracy of simulation, the 

repair area in the center is refined with smaller element size, and the constraints as well as loading 

patterns are consistent with experiments from Campilho [1]. 

 

4. Results  

Table 3 shows the comparison between the simulation results of failure loads under compression and 

experimental ones differing in patch parameters. It is noticed that the predictions of strengths agree 

well with experiments. It indicates the damage model proposed is effective. Comparing the failure 

loads of these specimens, it should be noted that the repair improves the mechanical performance of 

damaged structures. 

 

A typical load-displacement curve and damage evolution for specimen C are demonstrated in Figure 2 

and Figure 3, respectively. Damage firstly initiate in the adhesive layer along with the loading 

direction (Figure 3(a)). It is due to the stress concentration at the edge of the damaged hole and 
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stiffness difference between the plate and patch. Since the damage is developing in adhesive, its 

capacity of transferring loads from plate to patch is decreased. It indicates the patch support less for 

the loading and loads are distributed more on the plate. Then, the specimen is experiencing buckling 

as the displacement loading increased. It should be noted that stiffness reduction occurs when the 

structure start buckling in Figure 2. And as shown in Figure 3(c), the damage in adhesive develops 

perpendicular to the loading direction due to the buckling deformation. Afterwards, with continuously 

increased compressive loading, deformation caused by buckling of the structure becomes serious and 

the failure initiates in the plate. It is clearly seen significant stiffness reduction of the structure in 

Figure 2. The maximum load is taken at the point “Failure load” and then the repaired structure begins 

to collapse. 

 
Table 3: Failure loads of single bonded specimens 

 

 
Diameter/mm Thickness/mm 

Stacking 

Sequence 

Numerical 

Results / KN 

Experimental 

Results / KN 
Error / % 

A Without Repair 20.1 21.2 5.19% 

B 20 1.2 [02/902]s 21.6 23.9 9.62% 

C 30 1.2 [02/902]s 24.9 25.7 3.11% 

D 20 0.6 [0/90]s 22.4 23.7 5.49% 

E 30 1.8 [02/902/02]s 26.2 24.6 6.50% 

F 20 2.4 [02/902/02/902]s 24.5 25.4 3.54% 

                      

Figure 2: Load-Displacement curve          Figure 3: Adhesive failure propagation process 
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ABSTRACT

The extended boundary element method (XBEM) is a modification from the standard BEM, where enrichment
functions are embedded into the BEM formulation. The results obtained with this method were seen to be accurate
and stable, being especially useful for fracture problems. However, the method suffers from the presence of a linear
system containing unsymmetric and fully populated matrices which needs to be solved in order to get the solution
of the boundary problem. This can be computationally expensive for problems dealing with multiple cracks for
instance. Adaptive cross approximation (ACA) is used to reduce the number of operations necessary to solve the
linear system of equations for a fracture problem with an anisotropic material.

Key Words: Extended boundary element method; Adaptive Cross Approximation; Anisotropic materials, Fracture
mechanics

1. Introduction
The boundary element method (BEM) relies on a mathematical formulation that allows one to model
a given domain considering only its boundaries. One of the advantages of this approach is to obtain a
reduced mesh due to the boundary only discretisation. However, the linear system of equations is fully
populated and non-symmetric. Large problems can become cumbersome to be solved numerically.

For this reason, adaptive cross approximation (ACA) has become a popular technique to accelerate
the computational solution time. The idea of the method is to use the smoothness of the operator to
approximate the so called admissible blocks, thus accelerating the evaluation of the matrix vector product
that lies within each iteration of an iterative solver.

The extended boundary element method (XBEM) has been proposed by [1] for isotropic materials and
extended to anisotropic materials by [2]. In this case the additional degrees of freedom correspond to
the stress intensity factors (SIF), which are the key parameters in fracture mechanics problems. The
advantage of this formulation is that the degrees of freedom do not depend on the number of enriched
nodes, as they correspond to the SIF. Moreover, there is no need for post-processing (such as the J-
integral) to obtain the SIF, since they are calculated as part of the displacement solution. In this work we
tackle for the first time the use of ACA in an XBEM formulation for anisotropic 2D materials.

2. Extended boundary element method (XBEM)

A dual BEM formulation is modified with the enrichment as defined in [2]. Two boundary integral equa-
tions (BIE), are necessary to avoid the mathematical degeneration which arises from the coincidence of
the crack faces. The displacement boundary integral equation (DBIE) and the traction boundary integral
equation (TBIE) are given by [2]

ci j (ξ)u j (ξ) +
∫

Γ

p∗i j (x,ξ)u j (x)dΓ(x) +
∫

Γc

p∗i j (x,ξ)K̃l j Fl j (ξ)aαk dΓ(x) =
∫

Γ

u∗i j (x,ξ)pj (x)dΓ(x)

(1)

ci j (ξ)pj (ξ) + Nr

∫

Γ

s∗r i j (x,ξ)u j (x)dΓ(x) + Nr

∫

Γc

s∗r i j (x,ξ)K̃l jFl j (ξ)dΓ(x) = Nr

∫

Γ

d∗r i j (x,ξ)pj (x)dΓ(x)

(2)
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where Γc = Γ+ ∪ Γ− stands for the crack surfaces Γ+ and Γ−, Nr is the normal at the observation point x,
Fl j is the enrichment function and K̃l j is the additional degree of freedom which stands for the SIF. Let
us recall that strongly singular and hypersingular terms arise from the integration of the p∗i j , d∗r i j and
s∗r i j kernels and they have to regularised before numerical integration is possible. More details about the
regularisation procedure and the XBEM formulation can be found in [1].

The enrichment function used in Eqs. (1) and (2) are the same as defined in [3] for anisotropic materials
using the extended finite element method (XFEM).

3. Adaptive Cross Approximation (ACA)

In this paper the form of ACA used is fully pivoted ACA. While partially pivoted ACA allows for reduc-
tions in storage and generation of the system matrix, the subject of this paper is addressing reductions in
computations in the solution. If the number of operations required for generation and storage are each
proportional to the square of the dimension of the system matrix, the direct solution of the linear system
requires a number of operations proportional to its cube. Iterative solvers such as GMRES reduce the
complexity but involve an expensive matrix vector product within each iteration.

In order for ACA to produce an accurate low rank approximation, the matrix must be asymptotically
smooth. In BEM, this smoothness is only found where the collocation nodes are well separated geomet-
rically from the nodes upon which they are being integrated over. The admissibility of a matrix block
is assessed based on geometric considerations, by performing hierarchical clustering [4], before ACA
is applied. The whole matrix is recursively subdivided until it satisfies an admissibility criterion or a
minimum block size has been reached.

Performing hierarchical clustering on a dual formulated BEM matrix requires separation of the boundary
nodes and the crack nodes at all times [5]. Discontinuous elements are used on the crack, with one surface
corresponding to the DBIE and the other corresponding to the TBIE. For this reason, when constructing
the hierarchical cluster tree, the crack surfaces must be separated from the external boundaries, and both
crack surfaces must be separated from each other in collocation, but can be considered as a whole when
being integrated over by for a remote collocation point. Thus it is important to place nodes on opposing
crack surfaces in different clusters row-wise, but unimportant column-wise in the matrix. This creates
asymmetry in the structure of the hierarchical cluster tree.

Constraints other than the admissibility criterion must be put in place to assure that these conditions
are met, as although the geometry of crack nodes are usually clearly distinguishable from those of the
boundary, this is not always the case. Furthermore, coincident nodes on opposite crack surfaces will be
clustered together unless the algorithm is instructed otherwise.

A detailed explanation about ACA applied to BEM can be found in [6].

4. Results

The results are presented for a two dimensional anisotropic plate containing 12 internal cracks. The
problem is discretised with 2000 nodes for the external boundaries and 300 nodes per crack. Continuous
elements are employed on the external boundaries and discontinuous elements are used on the crack
faces. There are 9248 degrees of freedom (DOF) in total, of which 48 DOFs correspond to the SIFs of
each crack (mode I and II). The material properties are given by: C11 = 117.97 GPa, C12 = 14.19 GPa,
C16 = 35.43 GPa, C22 = 15.64 GPa, C26 = 7.49 GPa, C66 = 21.38 GPa. Figure 1 represents the matrix
structure resulting from the hierarchical clustering of the problem.

Table 1 illustrates the savings of solving the linear system of equations using ACA. The solution error is
defined as

error =
| |xACA − x| |F
| |x| |F (3)

where xACA is the displacement solution when the linear system of equations was approximated with
ACA, x is the displacement solution obtained by solving the full system using a direct solver and | |(.) | |F
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Figure 1: : ACA generated matrix partitioning.

stands for the Frobenius norm. The parameter εC is the threshold error of the ACA approximation using
the Frobenius norm.

Table 1: Operational savings data

εC
Solution error

Operations Saving(%)
Total (%) SIFs (%)

1 × 10−4 0.310 0.130 6.562 × 106 92.3
1 × 10−5 0.022 0.018 7.499 × 106 91.2
1 × 10−6 1.27 × 10−5 1.26 × 10−5 8.449 × 106 90.1

The data given as ’Operations’ is the number of computations required to perform a matrix vector prod-
uct using the approximated system matrix. This is the total sum of O (r (N+M )) for every low rank block
combined with O (N M ) for every full rank block, where r represents the rank and N and M represent
the rows and columns, respectively. ’Saving’ stands for the gain in number of computations required to
perform the full rank matrix-vector product.

The results show that reductions in εC , as expected, improves the accuracy of the eventual solution.
ACA is successfully applied to all parts of the matrix, with exception of the last 48 rows and columns.
For the latter, the columns are partitioned into 50×48 blocks and then approximated using ACA. For the
former, these are extra rows necessary to balance the system of equations as shown in [1], and contain
the so called tying equations. These rows are sparsely populated, therefore are not considered for ACA.
Applying these configurations produces an accurate solution with computational savings in excess of
90% per iteration and low errors for both displacement field and SIFs.

In Table 1 the error for the Frobenius norm is the same for boundary displacements and the SIFs in the
solution vector. However, it is known that the terms of the linear system of equations associated to the
enriched terms can be of very different order of magnitude from the other terms. Moreover, it might be
speculated that the accuracy of these terms is strongly influential over the accuracy of the computed SIFs.
In this case, it is worthwhile, then, to consider lower error in the ACA approximation for the sub-blocks
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containing terms related to the SIF and allowing a higher error in approximating all other sub-blocks.
Table 2 analyses this issue considering two errors for the Frobenius norm, εC and εSIF . One can verify
that the error in SIFs is strongly governed by εC , and less so by εSIF for the SIFs reduce slightly even
for high accuracy, nevertheless the number of operations increases.

Table 2: Operational savings data for different levels of error

εC εSIF
Solution error

Operations Saving(%)
Total (%) SIFs (%)

1 × 10−3 1 × 10−4 2.995 1.407 5.515 × 106 93.55
1 × 10−8 2.995 1.404 5.627 × 106 92.42

1 × 10−4 1 × 10−4 0.306 0.127 6.507 × 106 92.39
1 × 10−8 0.306 0.125 6.618 × 106 92.26

1 × 10−5 1 × 10−4 0.023 0.017 7.471 × 106 91.26
1 × 10−8 0.022 0.018 7.583 × 106 91.13

5. Conclusions

In this work we applied ACA with the XBEM for solving an anisotropic fracture problem for the first
time in literature. ACA is employed as a method to accelerate the solution of the system of equations
obtained from the XBEM formulation. The achieved saving times are more than 90% of efficiency
compared to solving the system using regular Gauss elimination. We are looking forward to extend this
formulation to deal with 3D problems.
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ABSTRACT 

Hydraulic fracturing is a commonly used method for producing oil and gas from reservoirs. Analysis 

of hydraulic fracturing requires the study of fracture mechanics and fluids mechanics. The focus of 

this paper is to investigate the initiation and growth of cracks in a typical well. The finite element 

method is used to simulate the process of hydraulic fracturing, calculating the effective parameters in 

fracture analysis and studying the fracture characteristics under different conditions. According to the 

linear elastic fracture mechanics, if the stress intensity factor is equal to fracture toughness, the crack 

will propagate. The fracture parameters related to a semi-elliptical crack are studied using the finite 

element software ANSYS. The numerical results indicate that the stress intensity factor increases by 

increasing the crack length. The crack length increases by increasing the fluid leakage rate. The 

relationship between stress intensity factor, leakage rate and crack length (which represents crack 

growth in each step) is investigated. 

 

Key words: hydraulic fracturing; stress intensity factor; crack; leakage; crack length, finite element 

 

1-Introduction 

Hydraulic fracturing is a fracturing processes initiated from a pressurized open borehole section into 

rock formations. The process is characterized by solid-fluid interaction. On the solid side, the rock 

formation deforms with the propagation of the fracture front and pressurization of the fracture face. 

On the other side, the fluid flows at high pressure into the narrow fracture cavity. At the same time, 

the fluid may also infiltrate into the porous rock. Even in the most basic form, hydraulic fracturing is a 

complex process, not just because of the heterogeneity of the earth structure, and indeterminate in-situ 

stresses or rock behaviour, but also because of the physical complexities of the problem. It involves 

coupling of three processes: 

1- Mechanical deformation of the formation caused by the pressure inside the fracture,  

2- Fluid flow within the fracture networks, 

3- Fracture propagation.  

2-Hydraulic fracturing mechanism 

Hydraulic fracturing is a 3D phenomenon. Modelling of hydraulic fracturing involves determination 

of crack width, length and height and distribution of fluid pressure inside the crack as a function of 

time and location for a known flow rate or known fluid pressure in the borehole. But modelling of this 

3 dimensional phenomenon is not easy because hydraulic fracturing includes coupling of at least three 

processes. 

In order to model hydraulic fracturing, it is necessary to solve three governing equations: 

1) Geo-mechanical behaviour of the reservoir, 

2) Flow in the porous medium, and 

3) Flow inside the crack. 
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The elasticity, fluid flow and fracture growth equations should ideally be fully coupled in order to 

solve the system of equations correctly and get the crack width, length, height and fluid pressure as a 

function of time and location. In general, the governing equations of a multiphase porous medium are 

as follow: 

1) Momentum equilibrium equation for the whole multiphase medium, 

2) Momentum equilibrium equation for each fluid phase, 

3) Mass conservation equation for each porous medium phase. 

Nevertheless, many research works on hydraulic fracturing, assuming elastic behaviour, have used 

single integral equation as: 

 

or 

 

In the above equations p is fluid pressure inside the crack, σc is the local minimum in-situ stress, w is 

crack width, C is non-local kernel function which contains all data about layered elastic medium, and f 

is elastic Influence Function [1,2]. It is assumed that the crack occupies the region denoted by Ω (t) at 

time t. 

The governing equation of fluid flow inside the crack is as: 

Ϭw/Ϭt =∇. [D(w)( ∇p-ρg)] + δ(x,y)Q, 

Where p is fluid pressure, ρ is the fluid density, g is the gravity vector, δ(.) is the Dirac delta function, 

Q(x,y,t) is the source injection rate, D(w)=w3/12μ , w is the fracture width and μ is the Newtonian 

fluid viscosity.[1,2] 

3-Numerical analysis 

The finite element method was used to calculate the stress intensity factor due to the complexity of the 

geometry and boundary conditions. The FE model ANSYS was used to simulate the hydraulic 

fracture process. 

In the ANSYS software, there are 3 main ways to evaluate fracture mechanic parameters: 

1: Stress intensity factor (K)         2: J-integral JINT (J)      3: Energy release rate VCCT (G) 

3.1-Stress Intensity Factors (SIF) 

The stress-intensity factor, K, is a parameter to characterize “the stress field ahead of a sharp crack in 

a test specimen or a structural member”. The parameter, K, is related to the nominal stress level (σ) in 

the structural member and the size of the crack, and has units of (MPa.mm0.5). In general, the 

relationship is represented by: 

K=σ √a p  

where p is a geometrical parameter that depends on the structural member and crack, a is the crack 

length. All structural members or test samples that have flaws can be loaded to different levels of K. 

This is similar to the situation where unflawed structural can be loaded to different levels of stress (σ). 

[3] 
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3.2- J-integral JINT (J) 

The J-Integral evaluation is based on the domain integral method proposed by Shih. The domain 

integration formulation applies area integration for 2-D problems and volume integration for 3-D 

problems. Area and volume integrals offer much better accuracy than contour integral and surface 

integrals, and are much easier to implement numerically [4].  

3.3- Energy release rate VCCT (G) 

Energy release rate is based on the assumption that the energy needed to separate a surface is the same 

as the energy needed to close the same surface. The approach for evaluating the energy-release rate is 

based on the virtual crack-closure technique (VCCT) [5]. 

4-Numerical simulation 

The behaviour of a horizontal well with a crack initiated in its wall was studied under hydrostatic 

pressure. Figure 1 shows the stress intensity factor for the Modes I fracture versus the crack length. 

The results indicates that stress intensity factor increases by increasing the crack length. Figure 2 

shows the variation of leakage rate with crack length. It can be seen that the leakage rate increases 

with increasing the crack length. 

 

 

Figure1: Variation of stress intensity factor with crack length  
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Figure2: Variation of leakage rate with crack length  

 

5-Conclusion 

The goal of this investigation was to better understand the link between crack lengths, leakage rate 

and stress intensity factor in a typical well. 

The linear-elastic fracture toughness of a material with a thin crack was determined from the stress 

intensity factor (K). 

The obtained results indicate that stress intensity factor increases by increase of crack length. 

The numerical results indicate that the fluid leakage rate increases by increasing the crack length. 

The leak rate analysis provided reasonable results when compared against the available research and 

test results. 

It can be concluded that FE modelling is an efficient tool for the analysis of leakage and stress 

intensity factor in crack propagation. 
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ABSTRACT

We present a novel DEM (discrete element method) code with explicit time stepping. DEM codes simulate
billions of small particles that interact with each other primarily through collisions. Different to state-of-the-art
codes, we rely on triangulated non-spherical particles. This is computationally demanding, and we thus devise
an asynchronous data exchange communication technique using MPI (Message Passing Interface) on manycore
supercomputers, we discuss possible solutions to handle ghost particles that overlap multiple subdomains. At
the compute node level, shared memory parallelism as well as vectorised SIMD executions are studied. On the
algorithmic side, we explore a hybrid parallelisation approach and memory layouts that are suited to combine
robust exact geometry checks with a fast penalty-based method.

Key Words: SIMD; Contact Detection; MPI; Discrete Element Method

1. Introduction
In contact mechanics, fluid-stucture interaction or other fields, it is an essential task to compute the
distance between geometries to determine contact. We present a Discrete Element Method (DEM)
code that simulates particles that interact through spring contact. DEM for example is used to study
granular particles in environmental or medical engineering. Different to state-of-the-art codes, we do not
use spheres to model the geometry [2] but rely on triangles to model meshed surfaces. Non-spherical
particles promise to facilitate more accurate physics than sphere-based approaches [5]. The focus on
triangles for rigid body contact dynamics rather than arbitrary polygons simplifies geometric checks and
facilitates memory layouts allowing vectorised computation [5]. It is vital to obtain performance from
current and upcoming architectures to enable engineers to simulate more realistic materials.

To achieve this we propose a hybrid method that combines the advantages of two triangle-to-triangle
distance calculation methods. The method benefits from the performance of an iterative Newton-penalty
convergence solver and the robustness of an all-to-all brute force geometric primitive comparison method
[5]. We then make this method exploit multi-core and SIMD (Single Instruction Multiple Data) environ-
ments [4]. Finallywe use theMessage Passing Interface (MPI) andRecursive Coordinate Bisection (RCB)
load balancing [1] to migrate particles over the HPC cluster nodes while we execute in parallel the contact
detection stage of the simulation. The spatial domain decomposition and migration/movement of data
requires a careful analysis of data alignment and data dependencies. We use asynchronous non-blocking
communication such that there are no waiting delays during the data exchange.

2. Hybrid Vectorised Parallel Contact Detection
Contact detection for non-spherical particles requires us to find the distances between the triangles.
Our implementation combines two methods, the brute force method and the iterative Newton-Raphson
based on a penalty method for the inequality constraints. The brute force method computes the minimum
distance between vertex-to-triangle, and segment-to-segment geometric combinations. Brute force always
finds the correct solution but lacks performance as it involves many case distinctions. The penalty method
parameterises the distance problem as f (a, b, c, d)min = ‖x (a, b) − y (c, d)‖2 where x and y are the
barycentric functions of two triangles and it creates a minimization problem to solve. The penalty method
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also introduces the penalty parameter r for the steepness of the merit function outside from the feasible
domain. In (1) c is the constraint function with six constraints.

P(x) = f (x) + r
∑

i=1...6
max(0, c(xi ))2 (1)

We propose a new hybrid algorithmic approach that combines iterative speed and the robustness of a
brute force method. The hybrid ’Newton-Brute Force’ solver first runs a penalty solver. If convergence
is not achieved within a specified number of iterations (typically four) it falls back to the robust brute
force. The decision to fall back is made when the difference between two Newton steps is not within a
specified tolerance level.
We split the computational work into batches of fixed size. A batch is a set of triangle pairs that have to
be checked against each other. Every batch passes through the penalty solver with SIMD. The handling
of multiple triangle comparisons thus can be fused, which allows us to exploit wide vector registers.
Convergence checks and fall-back to brute force is done on a per-batch basis. Usingmultiple cores/threads,
it is possible to execute the batches in parallel.

Algorithm 1 DEM Simulation Pseudo code
1. Load balance triangles //assigment to subdomains
2. Migrate triangles to MPI network using blocking communication //balancing movement
3. Search overlapping ghost triangles to send
4. Initiate neighbors asynchronous MPI send/receive
5. Local all to all triangle contact detection
6. Retrieve required ghost triangles from neighbors
7. Local all to ghost triangle contact detection //data exchange
8. Wait for neighborhood asynchronous communication to terminate (No Real Wait)
9. Derive contact forces from contact points generated from contact detection
11. Explicit time integration

For many-node supercomputers we decompose the computational domain into subdomains. Alternative
decomposition approaches in the literature such as force decomposition that are applied in molecular
dynamics (MD) and smoothed particle hydrodynamics (SPH) simulations [2, 3] are not benchmarked.Our
decomposition is based on the spatial position of triangle points using Recursive Coordinate Bisection
(RCB) [1]. Each triangle thus is owned - and persistently stored-exclusively on one rank. Copies are
exchanged per time step where triangles overlap into neighboring domains.
Algorithm 1 describes the whole DEM simulation and how MPI communication is realised. Data
transfers between subdomain ranks on MPI use blocking synchronous and asynchronous non-blocking
communication at different stages of the DEM simulation. During the data migration/movement stage
blocking synchronous communication is used to move local triangles to neighboring processes to realise
load re-balancing. Asynchronous communication is used to exchange ghost triangles between neighbors
to maintain streamlined computation while minimizing communication waiting overhead.

3. Implementation
It is uncertain whether the penalty iterations converge for every batch in four iterations. This creates a
couple of implementation challenges that affect performance. There are load balancing implications with
OpenMP due to the non-deterministic nature of the algorithm. It is not possible to know a priori the
balancing of such a non-deterministic algorithm. The uncertain runtime cost stems from the geometry
of the problem. A solution is to rely on dynamic scheduling. Investigations however show that dynamic
balancing does not show signs of performance improvement and this is subject to further investigation.
It remains an open question whether static scheduling is sufficient.
Another tuning parameter is the batch/grain size. The grain size behavior affects the tolerance value
and the SIMD work performed by both penalty and brute force methods. The bigger the more triangle
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Algorithm 2 Hybrid Triangle Distance Computation Algorithm
1. FOR batches of grain size X loop through shared memory threads:
2. run penalty-based Newton penalty solver
3. IF batchError [i] > 1E-8 //fixed error value
4. FOR batches of grain size X loop through shared memory threads:
5. run brute force segment to segment, point to triangle comparison solver
6. ENDFOR
7. ENDIF
8. ENDFOR

comparisons can be fused into SIMD statements. However, if only one triangle fails to converge, the
whole batch falls back to brute force. Tuning the grain size is nontrivial. Trial and error fine-tuning over
a given set of random triangles worked best for static load balancing. The batch size for random triangles
is optimal at size eight.

Figure 1: Run-time comparison of the penalty, brute force and the hybrid method over set of cores (OpenMP 4.0).

The hybrid approach performance is shown in Figure 1 where multi-core executions run on all cores.
Its performance is settled between brute force and penalty. The hybrid method is slower than penalty
because there are batches of triangle pairs that do not reach convergence tolerance. It is faster than brute
force because if the batch size is optimal no significant number of batches fail the tolerance criterion. The
hybrid algorithm scales over the second socket of the CPU. It is observed that brute force does not gain
significantly between eight and sixteen cores because of bandwidth stagnation at the socket interconnect.
Theoretically, performance can be tuned further by investigating the load balancing implications of the
non-deterministic element of the algorithm.
A major challenge is sustaining a balanced workload while minimizing inter-node communication and
maximizing intra-node vectorisation. Splitting the spatial domain and assigning subdomains to cores
introduces data dependencies between neighboring ranks. Subdomains have to retrieve surface triangles
that overlap into neighboring subdomains. We rely on the state-of-the-art load balancer Zoltan [1] and
focus exclusively on the compute phase of the algorithm.
In Figure 2 we measure the total MPI waiting time of ranks for neighbor data exchange if no non-
blocking MPI is used. We see an increase with the number of rank. This motivates our non-blocking
scheme where neighbour data exchange is triggered before any local computation starts. Once all local
computations terminate, the distance of local triangles against remote ghosts are computed to get the
overall local domain contacts. The non-blocking communication strategy scales perfectly, if the local
contact detection takes longer than the transmission of the ghost data exchange.
All performance tests in Figures 1 and 2 use the AVX instruction set on an Intel Sandy Bridge 2.0GHz i5
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Figure 2: Waiting time [t]=s per MPI rank/node for all-to-all neighbor data exchange over 1000 timesteps (25 mil
triangles, 10k non-spherical particles).

CPU with 600 MHz DDR3 RAM. The performance test comprises computing the distance of ten million
pairs of multiple lengths.

4. Conclusion
The research provides insight to a hybrid solver that offers robustness and speed for triangle-based
DEM algorithms. We study MPI communication patterns and the implications on data layouts using
asynchronous non-blocking communication to avoid waiting delays during exchange of ghost triangles.
We seem to obtain reasonable scalability and performance for triangle-based particle realisation but
many important questions with respect to load balancing remain open.
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ABSTRACT

In recent years it has been shown that the micro-mechanics of one-dimensional normal compression of sands can
be modelled in three-dimensions within the discrete element method [7]. The compression is displacement driven
such that the top platen of the enclosing sample case is allowed to move at a constant or variable velocity. The
test has been used to investigate sand behaviour such as compressibility and the evolution of the particle size
distribution when particle crushing is permitted. This paper focuses on the findings related to energy dissipation
under one-dimensional compression without particle crushing using the LIGGGHTS open source software. Energy
tracing is done throughout the simulations by applying the energy conservation principle at every time step. This
allows the evolution of energy dissipation to be determined. The relationship between energy dissipation and
particle size distribution was investigated and is discussed in this paper. Understanding the relationship between
grain scale properties and energy dissipation will help in the formulation of a constitutive relationship based on a
hyperplasticity framework [8]. This could potentially lead to a shift in the way that continuum constitutive models
are formulated, with numerical models truly being based on the constituents that they represent.

Key Words: DEM; energy dissipation; compression; particle size distribution; hyperplasticity

1. Introduction

The Discrete Element Method (DEM) has been used for numerical simulations of particle assemblies
since its introduction in 1979 by Cundall and Strack [6]. More recently DEM has been used to model
the one-dimensional normal compression of sands [7]. This work has aided in the study of sand be-
haviour such as compressibility and the evolution of the particle size distribution when particle crushing
is permitted. However, in this paper particle crushing is not investigated.

Energy dissipation in granular media has been a subject of study in recent years using the DEM. Wang
and Huang [13], for example, presented a DEM analysis of energy dissipation in crushable soils in which
it was observed that crushability strongly affect energy dissipation. Zhang et al. [14] investigated the
relationship between energy dissipation and shear band formation under rolling resistance. The effect
of grain roughness on energy dissipation was investigated during a quasi-static homogeneous triaxial
compression test on cohesionless sand under constant lateral pressure [10]. Shamy and Denissen [11]
studied energy dissipation response due to seismic loading.

By obtaining an energy dissipation function for a material, a yield surface and plastic flow rule can
be derived to describe the inelastic behaviour of a material based on the framework of hyperplasticity
[8]. However, current dissipation functions are driven by obtaining better curve fits to experimental data
rather than deep understanding of the underlying physics. Investigating the relationship of energy dissi-
pation at a grain scale level will facilitate the transition from the convention by allowing the constituents
of granular materials (sands here in particular) to dictate the form of the dissipation function. One of
these constituents is the particle size distribution which is investigated in this paper. It was quantified by
varying the coefficient of uniformity parameter, which is defined as

CU =
D60

D10
(1)
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where D60 grain diameter at 60% passing and D10 grain diameter at 10% passing. The grain diameter
here defines the sieve sizes through which the particles of soils and sands pass during soil grading. Soil
grading is a classification of soil based on its different particle sizes. If the soil or sand is predominantly
of one grain size, it will be classed as poorly graded and will have a coefficient of uniformity close to
one. A well graded soil will have a wide range of particle sizes in it with a CU value > 4 for gravels or
CU ≥ 6 for sands.

2. Energy dissipation in DEM

To account for the dissipated energy, energy conservation is applied through either a simplified approach
or a detailed consideration of the energy terms in the system. Houlsby et al. [9] for example, in the study
of landslides take the dissipated energy to be the remainder of the total potential energy at the start of the
simulation minus the sum of the potential energy and the kinetic energy at each stage of the simulation.
Asmar et al. [5] explicitly worked out the dissipated energy from damping and friction. Other forms of
energy: the elastic energy, potential energy, kinetic energy, and the input energy were also monitored.
Wang and Yan [12] also included a bond energy between particles during particle breaking.

Wang and Yan [12] showed that at every stage of shearing (in the direct shear test of agglomerates), the
conservation of energy equation is given by

dW + dWg = dEs + dEb + dE f + dEk + dEd (2)

where the energy terms are: boundary work dW, potential energy dWg, strain energy dEs, bond energy
dEb, frictional dissipation dE f , kinetic energy dEk and damping dissipation dEd. This is consistent with
other literature (for example; [5]) when the effect of particle bonding is ignored. The energy loss due to
damping is due to the need to dissipate excess kinetic energy.

3. Numerical simulations

There are a number of commercial and open source DEM software currently in use for the study of
particulates (e.g EDEM, PFC, LIGGGHTS, etc. [1, 3, 2]). For the simulations in this paper, the open
source LIGGGHTS software was used. Unlike many commercial codes, LIGGGHTS has no graphical
user interface. The user drives the simulation using a text-based input script. This input script is read
sequentially rendering the ordering of the statements important. The simulations for this paper consisted
of four parts:

1. Initialization: parameters that need to be defined before the particles are created are set. The
boundary was set to be non periodic and moving to allow for the one-dimensional compression.
Other parameters such as the domain to run the simulation in and the style of particles specified.

2. Setup: material properties and geometry defined. The particle generation procedure was also de-
tailed during the problem setup. The material properties are shown in Table 1 where µ is the
friction coefficient between particles, E the particle Young’s modulus, ν the Poisson’s ratio, and ρ
the particle density.

3. Detailed settings: settings that correspond to speed and memory utilisation were specified and the
output options were also created.

4. Execution: actual run command that executes the simulation. The simulations were run in a num-
ber of stages. The first stage was to insert the particles into the simulation cylinder. These were
then allowed to settle and then compressed at constant velocity by moving the top platen for a
specified number of time steps at and then unloading by moving the platen upwards.

Table 1: 1D Compression test parameters

Sample size: Dia × H (mm) µ E (Mpa) ν ρ (Kg/m3)
18×10 0.5 70 0.25 2650
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There are two basic types of statements in a LIGGGHTS input deck - individual commands and fixes.
The commands establish the settings of the simulations (e.g. the time step) while the fixes are used to set
particular aspects of the simulation (e.g. material properties and meshes). For the simulations conducted
in this paper, separate meshes were generated using the gmesh software and input as STereoLithography
(STL) files via a fix statement in the input script.

Once the simulations were complete, the output files were run through the LIGGGHTS Post-Processing
(LPP) software in which the Visualisation Toolkit (VTK) files were generated. They were then visualised
using ParaView [4] and processed for energy dissipation using Matlab.

3.1. Results and discussion

Figure 1 shows the boundary energy input during the loading and unloading of sand samples of different
coefficients of uniformity. The area enclosed between these two curves is proportional to the dissipated
energy during the loading and unloading cycle. The top platens compressed the sand samples to 0.3 mm
strains before unloading back to the same position. It was found that as the coefficient of uniformity
was increased, the area between the loading and unloading curves also increased. More tests are cur-
rently being done to determine if the coefficient of uniformity is an accurate measure of the particle size
distributions.
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Figure 1: Energy input versus displacement for one dimensional compression tests with different CU values
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4. Conclusions

One-dimension compression of sand has been carried out to study how energy is dissipated with a
variety of particle size distributions using the DEM. The results suggest that more energy is dissipated
as the coefficient of uniformity is increased. Further investigation is being done to determine if the
particle size distribution is uniquely defined by the coefficient of uniformity for the purpose of the energy
dissipation study. A parametric study is currently being carried out for other grain scale parameters such
as coefficient of friction, particle density, voids ratio and compressibility and the results will be used
to formulate a one dimensional dissipation function for sands. Experimental validations will then be
carried out to ensure that the formulations made are consistent with the observed physical phenomena.
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ABSTRACT 

A numerical model based on the finite element method is applied to study the thermal performance of a near-

surface inter-seasonal heat storage facility. The model is validated comparing 2D numerical results with 

experimental measurements from a case study project undertaken by others [Carder et al 2007]. The model is 

used to assess the impact that three alternative formulations of thermal fluxes at the soil surface have on the 

estimation of seasonal variations of temperature and stored thermal energy in the soil close to the surface. It is 

also shown that the choice of surface heat fluxes and initial conditions have an effect on the number of yearly 

cycles required to reach steady state conditions. The influence of weather conditions on the performance of the 

system is explored using weather data obtained from publicly available sources for three representative climates 

(hot, mild and cold). 
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1. Introduction  

The process of inter-seasonal heat collection and storage imply taking thermal energy from a season 

with high availability to a season with high demand through the use of a suitable medium. A possible 

source of solar thermal energy for inter-seasonal heat storage systems are road surfaces [1]. In this 

case, the operation of the system is highly dependent on the interactions between the ground and 

pavement surfaces and the atmosphere since this determines the amount of energy available for the 

system. It is therefore necessary to correctly understand the processes of energy flux and heat 

balances at the surface of the ground. This is particularly true in near-surface systems. This paper 

presents selected results from a more comprehensive numerical investigation [2] of the processes 

affecting the performance of inter-seasonal heat storage systems. Numerical simulations are 

undertaken using a numerical model which is validated against an excellent dataset produced by 

others [3] in the course of a two year-long inter-seasonal heat storage system demonstration project. 

The results presented in this paper are selected with the purpose of exemplify the impact that different 

parameters have in the operation of these systems and the simulation of their behaviour, in particular 

the effect of: formulation of heat transfer coefficients at the soil surface, selection of bottom boundary 

conditions and initial conditions and weather influence in system performance are considered. 
 

2. Theoretical and numerical model 

The temperature variation in a soil domain is obtained by solving the transient heat transfer equation: 

 
dT

dt
T    (1) 

where T (˚C) and α (m
2
/s) are the soil's temperature and thermal diffusivity. In this work equation (1) 

is solved by using a boundary condition of the third kind at the soil surface that takes into account 

heat transfer by solar and infrared radiation, convection and evaporation: 
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where Tss (˚C), Tss,k (K), qss, k (W/mK), αs and εss  are the soil's surface temperature, absolute surface 

temperature, surface specific moisture content, thermal conductivity, albedo and infrared emissivity 

respectively, R (W/m
2
) is solar radiation, σ (W/m

2
K

4
) is the Steffan-Boltzmann constant, εs is the 

infrared emissivity of the sky, Ta (˚C) and Ta,k (K) are the temperature and absolute temperature of air, 

qa is the specific moisture content of air, hE (W/m
2
) and hC (W/m

2
K) are evaporative and convective 

heat transfer coefficients respectively.  

 

Three approaches are used to investigate the impact that alternative theoretical formulations of the 

convective and evaporative heat transfer coefficients: i) a turbulent approach [4] that assumes 

turbulent conditions between the surface and the atmosphere; ii) a non-turbulent approach [5] that 

assumes the presence of natural convection and iii) an additional approach [6,7] that takes into 

account the presence of a canopy cover on top of the soil surface through a second heat balance 

equation additional to (2). A full description of the heat transfer coefficients and heat balance 

including a canopy cover as well as values for coefficients in equation (2) can be found in [2,8]. 

 

3. Case study  

The experimental measurements used in this work have been provided by the Transport Research 

Laboratory (TRL) [3] from a two year-long demonstration project at Toddington, UK. The objective 

of that project was to assess the feasibility of recovering thermal energy in summer in order to be used 

for thermal maintenance of roads and/or building heating in winter. Approximate positions of two 

boreholes used in this paper and the position of the system are shown in Figure 1b. Full details 

regarding system operation, material properties, soil and meteorological data can be found in [2,3]. 

 

 
Figure 1 - a) Half of domain used in this work showing position of main elements. b) Position of 

experimental system and boreholes used in this work and approximate position of 2d domain. 

 
4. Numerical study  

The numerical model developed in this study is based on solving equation (1) using the finite element 

method. The boundary condition at the soil surface is assumed to be of the third type and given by 

equation (2). Far field boundary conditions are assumed to be adiabatic. The effect of the boundary 

condition at the bottom of the domain is part of the study of this work. Time discretization is 

performed using the Crank-Nicholson method using hourly time steps. Figure 1a shows a sub region 

of the domain considered in this work, full domain details, mesh refinement and representation of pipe 

system operation can be found in [2]. 
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Figure 2 shows typical results from validation of the proposed model, comparing numerical results 

and recorded experimental measurements provided by Carder et al [3]. It can be seen that both are in 

good agreement. The validated model is further used to explore the effect of varying different 

parameters: 

 The effect of bottom boundary condition and initial temperature profile on the number of 

yearly cycles required to reach steady state conditions in the domain. Two options are 

considered: a fixed value using experimental measurements; and adiabatic conditions 

allowing free variation at the bottom of the domain. Three initial temperature profiles are 

considered: homogeneous temperature profile, profile based on experimental measurements 

and a profile produced with analytical equations available in the literature [9]. 

 The influence of using alternative formulations of heat transfer coefficients in the amount of 

thermal energy stored in the ground. Two formulations are compared at the soil surface: non-

turbulent formulation and a formulation considering the inclusion of a canopy layer. 

 The effect of different weather conditions in the collection performance of an inter-seasonal 

heat collection and storage system. Three representative types of weather are explored: cold, 

mild and hot. Weather data is constructed using analytical functions available in the literature 

[9] based data obtained from publicly available meteorological sources from Iceland, UK and 

Mexico. 
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Figure 2 - Comparison between numerical results and experimental data at 0.1325 m depth (collector 

pipes depth) under the paved surface. 

 

5. Discussion and conclusions 

Analysis of the impact of initial and bottom boundary conditions in the number of yearly cycles 

necessary to reach a steady state near the bottom of the domain found that a fixed condition drastically 

reduces the number of cycles, however, it is dependent on suitable experimental measurements that 

might not always be available. On the other hand, an adiabatic condition requires a comparatively 

higher number of cycles and is dependent on the heat balance formulation assumed at the surface. 

However, it requires less information about the temperature in the domain. It was also found that the 

initial condition has a minimal impact in the number of cycles required. 

 

Figure 3a presents the impact of the heat balance theoretical formulation assumed at the soil surface 

on the amount of thermal energy stored in a far field region of the ground. The thermal energy 

variation is compared from 23/08/05, it can be seen that as winter approaches, the soil energy content 

in the soil decreases as expected. However, a bare-soil formulation has a relatively higher loss of heat 

than a formulation that includes the presence of a canopy cover. 
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Figure 3b presents the influence of weather conditions on thermal energy collected by the system. It 

can be seen that hotter weathers have a comparatively higher energy potential than colder climates. 

However, the feasibility of the system needs to include also the potential demand for this thermal 

energy that is expected to be higher in colder regions than in hotter ones. 
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Figure 3 - a) Effect of theoretical formulation of heat balance at the soil surface on the amount of thermal 

energy stored in the far field ground. b) Influence of weather conditions on amount of estimated thermal 

energy collected by the system. Day 0 corresponds to 23/08/05. 
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ABSTRACT

It has long been recognised that the macroscopic mechanical behaviour of a granular material depends
on particle shape. However, a systematic investigation into particle shape is lacking. Particle shape
is commonly split into the independent categories of form, angularity and roughness. The form of a
particle can be quantified using the Longest (L), Intermediate (I) and Shortest (S) dimension of an
equivalent scalene ellipsoid; two independent parameters of particle form are defined, termed platyness
and elongation.

We use DEM simulations with the Potential Particle Method to investigate the effect of particle form
on the friction angle of a granular material at critical state. It is found that deviation of particle form
from that of a sphere leads to higher angles of friction at critical state. It is argued that, to some extent,
the higher critical state strength exhibited by non-spherical particles is due to form suppressing particle
rotation and leading to increased interparticle sliding, a mechanism that in comparison requires more
energy to be expended.

Key Words: Form ; Granular Materials ; DEM ; Ballast ; Shape

1. Introduction

Particle shape is generally assumed to consist of 3 different independent properties: Form,
Angularity and Roughness. Particle form describes the general shape, angularity describes the
relative sharpness of angles on the surface and roughness describes the microscopic undulations
on particles surface. Particle Form is normally quantified using the longest (L), intermediate (I)
and shortest (S) dimensions of the particle, although there is no consensus as to which method
is best [1]. Particle form can be characterised by two parameters, Elongation (ζ) and Platyness
(α) presented in [4, 5]. Then we use DEM Models made up of particles of a single form and
impose triaxial compression conditions to study the effect particle elongation has on the critical
state strength. The particles were modelled in an in-house DEM code [2] that uses the concept
of potential particles to model arbitrary ellipsoids.

2. Form

In this study we assume form is represented by the particle’s longest (L), intermediate (I) and
shortest (S) dimension. If we consider L, I and S to be coordinates in a three dimensional
space, any particle can be represented by a vector f linking the origin of the axes to point
(L, I, S). Clearly the shape (form) of the particle is represented by the direction of f , whereas
the magnitude of f merely quantifies the size of the particle. By considering the intersection F of
f with the L+ I+S−1 = 0 “deviatoric” plane, which is normal to the spherical axis L = I = S
(Figure 1), the form of each particle is uniquely defined by the two in-plane coordinates of F
in a frame of reference centred at the intersection P of the spherical axis. In this way particle
form is essentially quantified as the deviation of a particle’s shape from that of a sphere. These
two independent parameters of form are given by Equations 1 and are referred to as platyness
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(α) and elongation (ζ) respectively. All possible scalene ellipsoids plot, on the α-ζ plane, within
the triangle shown in Figure 1.

α =
2(I − S)

L+ I + S
, ζ =

L− I

L+ I + S
(1)

Figure 1: Left: L, I and S space; Right:Elongation and Platyness space with description of forms

Here we focus on the effect of particle elongation by systematically varying ζ, starting from
a sphere and conidering increasingly prolate ellipsoid (L > I = S) by increasing the longest
radius. Platyness α is kept at 0. The range of forms used is shown in table 1.

Form Elongation L : I : S

Form 1 0.000 1.00 : 1.00 : 1.00
Form 2 0.104 1.35 : 1.00 : 1.00
Form 3 0.200 1.75 : 1.00 : 1.00
Form 4 0.305 2.30 : 1.00 : 1.00
Form 5 0.400 3.00 : 1.00 : 1.00

Table 1: Range of forms tested

3. Method

Models were created using particles of a single form and a particle size distribution (PSD)
representative of that of railway ballast. To determine the PSD, 5 different sizes between the
maximum and minimum gradation curves for railway ballast, keeping I equal to the respective
sieve size. To help constrain the models and ensure comparability of results, the total volume
of solids contained within each model was kept as close to 0.2m3 as possible. Table 2 shows
the different model parameters that where used, the material properties where that of a typical
granite ballast.

Properties Value

Particle Density 2700Kg/m3

Interparticle Friction Angle 30 degrees
Particle Bulk Modulus 50 GPa
Particle Poison’s Ratio 0.3

Table 2: Material Properties

To create a model, a number of particles were randomly dispersed within 3D space to a target
initial void ratio of 2.0. The particles themselves were given random orientation to remove
any bias in the initial conditions that could affect results. The model was then subjected to
isotropic compression using periodic boundaries and zero gravity forces. Once a void ratio of
0.65 was reached, isotropic stress of 100kPa was applied to the boundaries and the model was
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allowed to reach equilibrium. At that point triaxial compression conditions where applied, with
stress controlled lateral boundaries at 100kPa and a strain controlled top boundary moving
downwards at a constant velocity.

4. Results

The strength of a granular assembly is given by the mobilised angle of friction. When a model
reaches a critical state the mobilised angle of friction is independent of its initial void ratio.
Figure 2 shows how the strength changes as particle form becomes more elongated. It can be
seen that spheres have the lowest strength and a linear relationship exists between between
increases in elongation and increases in strength.

Quantifying rotations and rotation increments in 3D can be done using quaternions. Here we
focus on differences of the amount of rotation between relatively closely spaced time-steps, so
that the axis of rotation can be considered unchanged, and divide rotation by the corresponding
vertical strain increment to produce a rate of rotation with strain.

Figure 2 plots the median rate of particle rotation against the proportion of sliding contacts for
the different particle forms at critical state. Spherical particles rotate much more compared to
elongated particles; the rate of rotation decreases with increased elongation. Also, as particle
elongation increases there is a reduction in the proportion of sliding contacts at critical state.
An inverse relationship is seen between rate of rotation and the proportion of sliding contacts at
critical state. Therefore to some extent the higher critical state strength exhibited by elongated
particles is due to elongation suppressing particle rotation and leading to increased interparticle
sliding, a mechanism that in comparison requires more energy to be expended.

Figure 2: Left: Critical state angle of friction against particle elongation; Right: Median Rate
of rotation at critical state against the proportion of contacts sliding

The orientation of elongated particle (prolate ellipsoid), due to symmetry, can be described by a
single vector of the direction of the L axis. The average particle orientation with respect to the
global model axes can be quantified by a fabric tensor given by Equation 2, [3]. This describes
the average orientation of a set of n unit vectors V k. For randomly oriented vectors the diagonal
of Gij will be equal to 0.33 and off-diagonal values will be zero, indicating lack of a preferential
direction.

Gij =
1

n

n∑

k=1

V k
i V

k
j (2)

Figure 3 shows how the vertical component (G33) of the fabric tensor, corresponding to the
L axis of each particle varies with respect to vertical strain. This shows that whilst particles
start off with a random orientation, for elongated particles as the model is strained there is a
prevalence for the particles to orientate them selves with the L axis perpendicular to the major
principal stress. As more particles orientate themselves ”flat” there is a layering of particles,
leading to a greater number of contacts in the vertical direction. This would provides an efficient
skeleton that transfers vertical load, leading to an increase in strength.
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Figure 3: Vertical component of the fabric tensor of L axis

5. Conclusions

In this paper we present a method of characterising form using a scalene ellipsoid and used
DEM to investigate the effect of changing particle elongation on critical state strength. It was
found that as particle elongation increases there is a similar increase in critical state strength.

This increase in strength accompanied by a reduction in the amount of rotation and an increase
in the proportion of sliding contacts. As the model is strained the preference for particles to
orientate their longest axis perpendicular to the major principal stress allows for a more efficient
way to transfer forces vertically, leading to a stronger assembly.
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ABSTRACT

A detailed theoretical and numerical investigation of the infinitesimal single-crystal gradient-plasticity and grain-
boundary theory ofGurtin (2008) “A theory of grain boundaries that accounts automatically for grainmisorientation
and grain-boundary orientation". Journal of the Mechanics and Physics of Solids 56 (2), 640–662, is performed.
The governing equations and flow laws are recast in variational form. The associated incremental problem is
formulated in minimization form and provides the basis for the subsequent finite element formulation. Various
choices of the kinematic measure used to characterize the ability of the grain boundary to impede the flow of
dislocations are compared. A three-dimensional numerical example serves to elucidate the theory.

Key Words: grain boundaries; crystal plasticity; finite elements; gradient plasticity

1. Introduction
The miniaturisation of mechanical components composed of crystalline material requires a continuum
theory that accounts for the role of the grain boundary and for size-dependent effects. The grain-boundary
model should incorporate both the misorientation in the crystal lattice between adjacent grains, and the
orientation of the grain boundary relative to the crystal lattice of the adjacent grains. Classical theories of
plasticity are unable to describe the well-known size-dependent response exhibited by crystalline material
at the micro- and nanometre scale. Numerous extended (gradient and non-local) continuum theories of
single-crystal plasticity have been presented in the last two decades to circumvent these limitations. The
thermodynamically consistent gradient theory of Gurtin and co-workers a [see e.g. 2] have received
particular attention.

The gradient theory of [2] provides a basis to account for the role of the grain boundary [see 3]. Neumann
and Dirichlet-type boundary conditions on the slip and the flux of the vectorial microforce respectively,
can be prescribed and are often assumed homogeneous. The homogeneous Dirichlet condition, known
as the micro-hard boundary condition, has been widely used to account for the grain boundary. Clearly
this boundary condition ignores the complex geometric structures in the vicinity of the grain boundary.

Central to the theory of Gurtin [3] is the introduction of the grain-boundary Burgers tensor to parametrize
the grain-boundary free energy. The grain-boundary Burgers tensor can be expressed in terms of the
intra- and inter-grain interaction moduli. The inter-grain interaction moduli account for mismatch in the
slip systems adjacent to the grain boundary and the orientation of the grain boundary.

The objective here is to investigate computational and theoretical aspects of the grain-boundary theory
proposed by Gurtin [3]. For further details see [1], the finite-strain extension of this work is considered
in [4].

Gurtin [3] proposes two thermodynamically admissible plastic flow relations for the grain boundary
(denoted Gurtin I and II). The flow relations define the structure of the dissipative microscopic stress
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in the grain boundary microscopic force balance. The flux of dislocations from the grains drives the
microscopic force balance. In the first proposal, the grain boundary Burgers tensor is used to parametrize
the flow relations, while in the second it is the slip. The first approach accounts for the interaction of
slip systems adjacent to the grain boundary. This approach also allows for a recombination of the plastic
distortion contributions from adjacent sides via the definition of the grain boundary Burgers tensor. The
second approach does not directly account for the structure of the adjacent grains or the orientation of
the grain boundary in the plastic flow relation. Both approaches account for the geometric structure of
the adjacent grains and the grain boundary via the flux terms from the grains.

A series of three-dimensional numerical examples, performed using the finite element method, elucidate
the grain-boundary theory.

2. Governing Relations
The governing relations in the grain and on the grain boundary are now summarised.

2.1. Grain

The relations governing the response of a grain V are obtained from a macroscopic and a microscopic
force balance and are given given by

divT = 0 inV (1)
divξα + τα − πα = 0 inV . (2)

The macroscopic Cauchy stress is defined by T = C[E − Ep], where C is the tensor of elastic moduli, E
is the strain tensor, and Ep is the plastic strain tensor. The flow of dislocations through the crystal lattice
is described kinematically via the assumption that the plastic strain tensor can be expressed in terms of
the slip γα on the individual prescribed slip systems α = 1, 2, . . . , N as

Ep =
∑

α

γα
1
2

[
sα ⊗ mα + mα ⊗ sα

]
. (3)

The slip direction and slip plane normal of slip system α are denoted sα and mα .

The resolved shear stress on slip system α is denoted by τα . The energetic contribution arising due to
the gradient contribution is described by the vector microscopic force ξα . The flux of dislocations to the
grain boundary is described by the term ξα · n, where n is the grain boundary normal. The (dissipative)
scalar microforce is denoted by πα . A viscoplastic flow relation for πα is chosen.

2.2. Grain boundary

A balance of macroscopic and microscopic forces across the grain boundary G yields

[[T ]]n = 0 on G (4)
[[ξα]] · n = παA + παB on G . (5)

Eq. (4) is the standard traction continuity condition for an interface. The microforce balance (5) on the
grain boundary states that the internal microforce π on either side of the grain boundary acts in response
to the flux of the vectorial microforce from the grain. The gradient-plasticity formulation adopted in the
bulk allowsmeaningful balance equations for the grain boundary to be constructed in a consistent manner.
A micro-hard or micro-free boundary condition could be applied on the grain boundary. However all
information about the geometry of neighbouring crystal structures and grain-boundary orientation would
be lost.

A plastic flow relation for πα is required. Two options are considered and referred to as Gurtin I and II.
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3. Numerical example
Consider a 100 × 100 × 100 µm3 polycrystal subject to tensile loading. The polycrystal is composed of
27 equal sized grains. The crystal lattice in each grain is that of a face-centered-cubic material.

The purpose of the polycrystal example is to explore the various choices of grain boundary models for
reasonably complex, three-dimensional problems. A micro-free grain boundary model allows for a high
flux of dislocations while the micro-hard model acts as an impenetrable barrier resulting in dislocation
pile-up. The ability of the two Gurtin grain boundary models to impede dislocation flow is controlled,
in part, by the slip resistance S of the grain boundary. The Gurtin I model also accounts for the slip
system interaction at the grain boundary. The ability of the two Gurtin models to capture the spectrum
of behaviour between the micro-hard and micro-free limits is investigated by examining a range of grain
boundary resistances from a low S = 1 × 10−4 to an extremely high value of S = 1 × 1010.
The discretization of the domain and the boundary conditions are shown in Fig. 1. Each grain is
discretized with 63 elements. A displacement of uy = 5 µm is applied on the boundary with outward
normal n = [0, 1, 0]. The opposite boundary with outward normal n = [0,−1, 0] is prevented from
displacing in the y-direction. The additional constraints to prevent rigid body motion are indicated in
Fig. 1.

x

y
z

ux = 0

uz = 0

uy = 0

uy = 5 µm

50

100

0

50

100

0

50

100

Figure 1: Discretization of the polycrsytal composed of 27 grains.

The y-component of the resultant traction on the right boundary for the Gurtin I, micro-hard and micro-
free models is plotted against the prescribed displacement in Fig. 2 (a). As expected the micro-free
condition provides a lower bound for the Gurtin models for very low values of S. From the theory it is
reasonable to expect the micro-hard condition to be an upper bound that is approached with increasing
S. It’s important to note that the extremely high values of S chosen are not physically motivated, rather
they penalize the response at the grain boundary. For the high-angle grain boundaries present in the
current example it is physically reasonable that the models be capable of producing a response close to
micro-hard. It is clear that this is not the case for the Gurtin I model.

The Gurtin II model can capture the range of responses from micro-free to micro-hard, as shown in
Fig. 2 (b). A key observation is that the Gurtin II model can be tuned to account for the full range of
interactions between micro-free and micro-hard. This observation motivates a possible extension of the
current work where the value of the grain boundary slip resistance is chosen as a function of the mismatch
at the grain boundary. The Gurtin II has the additional advantage that it is simpler to implement and is
computationally more efficient.
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Figure 2: Applied displacement versus the y-component of resultant force on the right boundary for various
grain-boundary models. The results of the Gurtin I model are shown in (a), and the Gurtin II model in (b).

4. Discussion and conclusion
Various features of the Gurtin grain-boundary models were illustrated for a polycrystal composed of
grains with a face-centered-cubic structure. The Gurtin I model captures the geometric complexity of
the grain boundary. A feature of the model is that it does not capture the full range of responses between
micro-hard and micro-free. That is, it does not reproduce the widely used micro-hard limit when the
grain-boundary slip resistance is used to penalize dislocation flow. The Gurtin II model does not contain
the geometrical information concerning the grain boundary but can reproduce the micro-hard limit. The
computational efficiency of the formulation is greatly impacted by the choice of the grain boundary flow
relation.

The numerical simulations provide valuable insight into the models. They do not, however, allow one to
judge the physical correctness of the model. A key challenge is therefore the validation and calibration
of this and other grain-boundary models using well-devised experiments and microscopic modelling
approaches (e.g. dislocation dynamics).
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ABSTRACT

Timber is a highly complex naturally occurring material, with properties adapted to its local environment. These
properties, on its many length scales, determine its strength and stiffness and also how it interacts with moisture
in the environment, causing dimensional instability both during drying and the lifetime of any building. Of
particular importance is how the cell wall polymers interact with moisture in the environment and how this effects
the properties, due to their strong dependence on intra-molecular hydrogen bonds. To model the dimensional
behaviour of a wood cell under varying moisture conditions, the cell wall polymer matrix is modelled using
a formulation of coupled deformation and moisture transport. These governing equations of mass and linear
momentum conservation are strongly coupled and nonlinear and solved using the Finite Element Method. The
associated constitutive equations are complex. The free energy is described through the deformation of the polymer
matrix and the mixing with solvent (in this case, water). It is assumed that the polymer chains and water molecules
are incompressible so that a change in volume of the polymer matrix corresponds to a change in the number of
solvent molecules. The viscoelastic behaviour is resolved using a Zener spring-dashpot model, capturing both creep
and relaxation phenomena, and the moisture transport is resolved using Fick’s 2nd Law. The effects of wetting
upon the stiffness and relaxation characteristics of the polymer matrix is taken into account through the chemical
kinetics of hydrogen bond dissociation. Proper linearisation is achieved with automatic differentiation, using the
library ADOL-C integrated with the group’s FE code MOFEM.

Key Words: Timber; Viscoelasticity; Finite Element Method; Coupled Problem

1. Introduction
Timber is a highly complex multi-scale material, with properties of its many length scales. It is naturally
occurring,with properties adapted to its local environment during growth,making timber an unpredictable
material to work with. One particular problem is its dimensional instability when exposed to different
environmental conditions, potentially causing issues during construction and the lifetime of a building.
To enable prediction of dimensional changes in timber due to moisture sorption, the cell wall polymer
matrix is modelled hygro-mechanically and the individual polymers are described chemically through
the kinetics of hydrogen bond dissociation.

2. Timber Cell Wall
The wood cell wall is a multilayer composite structure, containing a primary cell wall and a 3 layer
secondary cell wall. In the secondary cell wall, crystalline cellulose chains are arranged in a helical spiral.
The chains are embedded within a polymer matrix consisting of amorphous cellulose, hemicelluloses and
lignins. These polymers interact stronglywithwater, which binds to the hydroxyl groups containedwithin.
This uptake of bound water within the cell wall replaces strong, intramolecular hydrogen bonds, leading
to a corresponding loss of stiffness. Using an approach presented by Nissan [1], the Young’s modulus
of cellulose, at low moisture contents, can be related to the change in the number of intramolecular
hydrogen bonds assuming each water molecule breaks one hydrogen bond. Considering the molecular
weight of cellulose and water this yields:

ln(N/N0) = −1/3(w/W ) (1)
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where N , denotes the number of effective hydrogen bonds at moisture content w, N0 is the initial number
of effective hydrogen bonds in the dry state, and W is the moisture content at which all hydroxyl groups
carry one water molecule, which is close to 1/3 for cellulose. The number of hydrogen bonds can be
related to the Young’s modulus, E, as follows:

N = (E/k)1/3 (2)

where the proportianality coefficient, k, describes the average force constant between the hydrogen bonds.
By combining the equations we can formulate the change in Young’s modulus, E/E0, for low moisture
contents,

ln(E/E0) = −w (3)

where E0 is the initial Young’s modulus in the dry state. As the shear modulus is also dependent on the
number of effective hydrogen bonds, the relationship can be adapted to incorportate shear modulus, G.
The water content of each available sorption site can be described through the ratio of the number of
moles of water and cellulose, and thus the mixture can be descibed in terms of its chemical potential, µ.
By enforcing chemical equilibriumwith the external environment, the conditions are present for diffusion
to occur.

3. Model
Taking a similar approach to models on poroelastic gels [2], the cell wall polymer behaviour is modelled
using a formulation of coupled deformation and moisture transport, described through linear momentum
conservation Eq.(4) and the conservation of mass Eq.(5).

div(σ) = b (4)

∂εkk
∂t
= − κ

ηΩ
µ,kk (5)

The volume change, εkk = Ω(C −C0), where C is the concentration, assumes that the change of volume
in the polymer network is due to the change in the number of bound water molecules. The volume of
each water molecule, Ω, is constant, κ is the permeability and η is the viscosity of the polymer network.
The moisture flux is given as Jk = µ,k .

The model is constitutively described using a Zener spring-dashpot configuration, shown in Figure 1.
This arrangement allows both creep and relaxation phenomena to be captured. The model is formulated
in terms of its external state variables (ε, σ) and (C, µ), representing the mechanical and chemical
behaviour respectively, and the internal state variable, ε̂, which represents the internal rearrangement of
intramolecular hydrogen bonds under stress.

Figure 1: : Model representing a rheological Zener spring-dashpot arrangement. The spring α represents the
instantaneous elasticity of the polymer network. The spring and dashpot in series arrangement, β, represents the
viscoelastic relaxation.
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The stress, σ, within the system Eq.(7) can be specified as the the sum of the stress within spring α,
spring β and the hydrostatic pressure due to the concentration of solvent molecules, σ̂β , Eq.(6).

σ̂β =
∆µ

Ω
I (6)

σ = σα + σβ − σ̂β (7)

The stresses within the individual springs, α and β, are specified in Eq.(8) and (9), where Gα and Gβ

are the shear moduli of each spring respectively and να and νβ are the Poisson’s ratios.

σαi j = 2Gα

[
εi j +

να

1 − 2να
εkk δi j

]
(8)

σ
β
i j = 2Gβ

[
(εi j − ε̂i j ) + νβ

1 − 2νβ
(εkk − ε̂kk ) δi j

]
(9)

When stress is applied to the system, the viscousmotion of the dashpot determines the rate at which spring
β relaxes, Eq.(10). The viscous behaviour is determined by the rate of breakdown of intromolecular
hydrogen bonds within the network, Ĝβ , and Poisson’s ratio ν̂β , which controls the time dependent
deformation.

∂ε̂i j

∂t
=

1
2Ĝβ

[
σ
β
i j −

ν̂β

1 + ν̂β
σ
β
kk
δi j

]
(10)

4. Finite Element Implementation
The model is formulated in 3D using the Finite Element Method usingMOFEM. The mesh consists of 10
node tetrahedral elements with a higher order of approximation applied to the displacement field to allow
for the different orders of the two governing equations (Eq. (4) and (5)), ensuring stability. The tangent
matrices are calculated using automatic differentiation (ADOL-C) to achieve proper linearisation.

(
fxinternal

)
i
=

∫

V

∂Ni

∂X j
σi j dV (11)

(
fµv

)
j
+

(
fµJ

)
j
=

∫

V

Nj
∂V
∂t

dV +
∫

V

∂Nj

∂Xk
Jk dV (12)

(rε̂) j =
∫

V

Nj

(
∂ε̂

∂X j
− f (σβ)

)
dV (13)

Equations (11) - (13) represent the internal force, the flux and the residual strain respectively, where N
is a matrix of shape functions , f (σ) is a function for a linear viscous material, and the volume is given
by V . They are assembled in the system as follows:


Kxx Kxµ Kxε̂

Kµx Kµµ Kµε̂

Kε̂x Kε̂µ Kε̂ε̂




qx
qµ
qε̂

 =


fxexternal − fxinternal

fµv + fµJ

rε̂


The polymer network is described in terms of a rectangle, enforcing symmetry on the y axis, shown in
figure 2. The Boundary condition µ, representing the external moisture conditions, is applied on all faces
and held constant, with the exception of the symmetrical face where the flux is set to zero. A tensile force
is applied in the y-direction and released once equilibrium has been reached.
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Figure 2: : Rectangular bar mesh consisting of 10 node tetrahedral elements, representing a 1/4 sample with
symmetry on the x,y and z axis.

5. Numerical Example
A specimen, Figure 2, is loaded in tension. The load is held for 35 minutes and then released. The creep
results shown in Figure 3 (right) demonstrate the coupling between the mechanical and hygral behaviour.
The graph shows the displacement of the top face vs the chemical potential at the mid point of the
specimen. Initially the applied force causes an elastic displacement, elongating the sample and causing
a dip in the chemical load in the middle of the sample. The evolution of the chemical load through
the sample is shown in Figure 3 (left). Over a longer length of time the sample then undergoes creep,
increasing the displacement until it reaches equilibrium. At this point all the stress is taken by spring α.
The load is then released, causing an increase in chemical load which reduces over time as the sample
returns to its reference configuration.

Figure 3: : Left: Evolution of the chemical load through the sample along the y-axis at given time steps, t(min),
where the solid lines occur during the loading phase and the dashed lines occur post loading. Right: Demonstration
of the coupling between the chemical load and the displacement due to an external force applied to the sample

6. Conclusions
The proposed model is currently formulated in small strains and as such can only be applied to small
changes in deformation and cannot yet fully describe the mechano-soprtive behaviour in environmental
conditions that exceed 50% relative humidity. All viscoelastic changes are fully reversible, and after a
short time the sample with return its reference configuration if the conditions return to those at time
zero. In the future the model will be formulated in large strains and take into account a larger degree of
polymer softening at higher moisture contents.
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ABSTRACT 

Aluminium alloys are typically used in a variety of applications, which require high strength, ductility and 

formability. In order to understand the formability of such alloys along with underlying mechanisms, a CPFEM 

based study has been performed using crystal plasticity theory. Crystal plasticity finite element methods [1]–[4] 

have been used to perform the simulations on representative volume elements (RVE’s) of single crystal metal 

with different configurations, sizes and shapes of voids (defects). A part of the rigorous study will be presented 

in this work by taking into account the effect of void geometry, void fraction, void orientation, loading type 

(level of triaxiality), and crystallographic orientations. Using these large sets of simulations, analyses will be 

presented to better understand the underlying physical mechanisms which include interrelation among void 

growth, applied strain, void fraction, void size/shape, and plastic anisotropy effects under different types of 

loading. 

 

Keywords: Void Growth, Crystal Plasticity, Aluminium Alloys 

 

1. Introduction 

A variety of applications require materials being light weight, high strength, corrosion resistant and 

formable which makes aluminium alloy as being one of the many best candidates. The behaviour of 

different types of aluminium alloys has been studied for a long time. Fractography of these alloys 

generally show that void growth and coalescence is one of the dominant fracture mechanisms. 

The research on void nucleation, growth and coalescence during ductile damage in metal and alloys 

dates back to late 1950’s. Studies have been performed to understand the basic physical phenomenon 

of void growth and numerical issues in solving such problems [5]–[11]. Most of the investigations are 

based on simplified assumptions, such as isotropic material, 2D plane strain, axisymmetric models, 

cylindrical/spherical voids or limited number of loading states and slip systems. 

The presented work is an effort to advance the research in the field by performing a rigorous fully-

validated 3D CPFEM based RVE study to better understand the relationship among void growth, 

initial porosity, initial void size, and plastic anisotropy effects. 
 

2. Crystal Plasticity based Modelling 

2.1 Crystal Plasticity Theory 

General crystal plasticity framework is based on the assumption that plastic deformation is due to the 

crystalline slip in different slip systems [2], [12]. 

Plastic slip in α-th slip system is given by the conventional crystal plasticity based power law 

          ( 1 ) 

where  is the resolved shear stress on slip system α,  is the strength of the slip system α,   is a 

reference shear strain rate, and  is the rate sensitivity exponent. 

The resolved shear stress  in a specific slip system is computed through deviatoric stress tensor  

and Schmidt factor based on slip system direction and normal,   and  

           ( 2 ) 
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The evolution of the strength of the slip system is based on the saturation hardening rule and is given 

by 

,             ( 3 ) 

where   

 and  

while , , , , and are material parameters to describe hardening behaviour for all slip 

systems.  

2.2 Material Parameter Identification 

Material parameters are identified through inverse modelling approach using uniaxial experimental 

stress strain data and are given in Table 1 while comparison between experimental and simulated 

response is given in Figure 1. Experimental data is from uniaxial test results obtained locally.  

 
Table 1: Material Parameters for Aluminium Alloy AA-5xxx 

       

0.03 1.0 /sec 200.40 MPa 105 MPa 110 MPa 0.0 5e10 /sec 

 

 
Figure 1: Comparison of Stress-Strain Curves after Material Parameter Identification 

2.3 RVE Model 

Finite element based 3D RVE model have been constructed for various void diameters (ranging from 

310nm to 1.44mm); void fractions (0.001, 0.005, 0.01, 0.03, 0.05); loading types (triaxialities 1/3, 1, 

2, 3) and crystal orientations (5 different orientations). A representative half sectioned model of two 

different porosities has been shown in Figure 2. 

 
Figure 2: Half sectioned model of spherical void RVE 
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3. Results and Discussion  

Four different loading types by varying the triaxiality were simulated for different porosities. Figure 3 

shows the plot of void growth as a function of applied strain, and triaxiality for two different 

porosities with same crystal orientation. It can be inferred from the Figure 3 that as the applied strain 

is increased the void grows exponentially. It can also be inferred that the amount of void growth 

increases with the level of triaxiality. It is also found that larger voids (higher porosity) grow more, 

i.e. reaching to higher porosity value, than smaller voids at higher triaxialities. Lattice orientation 

evolution has been plotted in Figure 4 as {111} pole figures for initial porosity of 0.01. It can be 

inferred from figure that as the triaxiality increases the lattice rotation in the individual elements also 

increase. Uniaxial case shows very small amount of rotation due to the small amount of void growth. 

It can also be inferred from Figure 4 that larger the void growth higher is the lattice rotation. It was 

also found during the investigation that lattice rotation is higher for larger void growth and triaxiality. 

Also, most of the lattice rotation was found to occur in the vicinity of the defect. 

 

 
Figure 3: Void growth as a function of triaxiality and applied strain for two different porosities 

 
Figure 4: {111} pole figures showing initial (left) and final orientations for different loading types (f=0.01; Or1) 

Figure 5 shows the plot of void evolution as a function of equivalent strain for five different 

orientations and three different triaxialities (1/3, 1, 2). It is found that void growth strongly depends 

on crystal orientation for uniaxial cases (Figure 5 (left)). The effect reduces as the triaxiality is 

increased and for higher triaxialities the effect of crystal orientation diminishes. 
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Figure 5: Void growth as a function of applied strain for different orientations and triaxialities 

4. Conclusions 

A three dimensional CPFEM based study has been presented to understand the formability of aluminium alloy 

single crystals. Material parameters were identified through inverse modelling approach using experimental 

data. The effect of applied strain, initial porosity, void size, initial crystal orientation, and triaxiality on void 

growth is presented. An effort was put to explain the void evolution behaviour by correlating with the lattice 

rotation. It is found that defects show exponential increase with respect to the applied strain. Larger voids grow 

more than smaller voids. Higher triaxiality cause higher amount of lattice rotation due to higher void growth. 

Plastic anisotropy has significant effect on the void growth and this effect diminshes as the triaxiality increases. 
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ABSTRACT

A three-dimensional multi-scale computational homogenisation framework was developed for the prediction of
nonlinear micro-mechanical response of the fibre-reinforced polymer (FRP) composite. Two dominant dam-
age mechanisms, i.e. matrix damage and fibre-matrix decohesion were considered and modelled using a non-
associative pressure dependent thermodynamically consistent paraboloidal yield criterion and cohesive elements
respectively. A linear-elastic transversely isotropic materials model was used to model yarns within the represen-
tative volume element (RVE), the principal directions for which were calculated using a potential flow analysis
along these yarns. A unified approach was used to impose the RVE boundary conditions, which allows conve-
nient switching between linear displacement, uniform traction and periodic boundary conditions. Furthermore,
the flexibility of hierarchic basis functions and distributed memory parallel programming were fully utilised. The
accuracy and performance of the developed computational framework were demonstrated using an RVE with ran-
domly distributed but periodic and axially aligned unidirectional fibres subjected to transverse tension and shear.
The macro-strain versus homogenised stress responses were validated against the reference results from the liter-
ature. Finally, effects of varying interfacial strength and fracture energy were studied on the homogenised stress
versus macro-strain responses.

Key Words: finite element analysis; fibre reinforced polymer; multi-scale computational homogenisation;
cohesive zone models; computational plasticity

1. Introduction
As compared to conventional materials, fibre-reinforced polymer (FRP) composites offer exceptional
mechanical and chemical properties, making them ideal for a variety of engineering applications, in-
cluding aerospace, marine, automotive industry, civil structures and prosthetics [1]. On the other hand,
their computational modelling is more challenging due to their underlying complicated and heteroge-
neous microstructure and associated nonlinearities with the matrix damage and fibre-matrix decohesion.
Therefore, multi-scale computational homogenisation (CH) provides an accurate modelling framework
to simulate the behaviour of FRP composites and determine the macro-scale homogenised (or effective)
properties, based on the physics of an underlying, microscopically heterogeneous, representative volume
element (RVE). The homogenised properties calculated from the multi-scale CH are subsequently used
in the numerical analysis of the macro-level structure.

This paper presents a generalised three-dimensional multi-scale CH framework for prediction of the
nonlinear micro-mechanical response of FRP composites, including matrix damage and fibre-matrix
decohesion. The pressure dependent thermodynamically consistent paraboloidal yield criterion and co-
hesive elements are used to model matrix damage and fibres-matrix interfacial decohesion respectively
[2, 3], while yarns are considered as linear-elastic and transversely isotropic. The principal directions
for the transversely isotropic material model are calculated using a potential flow along these yarns. A
unified approach is used to impose the RVE boundary conditions, which allows convenient switching be-
tween displacement, traction and periodic boundary conditions [4]. The flexibility of the hierarchic finite
element is fully utilised, which permits the use of arbitrary order of approximation leading to accurate
results for relatively coarse meshes. Furthermore, the computational framework is designed to take ad-
vantage of distributed memory high-performance computing. The developed computational framework
is implemented in our group’s FE software, MoFEM (Mesh-Oriented Finite Element Method).
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2. Model components

2.1. Material models

The RVE in the case of FRP composites consists of yarns embedded in an epoxy matrix. Epoxy matrix
is modelled as an elasto-plastic material using a non-associative pressure dependent thermodynamically
consistent paraboloidal yield criterion, the yield surface for which is shown in Figure 1(a) in the principal
stress space and is mathematically written as

f (σ,σc ,σt ) = 6J2 + 2I1 (σc − σt ) − 2σcσt , (1)

where σ is Cauchy stress tensor, I1 = tr(σ) is the first invariant of Cauchy stress tensor, J2 =
1
2η : η is

the second invariant of deviatoric stress η = σ − 1
3 I1 and σt and σc are yield strengths in tension and

compression respectively. A non-associative flow rule is used, for which the plastic potential function is
written as

g (σ,σc ,σt ) = 6J2 + 2αI1 (σc − σt ) − 2σcσt , α =
1 − 2νp
1 + νp

, (2)

where νp is a material parameter and is known as plastic Poisson’s ratio. Furthermore, the Helmholtz
free energy in the case of linear isotropic hardening is written as

ψ =
1
2
λtr[ε]2 + µε : ε + σt0α0 +

1
2

Htα
2
0 + σc0α1 +

1
2

Hcα
2
1, (3)

where λ and µ are the Lame parameters, ε is the strain tensor, σt0 and σc0 are the initial yield strengths
in tension and compression respectively, α0 and α1 are internal kinematic variables and Ht and Hc are
hardening parameters in case of tension and compression respectively.

Traction

Separation 

Fracture energy 

(a) Paraboloidal yield surface (b) Traction-separation law

Figure 1: Material models for matrix and fibre-matrix decohesion

Fibre-matrix decohesion is modelled using the standard cohesive elements with a straightforward mate-
rial model, i.e. linear traction-separation law (shown in Figure 1(b)), which requires only three material
parameters including cohesive strength f t , fracture energy G f and material parameter β, which assign
different weight to opening and shear displacements. Mathematically the material model for the cohesive
element is written as

t =


E0δ if δ < δ0,

(1 − ω) E0δ if δ0 ≤ δ < δmax,

0 if δ < δmax,

(4)

where E0 is the initial stiffness, δ =
√
δ2
n + β(δ2

s1 + δ
2
s2) is displacement jump with δn and δs as its

normal and shear components and ω is damage parameter. Furthermore, κ is a history parameter and is
equal to the highest value of displacement jump δ.
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Finally, yarns are modelled as linear-elastic and transversely-isotropic material. The principal directions
for the transversely isotropic material model are determined by solving a potential flow along each yarn
[1].

2.2. Multi-scale computational homgenisaiton

In CH, a heterogeneous RVE is associated with each macroscopic Gauss point, the boundary conditions
for which are implemented using the generalised procedure proposed in [1, 4]. A small strain formulation
is assumed in this paper. For a global step n+1, the discretised system of equations in case of an iteration
i of the Newton-Raphson algorithm is written as[

Ki
n+1 CT

C 0

] { △ui
n+1

△λi
n+1

}
=
{
Fi
n+1

}
, (5)

where K and u are the standard FE stiffness matrix and displacement vector respectively and λ is the
unknown vector of Lagrange multipliers required to impose the RVE boundary conditions. Matrix K
consists of contribution of elements from matrix, yarns and yarn-matrix interfaces. Fi

n+1 is a vector of
residuals and is written as

Fi
n+1 =

[
CTλi

n+1 − Fint
n+1

C ui
n+1 − Dεn+1

]
. (6)

Matrices C and D in Equations (5) and (6) are calculated over the boundary Γ of the RVE and are constant
throughout the calculations [1, 4]. At Newton-Raphson iteration i, variable φ = u,λ is calculated using
φi
n+1 = φn +

∑i
m=1 φ

m
n+1. In Equation (6), Fint

n+1 is a vector of internal forces consists of contribution
of elements from matrix, yarns and yarn-matrix interfaces and ε is the macro-strain associated with a
Gauss point. Furthermore, vectors Cui

n+1 and CTλi
n+1 are associated with the RVE boundary conditions

and are written as

Cui
n+1 =

∫

Γ

HNTuh i
n+1dΓ, CTλi

n+1 =

∫

Γ

HNTλh i
n+1dΓ, (7)

where N is the matrix of shape functions and H is a matrix that is specific to the type of boundary
conditions used, each row of which represents an admissible distribution of nodal traction forces on the
RVE boundary and uh and λh are displacements and Lagrange multipliers calculated at a Gauss point,
i.e. φh = uh ,λh = Nφe i

n+1, where φe is a matrix of displacements or Lagrange multipliers associated
with element e.

3. Numerical example
The correct implementation and performance of the computational framework is demonstrated with a
polymer composite reinforced with unidirectional fibres subjected to transverse tension and shear. A
periodic RVE, consisting of randomly distributed but axially aligned fibres is considered in this case and
is shown in Figure 2(a). The RVE is generated using a statistically proven random distribution algorithm
proposed in [5] and is consisting of fibres with 5µm diameter and volume fraction of 60%. For the
elasto-plastic matrix material Young’s modulus, Poisson’s ratio, plastic Poisson ratio and initial yield
strengths in tension and compression are 3.76 GPa, 0.39, 0.3, 29 MPa and 67 MPa respectively, while
for the linear-elastic and isotropic glass fibres, Young’s modulus and Poisson’s ratio are 74 GPa and 0.2
respectively. For the cohesive elements interface strength and fracture energy are 50 MPa and 2 J/m2

respectively. The RVE is discretised with tetrahedral elements including 8,436 and 12,136 elements
for matrix and fibres respectively and is shown in Figure 2(b), while the fibres-matrix interfaces are
discretised with 1652 zero-thickness cohesive elements. The macro-strain (applied to the RVE by using
the periodic boundary conditions) versus the homogenised stress response for both transverse tension
and shear cases are compared with the numerical results from [2] and are shown in Figure 2(c), which are
in a very good agreement. The final damaged cross-section in the case of transverse-tension is shown in
Figure 2(d), where a clear localisation region can be seen. Furthermore, the effect of varying interfacial
strength and fracture energy for the transverse tension case is also illustrated in Figure 2(c), which
illustrate a more distributed fracture throughout the RVE, e.g. as shown in Figure 2(e).
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Figure 2: Geometry, mesh, damage and stress-strain plot for the numerical example

4. Conclusions

A three-dimensional, nonlinear micro-mechanical multi-scale computational homogenisation frame-
work is developed for the FRP composites. Matrix and yarns-matrix interfaces are modelled using a
paraboloidal yield criterion and cohesive elements respectively, while yarns are considered as linear-
elastic and transversely isotropic. The computational framework is validated for FRP composites with
unidirectional fibres subjected to transverse tension and shear, the RVE for which are generated using a
statistically proven random distribution algorithm. Furthermore, the effect of varying interfacial strength
and fracture energy on the homogenised stress versus macro-strain responses is also illustrated.
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ABSTRACT 

Particles are assumed smooth in classical discrete element modelling, but real particles have random rough 
surfaces which may influence their mechanical properties. It is necessary therefore to quantitatively improve the 
conventional discrete element model by taking the surface roughness into consideration. In this work, a new 
normal contact law is established for particles that have random rough surfaces. The contact law, based on the 
classic Greenwood and Williamson (GW) model, is derived by both theoretical derivation and numerical 
calculations. Instead of a complicated integral expression involved in the GW model, the resulting empirical 
formula of the law retains the closed form and simplicity of the Hertz model, with only one added parameter, ߪ௦, the standard derivation of a surface roughness, and therefore can be readily incorporated into the current 
discrete element modelling framework. 
 
Keywords: Surface roughness; Contact law; Discrete element method, Stochastic DEM; Numerical model 
  
1. Introduction  The discrete element method (DEM) is a computational technique originally developed by Cundall 
and Strack [3] which is well suited to simulate the response of assembly systems of particles [9]. 
DEM has been widely accepted as an effective method to model engineering problems in granular and 
discontinuous materials, especially in granular flows, power mechanics and rock mechanics. The 
basic particles in DEM are regular geometric entities such as disk, sphere, ellipse and ellipsoid with 
smooth surface. However real particles contain geometric irregularities at both macroscopic and 
microscopic levels. The macroscopic irregularities of particles may be modelled by more complicated 
geometric shapes, while surface irregularities at the microscopic level, also called the surface 
roughness, are more difficult to be considered, although they may have strong influence on the 
phenomena of contact, friction, wear and lubrication [1]. Up to now, very few attempts have been 
reported to provide random interaction laws that can be readily applied in DEM to estimate the 
contact forces between rough particles. It is therefore necessary to quantitatively improve the classical 
DEM by taking the surface roughness into consideration. The main objective of this paper is to 
establish a new random interaction law which can be applied in DEM for particles having random 
rough surfaces. 
There are several approaches that have been developed to understand the contact mechanism between 
rough surfaces, and can be classified into two categories: statistical and deterministic. The earliest and 
most recognized statistical treatment of rough surfaces is the work of Greenwood and Williamson [6]. 
This method can be viewed as a single scale method since statistical parameters used to represent 
rough surfaces are scale-dependent. Another statistical approach, where a fractal curve/surface is 
adopted to describe a rough surfaces together with a contact mechanism to resolve the contact, is  
introduced by Majumdar and bhushan [8]. This fractal based approach can be regarded as multiple 
scaled because of the inherent multi-scale invariant characteristics of most fractal curves/surfaces. On 
the other hand, the deterministic methods attempt to model rough surfaces precisely and the resulting 
contact problem is typically solved by the finite element method. Furthermore, the fast Fourier 
transformation is often used to treat the rough surface [10]. For the contact between two rough curved 
bodies, the first analytical study was conducted by Greenwood and Tripp [5] who employed the GW 
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asperity contact model together with the bulk surface deformation for circular point contact. More 
recent researches have extended the GW approach to the elasto-plastic deformation regime [2, 4, 7].  
 
2. Numerical algorithms for the GW model In the GW model, a rough flat surface is assumed to be an assembly of asperities whose properties are 
obtained from a given statistical height distribution of the surface and the Hertz contact law is then 
applied to these asperities which are also assumed to have the same radius of curvature. When this 
theory is applied to the contact problem of two rough spheres [6], the only difference from the rough 
flat contact problem is the geometrical aspect. Because of the spherical profile, the separation between 
two spheres will be a function of  ݎ, the distance from the centre of the contact area. The contact 
problem between two rough spheres is equivalent to the contact between a smooth sphere of radius ܴ 
and a nominally rigid flat rough surface having a Gaussian distribution of asperities heights ߪ௦, where ܴ and ߪ௦ can be derived by the radii and roughness of the two spheres as 

 ଵ
ோ = ଵ

ோభ + ଵ
ோమ (1) 

௦ଶߪ  = ௦ଵଶߪ + ௦ଶଶߪ  (2) 
Then the contact pressure distribution is given by 

(ݎ)݌  = ସ
ଷ భߚ݊∗ܧ

మ ׬ ݖ) − ௥మ
ଶோ − ଷ/ଶ((ݎ)ݓ ଵ

ఙ√ଶగ ݁ି(೥షഃ)మ
మ഑మ ஶݖ݀

௪(௥)ାೝమ
మೃ

 (3) 
where w(r) is the deformation of the sphere and can be obtained from the solution for the axi-
symmetric deformation of an elastic half-space as follows 

(ݎ)ݓ  = ସ
గா∗ ׬ ௧

௧ା௥ ௔ࡷ(ݐ)݌
଴  (4) ݐ݀(݇)

(0)ݓ  = ଶ
ா∗ ׬ ௔ݐ݀(ݐ)݌

଴  (5) 
in which ࡷ(݇) is the first kind complete elliptic integral of ݇ = భ(ݐݎ)2

మ/(ݎ +  and ܽ is the radius of ,(ݐ
the contact area for the smooth surfaces under the same load. Then the total contact force can be 
obtained by the integration of the pressure distribution over the contact area.  
Clearly, the (ݎ)݌ distribution in the GW model involves a complicated integral with ݊, ߚ and ߪ as the 
statistical characteristic parameters of surface roughness. In order to obtain (ݎ)݌ , the nonlinear 
equations (3) and (4) have to be solved simultaneously, with the later also including a non-integrable 
part. A numerical method based on the Newton-Raphson iterations is applied to solve this problem. 
First, introduce ܰ + 1  discrete points along the contact radius. Then equation (3) must be satisfied at 
each point ݅: 

௜݌  =  (6) (௜ݓ)݃ߤ
where 

ߤ  = ସ
ଷ భߚ݊∗ܧ

మ (7) 
(௜ݓ)݃  = ׬ ݖ) − ௥೔మ

ଶோ − ௜)ଷ/ଶݓ ଵ
ఙ√ଶగ ݁ି(೥షഃ)మ

మ഑మ ஶݖ݀
௪೔ାೝ೔మమೃ

 (8) 
or in a different form 

,଴݌)௜ܨ  ,ଵ݌ … , (ே݌ = ௜݌ − (௜ݓ)݃ߤ = 0 (9) 
which leads to a nonlinear system of equations for all the points: 

 ۴(p) = p − gߤ = 0 (10) 
To solve this system of equations in terms of ݌, function ۴ is expanded by the Taylor series in 
neighbourhood of ݌ as  

 ۴(p + δp) = ۴(p) + ۸ ∙ δp + O(δpଶ) (11) 
where ۸ is Jacobian matrix, which represents the gradient of the vector ۴. The value of ۸ is obtained by 
a finite difference approximation. The increment δp is obtained by 

 δp = −۸ିଵ۴(p) (12) 
The solution  ݌ is achieved by the iterative process starting from a trial solution. Then the total contact 
force can be obtained by integrating the pressure (ݎ)݌  over the entire contact area. The ܲ~ߜ 
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relationships of two surfaces with different levels of roughness are shown in Fig. 1, in which the range 
of σ (normalised) is 0.0001~0.01 and δ (normalised) is 0~0.1. All the other parameters are set to 
be 1. The P~δ relationships of the Hertz law and the GW-model (σ = 1.0e − 4) are shown in Fig. 2.   

 
 
Figure 1: ܲ~ߜ~ߪ relationships based on the                                  Figure 2: ܲ~ߜ relationships of smooth 

numerical calculation                                            surface and rough surface (ߪ = 1.0݁ − 4) 
 

3. Predictive formulas of the ܲ~ߜ curve In order to obtain the random normal interaction law that can be used in DEM, an explicit relationship 
between the total force ܲ and the overlap ߜ needs to be defined from the numerical results via curve-
fitting. It is of practical importance that the resulting relationship should have a simple closed form 
with the minimum number of added parameters. Equation (3) indicates that there are two added 
parameters, σ and ݊ߚభ

మ, and that ܲ is proportional to ݊ߚభ
మ (note that the numerical results obtained are 

for ݊ߚభ
మ = 1).   

It is obvious that the ܲ~ߜ relationship should degenerate to the Hertz law when ߪ = 0. However, to 
treat ݊ߚభ

మ as an independent parameter from ߪ will violate this requirement as different values of ݊ߚభ
మ 

would lead to different ܲ~ߜ curves at ߪ = 0.  To resolve this issue, ݊ߚభ
మ is calibrated in the following 

way. When ߪ is sufficiently small, the rough surface should be regarded as a smooth surface and thus 
should have the same ܲ~ߜ relationship as the Hertz law. However, Fig. 2 depicts a clear difference 
between ௦ܲ௠௢  and ௥ܲ௢௨௚௛  (with ݊ߚభ

మ = 1, and assuming that ߪ = 1.0݁ − 4 is sufficiently small). 
Our numerical calculation shows that the condition ௥ܲ௢௨ ߪ) = 0) = ௦ܲ௠௢௢௧௛ can be enforced if  ݊ߚభ

మ 
takes the following value: 

భߚ݊ 
మ = ௉ೞ೘೚೚೟೓

௉ೝ೚ೠ೒೓ = 0.62ܴିభ
మିߜଵ (13) 

Then σ now becomes the solely added parameter in the ܲ~ߜ relationship, making the new interaction 
law much simpler.  The correctness of this formula can be verified through the analysis of equation 
(3) at the special case  ߪ = 0, based on the fact that the Gaussian distribution reduces to the Dirac 
Delta Function when ߪ → 0: 

(ݐ)ߜ  = limఙ→଴
ଵ

√ଶగఙ ݁ି௧మ/ଶఙమ (14) 
An important property of the delta function is that for a given function ݂(ݔ)  

׬  ݐ)ߜ(ݐ)݂ − ݐ݀(଴ݐ =  (15) (଴ݐ)݂
Thus when ߪ → 0, the pressure distribution (ݎ)݌ in equation (3) reduces to 

(ݎ)݌  = ସ
ଷ భߚ݊∗ܧ

మ(ߜ − ௥మ
ଶோ −  ଷ/ଶ (16)((ݎ)ݓ
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An explicit expression for (ݎ)݌ is not possible because of the inter-dependence between (ݎ)݌ and  (ݎ)ݓ which is the deformation of the smooth sphere. However, we artificially set (ݎ)ݓ = 0, which 
leads to an explicit but approximate expression for  (ݎ)݌ 

(ݎ)݌  = ସ
ଷ భߚ݊∗ܧ

మ(ߜ − ௥మ
ଶோ)ଷ/ଶ (17) 

The total contact force can be obtained by the integration of the pressure distribution over the contact 
area as  

 ௥ܲ௢௨௚௛ = ׬ ݎ݀(ݎ)݌ݎߨ2 = భߚ݊∗ܧ2.76
మ௔

଴ ఱߜܴ
మ (18) 

The nominally flat rough surface can be considered as smooth surface when σ→0. The contact force 
between the sphere and the smooth surface can be calculated by the Hertz law 

 ௦ܲ௠௢௢௧ = ସ
ଷ భܴ∗ܧ

మߜయ
మ (19) 

The condition ௥ܲ௢௨௚௛= ௦ܲ௠௢௢௧  gives rise to 
భߚ݊ 

మ = 0.48ܴିభ
మିߜଵ (20) 

which is the same as formula (13) except for a smaller coefficient. This discrepancy can be explained:      
the assumption 0=(ݎ)ݓ increases the overlap between the sphere and the asperities, thereby leading to 
a larger (ݎ)݌, and thus a larger ௥ܲ௢௨௚௛, and therefore a smaller coefficient.  
 
Based on the above analysis and applying curve-fitting, the predictive formula for calculating the 
normal contact force between two rough spheres is derived as (with the ܴ݁ݎݑݍݏ = 0.98) 

 ௥ܲ௢௨௚௛ = భܴ∗ܧ
మ ቀସ

ଷ − ቁߪ39.13 ቀయߜ
మିଽ.ହ଻ ቁ +  ଶ.ହ (21)ߪ1.5

Cleary, when ߪ = 0, the formula recovers the Hertz law as required. Also, the total force is no longer 
zero when ߜ = 0 for ߪ > 0 because some asperities of the two rough spheres may be in contact even 
there is no overlap between the two mean surfaces.  
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ABSTRACT

For systems with high second Damköhler number (reaction rate over diffusive mass transport rate) the reaction rate
is limited by themixing of the reactants. Instead of the reaction proceeding proportional to t−1, the reaction proceeds
at a rate proportional to t−d/4, where d is the dimensionality of the system. This has been shown analytically [7]
and numerically, using particle tracking methods (e.g. [1]). This happens when reactants are initially segregated,
or the forward progress of the reaction leads to the segregation of the reactants, which then diffuse back together.
Experiments have shown that even with highly homogeneous porous media, the observed reaction rate is less than
expected if the reactants were mixed completely [4,5]. The experiments performed by [4] have been studied using
numerical methods, most of which have used particle tracking methods (e.g. [2,3,8]). This work presents a finite
difference formulation of a model which can reproduce systems in which reactions a limited by mixing on the
sub discretization scale, and where imposed mixing rates of reactants leads to reactions proceeding at t−d/4 over
long timescales. This is achieved by simulating the mixing of reactants separately from the spatial discretization
of the problem by separating each reactant into a mixed and unmixed fraction and defining rate laws to describe
the transfer of reactants between the mixed and unmixed states.
The model developed is benchmarked against experimental data from [4] and produces a fit which compares well
with outputs produced by other simulation studies.

Key Words: mixing limited reactions, reactive transport, porous media, continuum methods

1. Introduction
When well mixed batch reaction rates are used for simulations of solute reactions in porous media
the simulation outputs often give a higher reaction rate than laboratory or field scale experimental
studies. This has been attributed to the reaction rate being limited by the rate at which the reactants
mix together [4,5]. To produce accurate results simulations must include some method of limiting the
reaction rate. Studies such as [6] perform this by using a time dependent reaction rate coefficient of the
form Kr = β0t−m. Mixing limited reactions have been simulated using particle tracking methods (e.g.
2,3,8) which are effective, though these are computationally expensive and not well suited to large scale,
complex, multicomponent reaction systems.
The classical solution of the reaction between two well mixed solutes of the form A+ B → C is given by

dA
dt
= −∆tKr [A][B] (1)

dB
dt
= −∆tKr [A][B] (2)

dC
dt
= ∆tKr [A][B] (3)

where Kr is the reaction rate coefficient and [A] and [B] are the concentrations of the solutes A and B
respectively. This reaction system has a solution of the form

[A](t)/[A]0 = ([A]0Kr t + 1)−1 (4)
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which give a long time reaction rate proportional to t−1. Starting from a particle basis [7] showed that
imperfectly mixed reactants will react at a rate proportional to t−d/4, where d is the dimensionality of
the system and takes the form

ρ = ρ1/2
0 (2π)−3/4(Dt)−1/4, (5)

ρ = ρ1/2
0 2−3/2π−1(Dt)−1/2, (6)

ρ = ρ1/2
0 2−7/4π−5/4(Dt)−3/4, (7)

where ρ is the particle density, ρ0 is the initial particle density, and D is the diffusivity. The replication
of this behaviour, as well as the production of a high quality experimental fit for a reaction-advection-
dispersion system is the objective of the work presented here. By constrast, most previous studies have
focussed solely on the quality of the experimental fit for a reaction-advection-dispersion system.

This paper presents a new method for limiting the reaction rate based on a conceptual model where each
reactant is divided into two “pools”, one of which is close to the other reactant, and so can take part in
reactions, and one which is separate, and so cannot. The solutes are transported between these two pools,
and the rate at which this occurs controls the reaction rate. This allows for the simulation of reactions
where the reactants are partially segregated on the sub pore scale without the computational expense of
pore scale simulations.

2. Method
The mixing limited reaction system is simulated by conceptually separating each reactant into into a
mixed and an unmixed fraction, denoted using the subscripts m and u respectively. The formulation for
a zero dimensional reaction system of the form A + B → C is given as

dAu

dt
= −∆t · Km [Au]M , (8)

dBu

dt
= −∆t · Km [Bu]M , (9)

dAm

dt
= ∆t

(
Km [Am]M − Kr [Am] [Bm]

)
, (10)

dBm

dt
= ∆t

(
Km [Bm]M − Kr [Am] [Bm]

)
, (11)

dC
dt
= ∆t · Kr [Am] [Bm] , (12)

where Km is the mixing rate, Kr is the reaction rate, and M is an exponent used to control the rate of
mixing. When M is set to unity the mixing rate is exponential and so the limiting factor becomes the
reaction rate, leading to a reaction rate proportional to t−1 . The mixing limited reaction rates for different
dimensionalities, proportional to t−1/4, t−1/2, and t−3/4, can be achieved by setting M to 5, 3, and 7/3
respectively.

This model makes the assumption that the reactants are initially poorly mixed or totally separate, as
it incorporates no method to segregate the reactants on the sub pore scale. The experiment used for
benchmarking is a simulation of two totally separate reactants which mix imperfectly as they disperse,
meaning that the assumption of perfect mixing leads to an overestimation of the reaction rate. The model
is able to simulate this system but needs expanding to be able to simulate systems where mixing limited
reactions a caused by the forward progress of the reaction segregating the reactants.
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3. Results
The model is benchmarked by comparison with experimental results from [4]. A 36 cm by 5.5 cm by
1.8 cm porous medium is saturated with a 0.02 Mol solution of CuSO4, which is displaced by a 0.02
Mol solution of Na2EDTA2− at a constant flow rate of 2.67 mLmin−1. The flow field is one dimensional,
along the long axis of the domain. The reaction between the two solutes is given as

Na2EDTA2− + CuSO4 → CuEDTA2− + Na+ + SO2−
4 (13)

and is assumed to be instantaneous in well mixed systems. To simulate this system dispersive transport is
added to the formulation above. The constant flow field allows for advection to be neglected for the sake
of simplicity. This is done by centering the domain around vt. When plotted the product concentration
profile is shifted along the x-axis by vt to fit to the experimental data and for clarity of viewing rather
than being plotted with the same centre point.

Figure 1 shows the best fit simulation results and the experimental data from [4]. As the bulk flow field
is one dimensional the problem is simulated as a one dimensional problem using finite differences.The
initial conditions are [Am]0 = [Bm]0 = 0, [Au]0 = 0 from 0 ≤ x < `/2, [Au]0 = 0.02 from `/2 ≤ x ≤ `,
and [Bu]0 = 0.02 − [Au]0 from 0 ≤ x ≤ `. The simulation setup has; domain length ` = 36 cm, ∆x = 0.1
cm, Dh = 1.75 x 10−3 cm2s−1, Km = 75 mol1−Mcm3M−1s−1, Kr = 10 cm3mol−1s−1, and M = 3. The best
fit is achieved by having a two dimensional mixing regime (M = 3). The dimensionality of the mixing
regime affects the rate at which the peak product concentration changes. A good fit to the data at t = 619s
can be achieved with any of the mixing regimes, but a fit to all three can only be achieved with a two
dimensional mixing regime.

The quality of the fit produced is superior to methods where the reaction rate is reduced by reducing
the reaction rate coefficient. [6] are able to produce a comparable quality fit for t = 619s, though
this is achieved by reducing the coefficient of dispersivity by ∼25%, and are unable to reproduce
the increase in peak product concentration observed in the experimental results presented by
[4]. The quality of the fit also compares well with results presented in numerical studies using parti-
cle tracking methods, which are intrinsically capable of simulating mixing limited reaction systems [1,2].
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Figure 1: Comparison of the reactive transport simulation utilizing t−0.5 mixing with the experimental data from
[4] at times 619 s, 916 s, and 1510 s (left to right).
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4. Conclusions
In this article a new method for simulating mixing limited reaction using continuum methods has been
presented. This method is based around the separation of each reactant into two fractions to represent
the mixed and unmixed reactants, and a formulation for the transfer of reactant from the unmixed to
the mixed fraction and vice versa. This method reproduces the t−d/4 mixing regime, rather than altering
the reaction rate coefficient as other studies have. The quality of the fit to an widely used experimental
benchmark is good and compares favourably with other studies. The method makes the assumption that
the reactants are initially either poorly mixed or entirely separated, as this is sufficient for the simulation
of the experiments presented in [1]. Despite this the action of the reaction process to resegregate the
reactants is an important aspect in the behaviour of mixing limited reaction systems. As such the next
step is to expand the formulation to include a segregation term.
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ABSTRACT

Electro-osmotic flow (EOF) in microchannels with and without porous media has been analysed in this work. The
effect of the charge of solid particles on EOF has been taken into account by introducing an equivalent reference
length into the equation that governs the static potential distribution. External electric field and internal potential
have been determined by solving the Laplace and Poisson-Boltzmann equations, respectively. Their effect has been
introduced into the Navier-Stokes equations to simulate fluid flow and heat transfer due to electro-osmosis. The
set of equations that describes the problem has been solved using the finite element method combined with the
characteristic-based split algorithm.

Key Words: Electro-osmosis; Porous materials; Microscopic approach; CBS.

1. Introduction
Electro-osmosis is important due to its applications in several fields of biology and engineering, mainly
for pumping, cooling, mixing and separation processes. In Electro-Osmotic Flow (EOF) driven systems
a solid surface, in contact with an electrolytic solution, becomes a charged surface. Consequently, the
ions in the solution form of a high concentration region close to the solid surface, called Electrical
Double Layer (EDL). When an external electric field is applied, the ions of the EDL move, dragging the
nearby ions with them. In standard channel flow applications, the active surfaces are the channel walls. In
channels filled with electrolyte saturated porous media, the boundaries of solid particles also contribute
to electro-osmosis.
EOF in micro- and nano- fluidic systems has been widely investigated, experimentally and numerically.
On the contrary, EOF in porous media is still not clearly analysed [1]. Experimental data are difficult
to collect, due to the small scales, while for numerical modelling different approaches have been used
and in most cases the results have not been validated against experimental results. In addition, several
simplifying hypotheses have been considered in modelling EOF in porous media. To better understand
EOF through porous media, a well defined porous medium is studied in the present work by using a
microscopic approach. The flow results obtained for EOF through a of porous medium are compared
against standard microchannel EOF without porous medium.

2. Mathematical model and solution procedure
The Laplace equation for the external applied potential and a non-linear Poisson-Boltzmann equation for
the internal potential have been solved explicitly, by adding a pseudo time term. Their effect, responsible
for EOF, has been implemented into the source term of the momentum equation of Navier-Stokes
equations [3]. The Laplace and Poisson-Boltzmann equations are presented in non-dimensional form as

• Laplace equation
∂2φ∗

∂x∗i
2 = 0 (1)
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• Poisson-Boltzmann equation
∂2ψ∗

∂x∗i
2 = −

(
κLre f

)2
sinh

(
ψ∗

T∗ + 1

)
(2)

where φ∗ is the non dimensional applied external potential, ψ∗ the non dimensional Electric Double
Layer (EDL) potential (internal potential), κ is known as Debye-Huckel parameter, Lre f is the reference
length and T∗ is the non dimensional temperature. The Debye-Huckel parameter [2] is given as

κ =

(
2n0z2e2

kBTεε0

)1/2

where n0 is the ionic number concentration in the bulk solution, z the valance of the ions, e the elementary
charge, kB the Boltzmann’s constant, T is the reference temperature measured in kelvin, ε the dielectric
constant of the electrolyte and ε0 the permittivity of vacuum.
The parameter κLre f used in Equation (2) represents the thickness of the EDL: it largely affects the
internal potential distribution and consequently the flow profile within the channel. It appears that in
the literature, the equation that governs internal potential distribution has not been modified to include
the effect of porous media. This approach tends to underestimate the contribution of the charge of solid
particles in the porous medium. Therefore, in the present work the authors have considered an equivalent
reference length, assumed equal to the ratio between the area the channel occupied by the fluid and the
length of the channel:

• in case of fluid Lre f ,eq corresponds exactly to the channel width, consistent with the quantity
commonly used in previous works concerning EOF;

• for porous media the use of Lre f ,eq into Equation (2) should allow flow enhancement due to the
charge of solid particles. An equivalent length as discussed previously is employed in the present
study.

Fluid flow and heat transfer in standard micro-channels and through porous media have been analysed
through the Navier-Stokes equations. They are given in their non-dimensional form as

• Continuity equation
1
β∗2

∂P∗

∂t∗
= −ρ∗ ∂u∗i

∂x∗i
(3)

• Momentum equation

ρ∗ *.,
∂u∗i
∂t∗
+
∂

(
u∗iu
∗
j

)

∂x∗j
+/- = −

∂p∗

∂x∗i
+

1
Re

∂2u∗i
∂x∗i

2 + J sinh
(

ψ∗

T∗ + 1

) (
∂φ∗

∂x∗i

)
(4)

• Energy equation
∂T∗

∂t∗
+ u∗i

∂T∗

∂x∗i
=

α∗

RePr
∂2T∗

∂x∗i
2 + Jo

(
∂φ∗

∂x∗i

)
(5)

where

Re =
ρre f ure f Lre f

µ
; J =

2n0kBT
u2
re f

ρre f
; Jo =

1
RePr

σre f

kre f

k2BTre f

z2e2
;

The other non-dimensional quantities used in the above non dimensional form of equations are

x∗i =
xi

Lre f
; φ∗ =

zeφ
kBT

; ψ∗ =
zeψ
kBT

; T∗ =
T − Tre f

Tre f
; ρ∗ =

ρ

ρre f
;

u∗i =
ui

ure f
; ure f =

Exεε0ζ

µ
t∗ =

ture f
Lre f

; p∗ =
p − pre f
ρre f u2

re f

; β∗ =
β

ure f
;
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where β is an artificial compressibility parameter [4]. Fluid flow and heat transfer equations have been
solved by using finite element method combined with a fully explicit artificial compressibility-based
CBS (Characteristic Based Split) scheme [5] to overcome the instability caused by the pressure term of
the momentum equation.
The walls and any solid boundary have been assumed to be active with a prescribed non-dimensional
zeta potential and to obey no-slip velocity boundary conditions. An applied external potential difference
between the inlet and outlet has been considered and the normal velocity gradients have been assumed
to be zero at both inlet and outlet. The computation has been started with prescribed zero velocity
components as initial condition. A 2D unstructured mesh refined near all solid boundaries to capture the
rapid change in both internal potential and velocity has been used. A mesh sensitivity study has been
carried out in order to find grid insensitive results.
In order to assess the effectiveness of using porous media to enhance EOF, a comparison with standard
channel flow applications has been carried out. Fluid flow and heat transfer through porous media have
been analysed through the so-called microscopic approach [6], that provides details of the fields for the
quantities of interest at particle level. The analysis has been focused on the improvement in EOF due to
the use of the equivalent reference length proposed in the present work.

3. Results and Discussions
A silicon micro-channel 30 µm in diameter characterized by an aspect ratio of 10, with deionized water
as working fluid, has been considered. Porous media have been investigated at the pores level, with solid
particles assumed to be circular in shape. Two cases have been considered:

• particles arranged in line, diameter equal to 50% of the channel diameter;
• staggered particles, diameter equal to 30% of the channel diameter.

A non-dimensional external potential difference of 2 000 was prescribed between the inlet and outlet
of the channel. The non-dimensional zeta potential value of −3, corresponding to −75mV , has been
considered for both the channel walls and the solid particles.
The distribution of the internal potential is shown in Figure 1, where only part of the whole domain is
reported here to clearly view the details.

(a) (b)

(c) (d)

Figure 1: Internal potential (IP) distribution: standard fluid channel (a) and porous channel with in line particles
with standard channel width (b) and with the proposed Lre f ,eq (c), staggered particles with the proposed Lre f ,eq

(d).

271



For EOF in porous media with in line particles two cases have been considered: firstly, the equation
that governs internal potential distribution has not been modified, and the width of the channel has been
used (Figure 1 b), secondly the equivalent reference length proposed by the authors has been considered
(Figure 1 c). The results obtained highlight that, by using Lre f ,eq instead of the whole width of the
channel, the effect of the charge of solid material in the narrow region between the channel wall and the
particle is taken into account. The internal potential distribution plays a fundamental role on the velocity
distribution and consequently on the flowrate. The effect of using the proposed equivalent length on the
outlet velocity profile is illustrated in Figure 2. As seen, the equivalent width used substantially increases
the flow rate when porous media have been considered.

(a) (b)

Figure 2: Outlet velocity profiles: comparison between fluid and in line particles (geometry b-c of Figure 1) (a),
staggered particles (geometry d of Figure 1) (b).

4. Conclusions
Electro-osmotic flow through porous media has been studied and compared to the standard channel flow
applications. For modelling porous media flow an equivalent reference length has been employed. The
use of this parameter allows us to take into account the influence of the charge of solid particles on the
internal potential distribution and capture the behaviour in the narrow regions between solid particles
and channel walls. The results of this study will be used by the authors to define the parameters for
modelling EOF in porous media by using a macroscopic approach.
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ABSTRACT 

Two-dimensional heat and mass transfer of natural convection in an annular cylindrical space filled with fluid-
saturated porous medium, is analyzed by solving numerically the mass balance, momentum, energy and 
concentration equations, using Darcy's law and Boussinesq approximation. Both walls delimiting the annular 
space are maintained at two uniform different temperatures and concentrations. The external parameter 
considered is Rayleigh-Darcy number. For the present work, the heat and mass transfer for natural convection is 
studied for the case of aiding equal buoyancies, where the flow is generated in a cooperative mode by both 
temperature and solutal gradients. The local Nusselt and Sherwood numbers are presented in term of the 
external parameter. 
 
Keywords: Heat and mass transfer; Natural convection; Porous media; cylindrical annulus. 
  

1. Introduction  

The heat and mass transfer of natural convection confined into different annular enclosures was a 
subject of many theoretical, numerical and experimental studies. These annular spaces have different 
geometries and can be partly or completely filled with porous media. Interest in this phenomena is due 
to many potential applications in the engineering processes which involve the oil and gas industries, 
thermal recovery process, the underground spreading of chemical waste and other pollutants…etc.   
F.M. Mahfouz [1] has investigated a buoyancy driven flow and associated heat convection in an 
elliptical enclosure. N. Allouache and al. [2] analyzed a solid adsorption refrigerator using activated 
carbon/methanol pair. It is a contribution to technology development of solar cooling systems. 
Edimilson J and al. [3] examined a numerical computation for laminar and turbulent natural 
convection within a horizontal cylindrical annulus filled with a fluid saturated porous medium. Leong 
and Lai [4] presented a natural convection in concentric cylinders with a porous sleeve, analytical 
solutions obtained through perturbation method and Fourier transform. Mota and al. [5] solved the 
two-dimensional Darcy-Boussinesq equations, governing natural convection heat transfer in a 
saturated porous medium, in generalized orthogonal coordinates, using high-order compact finites 
differences on a very fine grid.  
 
2. Problem Formulation And Basic Equation 

We consider a thermosolutale natural convection in an annular elliptical space filled with fluid-
saturated porous medium. Figure 1(a) represents a cross section of the system. Both elliptic internal 
and external walls are isothermal and impermeable, kept at constant temperatures and concentrations 
T1, C1 and T2, C2 respectively with T1>T2 and C1>C2. The physical properties of the fluid are constant, 
apart from the density ρ whose variations are at the origin of the natural convection. Viscous 
dissipation and the radiation are neglected, Soret and Dufour effects are also neglected and we admit 
that the problem is bidimensional, permanent and laminar and the porous medium is considered 
isotropic and homogeneous. Dimensionless equations within the framework of the Boussinesq’s 
approximation after the transformation from the Cartesian to the elliptic coordinates are: 
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                             (a)                                                                      (b) 

Figure 1: (a) The cross section of the system, (b) Physical domain (left) and computational domain (right) 
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Concentration Equation: 
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Vη and Vθ are the velocity components in the directions η and θ, F (η,θ), G (η,θ) used in (2) are the 
coefficients resulting from the transformation and H represent the metric coefficients in the elliptic 
coordinates. Ram represents Rayleigh-Darcy number which is defined as: Ram=Ra.Da  
The boundary conditions are expressed as following: 
Hot inner wall with high concentration (η=ηi=cst): 
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Cold outer wall with low concentration (η=ηe=cst): 
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3. Numerical method 

Figure 1 (b) shows the physical and computational domain and to solve (1), (3) and (4) with the 
associated boundary conditions; we consider a numerical solution by the finite volumes method, 
exposed by [6]. The power law scheme was used for the discretization. To solve (2), we consider a 
numerical solution by the centred differences method. The iterative method used for the numerical 
solution of algebraic system of equations is the Gauss-Seidel with an under-relaxation process. Local 
Nusselt and Sherwood numbers in the physical domain are defined as: 
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4. Results and discussion 

The objective is to analyze the effect of Rayleigh-Darcy number for the case of a cooperative mode of 
the heat and mass transfer. For this reason, we presented streamlines, isotherms and concentration 
contours for different values of Rayleigh-Darcy number for the case when the buoyancy ratio N=1 and 
for a determined value of Lewis number Le=0.1. The Nusselt and Sherwood numbers are presented 
for different values of Ram. The study was carried out for the case of the air and when the 
eccentricities of the internal and the external ellipses are respectively given by e1=0.14 and e2=0.07 in 
order to obtain a cylindrical configuration and the inclination of the system is α=0°. Figure 2 
represent the streamlines (left), concentration contours (middle) isotherms (right), we note that these 
contours are symmetrical about the median fictitious vertical plane. The streamlines of figure 2 show 
that the flow is organized in two main cells that rotate in opposite directions. This is due to upward 
movement of the fluid particles under the aiding buoyancy effect related to temperature and solutal 
gradients, the fluid heat up along the hot wall and the downward movements of the fluid particles 
which cool along the cold wall under the gravity. Isotherms in figure 2(a) deform in the upper space 
where there is presence of two counter-rotating vortices. This configuration illustrates that the heat 
transfer is dominated by a convective mode in the upper space, in the lower space the heat transfer is 
dominated by a conduction mode with a slight contribution of the convection.   

 
 

 
 
(a) 

 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 

(c) 
 
 
 
 
 

 

The concentration contours in this figure are parallel and concentric closed curves which coincide 
perfectly with the walls profile in the annular space where the mass transfer is purely conducted by 
diffusion mode. In figure 2(b) we notice that with the increase isotherms show that the convective 
mode is gaining more space in the bottom section under the effect of the thermal gradient. The 
concentration contours show that the mass transfer is driven by a diffusive mode with a slight 
transition in the upper space due to the aiding buoyancies. Figure 2(c) shows that the streamlines from 

Figure 2: Streamlines, isotherms and concentration contours for N=1 and Le=0.1 
(a) Ram=10, (b) Ram=100 and (c) Ram=250 
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both cells tend to become adjacent which decrease the gap between the cells in the upper annulus 
space, the flow remains organized in two main cells rotating in opposite directions with very high 
motion. In the same figure, isotherms have a significant change and are increasingly distorted at the 
top of the annular space due to the increase of the thermal gradient. The concentration contours 
illustrate a solutal stratification relatively decreasing in the upper section of the annular space. 

 

 
 
 

 

 

 

 

 

Figure 3 illustrates the variation of local Nusselt and Sherwood numbers on the inner wall of the 
cylinder in term of Rayleigh-Darcy number. For the local Nusselt number this variation allows us to 
note that with the increase of Rayleigh-Darcy number, the value of local Nusselt number increase 
significantly due to the increase in the thermal gradient which is obvious. The local Sherwood number 
increases with increasing of Ram due to the aiding effect of thermal and solutal buoyancies.  

 
5.   Conclusion 

Heat and mass transfer of natural convection in a porous cylindrical annulus saturated by a Newtonian 
fluid was studied by a numerical method using the method of finite volumes and the vorticity-
streamline formulation. We examined, in particular, the influence of Rayleigh-Darcy number for the 
case when the thermal and the solutal buoyancies are equal and cooperating in the generation of the 
flow. The structures of bicellular convection take place according to the value of the Rayleigh-Darcy 
number. When increasing Ram the heat transfer is dominated by the convective mode in the entire 
annular space. The mass transfer remains dominated by a diffusive mode due to the high solutal 
diffusivity which is ten times higher than the thermal diffusivity for Le=0.1. With the increase of Ram 
the convection mode of the mass transfer rises in the upper space as consequence of the aiding effect 
of the thermal and the solutal buoyancies when the buoyancy ratio N=1.  
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ABSTRACT 

A vascular self-healing system, which facilitates the storage, delivery, release, dissipation and curing of liquid 

self-healing agents, has been proved in the laboratory to be able to improve the durability of cementitious 

materials. To better understand the healing mechanisms associated with the system, and to optimise its design, a 

numerical model of the vascular system is proposed. In this study, the dissipation of the healing agent in and 

around discrete cracks after being released from the delivering flow network is simulated. This flow process 

comprises the flow of the liquid in the macro-crack space and the flow into the surrounding porous concrete 

matrix. The flow in the discrete crack is modelled by a modified Lucas-Washburn (L-W) equation, where an 

additional flow term Q has been introduced to take account of the mass being absorbed by the surrounding 

matrix. This flow term is determined by a 2D finite element continuum model of the surrounding matrix and is 

based on isothermal unsaturated flow theories. A mass balance equation is added to account for the interflow 

between the macro-crack and the matrix. This is achieved by treating the crack as an internal boundary within 

the matrix and computing the flow across this boundary. The simulation results suggest that imbibition has a 

significant influence on the flow in the macro-cracks and the degree of influence is related to the permeability as 

well as to the degree of saturation of the adjacent fracture process zone. 

Keywords: concrete, finite element model, moisture transportation, capillary movement, self-healing  

 

1. Introduction  

Concrete structures are prone to cracking, and these cracks can lead to durability problems and 

increased maintenance costs. As a result, self-healing concrete has attracted much attention in recent 

years and has shown great potential to resolve some of these durability issues. Among the various 

existing self-healing techniques, the biomimetic vascular self-healing system is seen to be one of the 

most promising and versatile systems [1], and it has been applied to real structures at engineering 

scale [2]. It could also be easily combined with other self-healing techniques to form an integrated 

self-healing system [3]. Despite the huge efforts and vast advances in the development of vascular 

self-healing systems, there has been a lack of understanding, analysis, and simulation of the healing 

mechanisms and processes. This is, however, crucial to the further development of such systems. This 

study is to look at the crack filling process of the liquid self-healing agent after being released from 

the flow network in to the crack planes using a coupled numerical model.  

Past experiments and previous literature have suggested that the movement of liquid in concrete 

cracks is primarily driven by capillary pressure [4,5]. This capillary flow in the crack comprises two 

distinct flow processes, i.e. the capillary flow in the macro-crack; and imbibition into the surrounding 

matrix. The flow in the macro-crack has been historically simulated by the modified Lucas Washburn 

(L-W) equation, which accounts for various factors such as dynamic contact angle and stick slip etc. 

[4]. However, the influence of the fluid absorbed (or expelled) from the adjacent porous matrix has 

not previously been included in the equation. For a typical self-healing flow problem, the influence of 

the matrix flow on the ‘discrete’ fluid flow in the macro-crack could be particularly important because 

the matrix around the macro-scale cracks has much higher permeability and porosity due to the 

developed fracture process zone.  
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In this study, the combined effect of these two flow processes is modelled by coupling the modified 

L-W equation with a finite element isothermal flow model of the surrounding matrix. The coupling is 

realised by adding a mass balance equation for the interflow between the discrete crack and the matrix 

through the crack faces. This is achieved by treating the crack as an internal boundary within the 

matrix and computing the flow across this boundary. The individual models for the crack and matrix 

flow, as well as the coupled flow model, were firstly calibrated and then validated using a range of 

experimental data. This paper describes a new way of coupling the 2D FE unsaturated flow model 

with the LW capillary flow equation, so that a better understanding of the movement of liquid healing 

agents in cementitious cracks can be achieved. The modelling scheme of a specific boundary 

condition is presented here, i.e. the liquid is freely available at the crack mouth and is not constrained 

by the delivery system. 

2. The coupled model  

The capillary flow in the discrete crack is described by a modified Lucas-Washburn Equation as 

shown in equation (1):  

 pc0(z)(1 − βs) −
2βmż

b(z)
+ ρgz sin(ϕ) − ∫

v̅(x)

k(x)
μ +

βwb(x)
2

dx
z

0

= 0 
(1) 

where pc0 is the surface tension at the meniscus; b(x) is the crack width for a planar water channel; z 

is the present rise height of the meniscus and ż is the velocity of the meniscus;  μ is the viscosity of 

the flow agent and k(x) is the effective permeability term that accounts for the shape of the flow 

cross-section and may vary along the profile of the flow channel. A model that includes factors to 

account for stick-slip (𝛽𝑠), friction dissipation at meniscus (𝛽𝑚), and wall slip (𝛽𝑤) has been proved to 

achieve better agreement with experiment results [4] than a model based on the standard L-W 

equation. Assuming a general expression for imbibition (flow) 𝑞(𝑥′) along the crack faces. Based on 

the mass conservation law, the relationship between the moving velocity of the meniscus and the 

velocity at any point within the flow section is expressed in equation (2).  

  v̅(𝑧)𝐴(𝑧) = v̅(𝑥)𝐴(𝑥) − ∫ 𝑞(𝑥′)𝑑𝑥′
𝑧

𝑥
                                               (2) 

Substituting equation (2) into equation (1) and rearranging leads to the modified governing equation 

of the crack flow, which is as follows: 

𝑝𝑐0(𝑧)(1 − 𝛽𝑠) −
2𝛽𝑚𝑧̇

𝑏(𝑧)
− 𝜌𝑔𝑧 sin(𝜙) − ∫

𝑣̅(𝑥)

𝑘(𝑥)
𝜇 +

𝛽𝑤𝑏(𝑥)
2

𝑑𝑥
𝑧

0

− 𝑄 = 0                     (3) 

where: 
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(∫ 𝑞(𝑥′)

𝑧

𝑥
𝑑𝑥′)

𝐴(𝑥) (
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𝛽𝑤𝑏(𝑥)

2 )
𝑑𝑥

𝑧

0

                                                         (4) 

The resulted additional double integration term 𝑄 accounts for the influence of the total imbibition. It 

may be seen that this height reduction term is an integral function of the flow field at the crack faces, 

which is then solved using an isothermal-hygral finite element model of the imbibition in the porous 

matrix continuum. 

The governing equation for this microscopic flow is based on the mass balance equation of the water 

content in the domain [6, 7], as shown in equation 1. 

𝜌𝑣̅̅ ̅̇ + 𝜌𝑙̇̅ + 𝛻𝒒𝒗 + 𝛻𝒒𝒍 + 𝜌𝑣𝑙̅̅ ̅̇̅ + 𝜌𝑙𝑣̅̅ ̅̇̅ = 0                                      (5) 

where ρv̅̅ ̅̇ and ρl̇̅ are the time differentiation of vapour mass and water mass in the domain;𝛻𝐪𝐯 and 

𝛻𝐪𝐥 are the mass flux of vapour and water out of the domain; because the mass balance equation of 

water content includes both liquid and vapour water, the phase change between the liquid water and 
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water vapour 𝜌𝑣𝑙̅̅ ̅̇̅  and 𝜌𝑙𝑣̅̅ ̅̇̅  may be cancelled. The movement of the water content is driven separately 

by the capillary pressure gradient and vapour concentration gradient. Darcy’s law and Fick’s law are 

used to determine the flow term due to capillary pressure and vapour diffusion respectively. Different 

flow properties have been applied to elements at different locations to account for the larger 

permeability in micro-cracked zones and surface zones. Capillary pressure  𝑝𝑐 is the primary variable 

for the model and the van Genuchten equation is used to establish the relationship between saturation 

degree and capillary pressure. The relative permeability and vapour diffusion coefficient are functions 

of the water content; therefore the problem is nonlinear. Newton-Raphson iteration is adopted for 

solving the resulting nonlinear equations and the element averaged capillary pressure and the flow 

properties are updated within each iteration for a new cycle of calculation until the  𝑝𝑐 converges for 

this time step. 

A Dirichlet type of boundary condition is applied in the problem, prescribing a constant capillary 

pressure value which is equivalent to a constant saturated surface in contact of water. The oscillation 

of results near the sharp front has been eliminated by using mass lumped scheme for the formulation 

of mass matrix. The flux though the saturated nodes could then be calculated by substituting the 

known capillary pressure field into the left hand side of the finite element formulation. These resulting 

flux values are the equivalent nodal flux per unit width in gs−1m−1, which are then transformed into 

the equivalent distributed flux over the wetted surface in  gs−1m−2 through the following operation: 

The flow rate profile over the saturated boundary is then obtained by susing equation (7): 

where n is the total number of saturated nodes on one side the crack profile, fj is the flux value at the 

jth  saturated node, and hj  is the elevation of the jth  saturated node. Equation (7) enables the 

construction of a continuous function for the flow rate profile over the wetted surface under the 

meniscus. This function is then used directly for the calculation of Q in equation (4) for the current 

time step. 

3. Results and experimental validation  

The finite element model for the imbibition in porous concrete matrix is validated by a series of 

experiments where both the mass of water being absorbed by the concrete as well the internal relative 

humidity level are monitored. The validated parameters are then used in the coupled flow model. 

 

 

 

 

 

 

 

 

 

 

Figure 1 presents the simulation results of the capillary flow in a uniform 0.05mm crack with different 

moisture conditions in the adjacent matrix over a time period of 30s. While the initial uptake shows 

 𝐟 = 𝐅 ∙ N−1 (6) 

 
q(x) = {

fj + (x − hj)
fj+1−fj

he
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−fn

he
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Figure 1: Comparison of the capillary flow in a 0.05mm crack with different moisture condition in 

surrounding concrete matrix, with (a) Capillary rise height and (b) Total mass of water absorbed through 

crack faces. 
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no dramatic difference, the drier concrete with Sw=0.3 absorbs much more water and reduces the 

development of the capillary rise. The case with Sw=0.9 absorbs much less water and therefore has 

less influence on the capillary rise. It is also observed that the magnitude of the influence of the 

imbibition is also related to the crack width. The flow in wider cracks is less affected by the 

imbibition flow compared with narrower cracks.  

 

 

 

 

 

 

 

 

 

 

 

 

Experiments were carried out where the capillary rise in a discrete crack was recorded by a high speed 

camera. Figure 2 (a) shows that the coupled model is able to capture the capillary rise difference 

caused by the different permeabilities of different concrete mixes. Compared with the traditional L-W 

equation where no imbibition is considered, the couple model has shown more accurate simulation of 

the flow in the macro-crack. Figure 2(b) illustrates the development of the moisture conditions in the 

surrounding matrix, which has great implications on the design of vascular system to facilitate 

different self-healing techniques.  
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Figure 2: (a) Comparison between experiments and simulation for different concrete mix with 0.05mm 

crack width.  (b) Contour plot of the moisture condition in one side of the concrete matrix during the 

capillary rise process 
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ABSTRACT
The numerical modelling of fibres undergoing finite deformations requires the implementation of a constitutive
law and the solution of the governing PDE requires an accurate linearisation of the nonlinear response. In order to
ensure a computationally efficient implementation and to simplify the implementation, automatic differentiation has
been utilised.

Key Words: finite element method; automatic differentiation; hyperelasticity; fibres

1. Introduction
Fibres are present in many materials and serve to enhance the material performance in particular directions.
In natural materials, this directional dependency is a result of optimisation whereby the increased strength
and stiffness is only where it is needed. Synthetic materials such as fibre reinforced polymers (FRP)
have been designed to deliberately exploit this benefit. This paper focuses on fibres in soft tissue but
also has broader applicability. The implementation of a nonlinear material response in the finite element
method requires linearisation of the constitutive relationship . This paper will describe this process for a
hyperelastic fibre model subject to finite deformations using automatic differentiation.

2. Tangent Stiffness Matrix
The nonlinear system of equations are expressed simply as:

r(x) = fext(x) − fint(x) = 0 (1)

This is solved using a Newton-Raphson scheme. Equation 1 is expressed as a truncated Taylor series
expansion, whereby the residual r at the next iteration is expressed as:

ri+1 = ri +
∂ri
∂x dx (2)

where

∂ri
∂x = −

∂fint(x)
∂x = −Kt = −

∫

V

BT ∂P

∂F
B dV (3)

The derivative
∂P

∂F
is the elasticity tensor C, the computation of which is non-trivial. In this paper we

demonstrate how to compute it using automatic differentiation.

3. Constitutive Models
Soft tissues are composed of an extracelluar matrix (ECM) with collagen fibres. The ECM is represented
as a neo-Hookean material [1] and the fibres from the Eberlein model [2], both being hyperelastic materials.
The two material models are combined in Equation 4. Equation 5 and Equation 7 are the strain energy
functions (Ψ) for the neo-Hookean and fibre materials respectively and their corresponding Second-Piola
Kirchoff stress (S) are in Equation 6 and Equation 9.
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Ψ = Ψn + Ψf (4)

Ψn =
µ

2
(IC − 3) − µ ln J +

λ

2
(ln J)2 (5)

where F is the gradient of deformation, J is the volumetric change, C is the right Cauchy-Green
deformation tensor, J = det(F), IC = trC, and λ and µ are the Lamé coeficients.

Sn = µ(I − C−1) + λ(ln J)C−1 (6)

Ψf =

2∑

α=1

k1
2k2
{[exp[k2( Ī∗α − 1)2] − 1]} (7)

Ī∗α = C̄ : Aα, α = 1, 2, C̄ = J−2/3C, Aα = aα ⊗ aα, P = I − 1
3
C−1 ⊗ C (8)

S f = J−2/3P : Ŝ f (9)

Ŝ f =

2∑

α=1
2k1{exp[k2( Ī∗α − 1)2]( Ī∗α − 1)Aα } (10)

4. Elasticity Tensor
The constitutive equations are expressed in terms of the Second-Piola Kirchoff stress S; this can be pushed
forward to obtain the First-Piola Kirchoff stress P = FS. Thus, the elasticity tensor can be calculated from
∂P

∂F
. To illustrate that this derivative is not trivial to obtain, the elasticity tensor for the fibre model is

shown here: Equation 11 to Equation 13 [2].

C f = 2
∂SF

∂C
= P : Ĉ f : PT +

2
3
tr(J−2/3Ŝ f )P̃ − 2

3
(C−1 ⊗ Ŝ f + Ŝ f ⊗ C−1), (11)

Ĉ f = 2J−4/3
∂Ŝ f

∂Ĉ
=

2∑

α=1
δαA ⊗ A, (12)

δα = 4J−4/3k1[2k2( Ī∗α − 1)2 + 1] exp[k2( Ī∗α − 1)2], α = 1, 2 (13)

Alternatively, automatic differentiation can be used to calculate the elasticity tensor, thereby removing the
need for it to be undertaken explicitly. In automatic differentiation the derivatives of a function can be
evaluated numerically through the recursive application of the chain rule, exploiting the ability to express
the function as basic arithmetic operators and functions.
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5. Automatic Differentiation by OverLoading in C++ (ADOL-C)
ADOL-C is a open-source C++ library that applies the principles of automatic differentiation [3]. The
independent variables subject to differentiation are defined using a special type adouble and all variables
which depend on the independent variable must also be defined using this type. Constants are considered
passive and can be defined using standard types such as double. The function description needs to be
recorded to a tape for the differentiation process and so requires active sections to be set by trace_on
and trace_off. To illustrate the process a piece of pseudo code is shown in Algorithm 1 that calculates
the elasticity tensor for the Eberlein fibre model.

Algorithm 1 ADOL-C Fibres Constitutive Model
1: double k1, k2 . passive variables
2: adouble F, C̄, J, Aα,Vf 1,Vf 2 . active variables
3:
4: double x = values
5: double Vf 1i,Vf 2i = values . local fibres direction
6:
7: Tape(ON)
8: F <<= x . independent variables
9: Vf 1 <<= Vf 1i . independent variables
10: Vf 2 <<= Vf 2i . independent variables
11:
12: calculate: C, J, C̄, Aα, Īα
13: S = fibresFunction(C, J, C̄, Aα, Īα)
14:
15: P = FS
16: Tape(OFF)
17:

18: Jacobian(P, F,[x,Vf 1i,Vf 2i]) .
∂P

∂F

6. FE Implementation Example
ADOL-C is integrated into our open source finite element software package MoFEM [4]. To demonstrate
ADOL-C working it was used in the calculation of the elasticity tensor for the combined Eberlein Fibre
and neo-Hookean material models; the fibre directions applied were not constant and so were considered
active variables by ADOL-C. The physical problem was an uni-axially loaded cylinder with fibres wrapped
around the circumference and the length as shown in Figure 1a. To demonstrate the influence of the fibres
the analysis was repeated with no fibres, also shown in Figure 1b.
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(a) Mesh and Fibres

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

1

2

3

4

5

6

·10−2

Displacement

Load Factor no f ibres
f ibres

(b) Load Displacement Graph

Figure 1: Uni-axial Load

7. Conclusion
Calculating the elasticity tensor to form the tangent stiffness matrix from the constitutive equations, can
be a very involved process. The use of automatic differentiation can remove this step and thereby speeds
up the implementation of constitutive models and removes errors.
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ABSTRACT

This study aims at investigating size-dependent effects of functionally graded (FG) microplates for bend-
ing and buckling problems using isogeometric analysis (IGA). While displacement field of the microplates
is established based on the refined plate theory (RPT) with four variables, the modified couple stress
(MCS) theory is employed to capture small scale effects of the microplates. Bending and buckling analysis
of rectangular and circular FG microplates based on these two theories are solved in the platform of isoge-
ometric analysis. This recently developed method utilises the non-uniform rational B-splines (NURBS)
functions to establish approximation functions and describe geometry domains. In addition, NURBS
functions, by its nature, could satisfy high-order continuity which is required in RPT theory without any
difficulty. A number of numerical examples conducting for rectangular and circular FG microplates reveal
that the consideration of small scale effects is followed by the increase in plates’ stiffness. Consequently,
transverse deflection and buckling load of the FG microplates will be decreased and risen, respectively.

Key Words: FG microplates; modified couple stress theory; refined plate theory; isogeometric analysis;

bending and buckling analysis

1. Introduction

Functionally graded materials (FGMs) are composite materials formed of two or more con-
stituent phases in which material properties vary smoothly from one surface to the other. With
the rapid development of technology, FGMs have been increasingly used in micro electromechan-
ical systems (MEMS/NEMS), electrically-actuated MEMS devices, atomic force microscopes,
etc. Mechanical properties of such small-scale structural devices including Young’s modulus,
flexural rigidity are size-dependent [6]. However, classical continuum elasticity which is scale-
free theory fails to predict these size effects. Modified couple stress theory (MCST) [4, 6] appears
to be one of the size-dependent theories in which only one material length scale parameter is
employed. Based on the MCST, a couple of research works using various plate models have been
carried out to investigate the size-dependent effects of micro FG plates, one of them is to use
refined plate theory (RPT) [1]. However, RPT requires C1-continuity of general displacements
causing significant challenge to derive second derivative of deflection in the platform of finite ele-
ment analysis (FEA) where C0 elements are frequently used. Recently, a new numerical method
so-called Isogeometric Analysis (IGA) which is able to deal with C1-continuity problem with-
out using any additional variables has been introduced by Hughes and his co-workers [2]. This
method bridges the gap between Computer Aided Design (CAD) and FEA in which same basis
functions generated by B-splines or non-uniform rational B-splines (NURBS) shape functions
are employed to describe exact geometry and unknown variables. Since modelled geometry is
exact and the number of unknown terms is not increased, it is expected that IGA would yield
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more accurate results with lower computational cost for RPT problems in the comparison with
regular FEA [3].

In this study, the size-dependent bending and buckling behaviours of FG microplates will be
investigated. While the size effects are captured using the modified couple stress theory, the
four-variable refined plate theory is employed to describe displacement field. The problems are
solved in the platform of the isogeometric analysis.

2. Theoretical formulation of FG microplates

Assuming that the functionally graded microplates are made of metal and ceramic varying
continuously through the plates’ thickness, the effective material properties of the plates are
obtain following the rule of mixture or Mori-Tanaka scheme. Detail of those expressions could
be found from some research in the literature [3].

According to the modified couple stress theory, the strain energy is defined as a combination of
strain tensor and curvature tensor [1]. The components of the deviatoric part of the symmetric
couple stress tensor mij and symmetric curvature tensor χij are given by

mij = 2Gl2χij ; χij =
1

2

(
∂θi
∂χj

+
∂θj
∂χi

)
(1)

where G and l are shear modulus and material length scale parameter, respectively, and the

rotation vector θ =
1

2
curl(u) where u is the displacement vector.

In order to take into account the shear deformation effects, the plate displacement field is
presented with respect to the refined plate theory as

u (x, y, z) = u0 (x, y) − zwb,x (x, y) + g (z)ws,x (x, y) (2a)

v (x, y, z) = v0 (x, y) − zwb,y (x, y) + g (z)ws,y (x, y) ; w (x, y, z) = wb (x, y) + ws (x, y) (2b)

where u0, v0 are membrane displacements, wb and ws represent bending and shear components
of transverse displacement, g(z) is the distribution function which is taken as g(z) = −4z3/(3h2)
[5]. The rotation vector and curvature vector are obtained by substituting the above displace-
ment expressions into Equation 1 [1].

3. NURBS-based formulation of FG microplates

By using the NURBS basis functions, the displacement field u of the FG microplates based on
the RPT and MCST could be approximated as follow [2, 3]

uh (ξ, η) =
m×n∑

A

RA (ξ, η)qA (3)

where m × n is the number of basis functions, RA represents two-dimensional NURBS basis
functions and qA denotes the vector of degrees of freedom associated with the control point A.
The isogeometric finite element formulation of the bending and buckling problems are defined
as

Kq = F; (K− λcrKg)q = 0 (4)

where λcr presents buckling parameter, and F and Kg are load vector and geometric stiffness
matrix, respectively [3]. The global stiffness matrix K of the structures is a summation of
two components corresponding to the classical term K1 and couple stress term K2. The full
expression of classical term K1 in the global stiffness matrix could be found in the work of
Nguyen et al. [3] while the couple stress counterpart is defined as

K2 =

∫

Ω

[{
Bb0

mA

Bb1
mA

}T [
Xc Yc

Yc Zc

]{
Bb0

mA

Bb1
mA

}
+

{
Bs0

mA

Bs2
mA

}T [
Ac Bc

Bc Dc

]{
Bs0

mA

Bs2
mA

}]
dΩ (5)
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where

Bb0
mA =

1

4




0 0 4RA,xy 2RA,xy

0 0 −4RA,xy −2RA,xy

0 0 2 (−RA,xx +RA,yy) −RA,xx +RA,yy


 , Bb1

mA =
1

4




0 0 0 −2RA,xy

0 0 0 2RA,xy

0 0 0 RA,xx −RA,yy




(6a)

Bs0
mA =

1

4

[
−RA,xy RA,xx 0 0
−RA,yy RA,xy 0 0

]
, Bs2

mA =
1

4

[
0 0 0 −RA,y

0 0 0 RA,x

]
(6b)

and material matrices are given by

(
Ac

ij , B
c
ij , D

c
ij

)
=

h/2∫

−h/2

(
1, g′ (z) ,

[
g′ (z)

]2)
Gijdz;

(
Xc

ij , Y
c
ij , Z

c
ij

)
=

h/2∫

−h/2

(
1, g′′ (z) ,

[
g′′ (z)

]2)
Gijdz

(7)

4. Numerical examples

In this section, the bending and buckling analysis of the FG microplates will be conducted based
on the RPT, modified couple stress, and the proposed IGA approach. While the square plates
are used to investigate the bending behaviours, buckling analysis is conducted by considering
circular ones. The Al/Al2O3 is chosen to be the metal-ceramic FG material whose properties
are of Em = 70 GPa, Ec = 380 GPa, ρm = 2707 kg/m3, ρc = 3800 kg/m3, and νm = νc = 0.3.
For bending analysis, the fully simply-supported (SSSS) microplates subjected to sinusoidally

Table 1: Non-dimensional central deflection w̄ and critical buckling load P̄cr of Al/Al2O3 microplates

l/h w̄, square plates P̄cr, circular plates
a/h Present Ref. [5] h/R Simple BC Clamp BC

0 5 0.6688 0.6688 0.1 11.8496 38.3789
100 0.5625 0.5625 0.2 11.4869 34.8238

0.2 5 0.5505 0.5468 0.1 12.2075 44.2232
100 0.4689 0.4689 0.2 11.8392 40.3906

0.6 5 0.2288 0.2224 0.1 13.4377 90.9639
100 0.2012 0.2011 0.2 12.9976 84.8716

1 5 0.1060 0.1017 0.1 14.1319 184.4163
100 0.0939 0.0939 0.2 13.7383 173.7056

distributed load are analysed considering the aspect ratio a/h, material length scale ratio l/h,
and material index n = 1. In order to verify the availability of the proposed theories and
approach, the results are compared to analytical solutions reported by Thai and Kim [5]. As
can be seen in the Table 1 showing the non-dimensional central deflection w̄ = 10wEch

3/(q0L
4),

the present results, in general, are in good agreement with those of the previous authors [5]. For
thick plates (a/h = 5), the solutions from both approaches which are very close to each other
for l/h = 0 but they are discrepancy as l/h and n become larger. However, these discrepancies
vanish as the thin plates become thinner, i.e. a/h = 100. It could also be observed that, for all
cases, the increase in material length scale ratio l/h which rises the plate stiffness leads to the
decrease of central deflection.

With regard to buckling analysis, non-dimensional biaxial critical buckling which is defined as
P̄cr = 12(1 − ν2

m)PcrR
2/(Emh

3) of the Al/Al2O3 circular microplates for simple support and
clamped boundary conditions are tabulated in Table 1. Similar to the case of bending analysis,
due to the increase in the plates’ stiffness, the critical buckling load grows up as the material
parameter length scale l/h rises. Corresponding to h/R = 0.2, l/h = 0.4, and n = 1, the first
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two buckling mode shapes along with their buckling load values of the clamped microplates are
depicted in the Figure 1. The mode shapes are all scaled up for the illustration purposes.

P  = 57.0803. P  = 95.0063.1 2

Figure 1: First two buckling mode shapes of clamped plates.

5. Concluding remarks

The size-dependent bending and buckling behaviours of the functionally graded microplates
have been investigated. The size effects are considered by the modified couple stress theory. The
four-variable refine plate theory is employed to describe the displacement field of the plates.
The formulation of the square and circular microplates using the chosen theories which require
C1-continuity and exact geometry are then successfully integrated and solved in the platform
of isogeometric analysis. The numerical results which are in good agreement with those exist in
the literature reveal that the size-dependent investigation using modified couple stress theory
result in an increase in the plates’ stiffness. Consequently, the deflection and buckling load of
the microplates decrease and increase, respectively.
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ABSTRACT

The present paper aims to quantify the error due to homogenisation of highly heterogeneous diffusion fields
in the solution of linear elliptic PDEs which are common in the modelling of packed particulate composites.
This work takes as starting point the pioneering work Oden and Zohdi (1997) and extends it to bound the error
in the expectation and second moment of quantities of interest without solving the intractable stochastic fine-
scale problem. All the computations involved are deterministic, macroscopic and indepedent of the scale ratio. In
the present work, the guaranteed error bounds are re-derived using the Prager-Synge hypercircle theorem. This
enabled us to optimise and fully characterise the effectivity of the presented estimates. We also interpret our results
in terms of the Reuss and Voigt approaches for the homogenisation of composites. Finally, an efficient procedure
is presented to tighten the estimates through the local approximation of the fine-scale model.

Key Words: error estimation; model error; homogenisation

1. Overview

Composites play an increasing role in modern mechanical systems. This raises tremendous challenges
for computational mechanics. Indeed, the direct modelling of such systems results in intractable prob-
lems due to the fast spatial variations of material properties. The analysis of realistic composite systems
requires an additional modelling step, whereby the microscopic constituents are substituted by a sin-
gle material in such a way that this resulting model captures the global behaviour of the system. This
process is known as homogenisation (see for example [1, 2]). However, most composite systems used
in engineering exhibit a weak scale separation. Worse still, the most interesting features of mechanical
problems are located in regions where the scale separation is lost altogether, typically in regions of steep
gradients (e.g. stress concentration in solid mechanics, localised limit-states such as damage, sharp ge-
ometrical irregularities, etc.). In such cases, the results provided by homogenised schemes may differ
significantly from the results that would be obtained by solving the fine-scale problem directly. In this
work, we aim to quantify this discrepancy.

Our work builds on the pioneering work [3]. In that paper, the authors introduced two problems, a
fine-scale intractable problem (“true” model); and a homogenised tractable problem (surrogate model).
Then, solving only the tractable, surrogate model and using ad hoc a posteriori error estimates, the
authors were able to compare the solution of both problems. However, this modelling error bounding
technique suffers from certain limitations, the most important of which is the fact that the bounds require
the computation of terms involving the fine-scale description of the material properties. In practice, this
means that the fine-scale heterogeneities need to be meshed, which becomes quickly intractable as the
scale ratio increases. Secondly, the error is not strictly bounded, and a sufficiently fine macroscopic
mesh needs to be used for the bounding properties to hold in practical applications. Finally, the various
parameters that affect the quality of the error bounds, not the least of which is the type of homogenised
model that is used to obtain an approximate solution to the fine-scale problem, are difficult to characterise
and fully optimise.
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In the present paper, we addressed the key limitations of this methods. Our fundamental suggestion is
to allow for the position of the heterogeneities to be governed by a random process in the fine-scale
problem. In this setting, we aim to estimate (a) the expectation of “energy-norm" and of “goal-oriented"
measures of the error (i.e. statistical average) and (b) the moments of these measures (i.e. statistical
dispersion, see fig. 1).

ū(x) q(ū)

u(x, θ1) u(x, θ2) u(x, θ3)

q(u)

E[q(u)]

E[q(u)] − q(ū)

Figure 1: The quantity of interest of the “true model”, q(u), is a probability density function, while it is a scalar in
the surrogate model, q(ū). We aim to compare the expectation of both quantities.

In addition to being a realistic modelling setting for heterogeneous media, the direct consequence of this
choice is that the computation of the error bounds only involves an integral of a function that, under
weakly restrictive assumptions, varies slowly in space. This allows the application of upscaling error
bounding without any restriction in terms of scale ratio.

Our second contribution is the development of a general error bounding framework in which the effi-
ciency of the error estimates can be fully characterised and controlled. In order to achieve this difficult
task, we propose to base our bounding approach on the Prager-Synge hypercircle theorem[4]. The re-
sulting error bounds are strictly guaranteed and the “true” model is approximated by a pair of surrogates
generated from different homogenisation schemes associated with complementary discretisation tech-
niques (namely the compatible and the admissible FEM), instead of single field as proposed in [3]. This
pair exhibits very strong similarities to those used to derive the classical Reuss-Voigt bounds for effective
medium properties. Such an interesting property will give us a very strong background to characterise,
both intuitively and mathematically, and to fully optimise the efficiency of the error estimates (i.e. min-
imise the remaining uncertainty on predicted quantities). One of the possible forms for the error bound
is

R(φ̄h ) − ηηφ ≤ q(u) − q(ūh ) ≤ R(φ̄h ) + ηηφ (1)

where R is the residue, ¯phih is an homogenised approximation to the solution of the dual problem, and
η and ηφ are upper bounds for the error in energy norm for the primal and dual problem.

Once this new framework has been established, we proceeded as in [5] and show that more accurate and
guaranteed estimates can be obtained through locally replacing the homogenised surrogates by the “true”
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microscopic model. We call adaptive modelling this dynamic, hybrid approximation with elements of the
“true” and surrogate model working together towards the accurate bounding of engineering quantities of
interest. New local error indicators will also be presented to guide this adaptive modelling process.

2. Numerical example

The methodology is applied to the cylinder head of an engine(fig. 2). At the bottom of the cylinder a
temperature of 460K is prescribed. At the fins and the upper face it is assumed that a flux of 200W ·m−2

exits the body, while it is assumed that there is no heat exchange in the hole and lateral surfaces. The
body is made of matrix enriched with particles. The thermal conductivity of the matrix is 460W/(m ·K ),
while the conductivity of the inclusions is 230W/(m · K ). The inclusions add up to 20% of the volume
of the domain. We assume that the probability of being inside an inclusion is the same on every point of
the domain and it coincides with the volume fraction. Hence, the expectation of the conductivity E[k], is
equal to νkp + (1− ν)km and the expectation of its inverse E[k−1] is equal to ν/kp + (1− ν)/km on every
point of the domain. An accurate description of those two functions E[k] and E[k−1] is fundamental
for the computation of the error bounds. The quantity of interest is the average temperature on the
upper face. The domain was discretised with roughly 1.5 million linear tetrahedrons. The application
of the Prager-Synge hypercircle theorem requires two approximate homogenised solutions, namely a
kinematically admissible solution (KA) and a statically admissible solution. The KA approximations
were obtained using rule of mixture, while the SA approximations were obtained using inverse rule of
mixture. The resulting temperature field can be seen in fig. 2 while the bounds can be found in table 1.

440 450

Temperature

435 460

Figure 2: Temperature field of the cylinder head
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q(ūh ) ζl ≤ q(u) − q(ūh ) ≤ ζu ζl + q(ūh ) ≤ q(u) ≤ ζu + q(ūh )
445.8 -1.503 Intractable 0.002728 444.3 Intractable 445.8

Table 1: ζl and ζu represent both lower and upper bounds respectively for q(u) − q(ū), while ζl + q(ūh ) and
ζu + q(ūh ) are lower and upper bounds for the quantity of interest itself. The direct computation of q(u), the exact
quantity of interest, is intractable.
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ABSTRACT 

In this paper an efficient small-scale, detailed finite-element modelling method for flexible risers is presented. 

The method can be effectively implemented in a fully-nested (FE2) multiscale analysis based on computational 

homogenization. To reduce the computational cost only a small fraction of a flexible pipe is used for a detailed 

nonlinear finite-element analysis at the small scale by exploiting the  cyclic symmetry of the model and applying 

periodic boundary conditions. In this model, using three-dimensional elements, all layer components are 

individually modelled and a surface-to-surface frictional contact model is used to simulate their interaction. The 

approach is applied on a 5-layered pipe made of inner, outer and intermediate polymer layers and two intermediate 

armour layers, each made of 40 steel tendons. The capability of the method in capturing the detailed nonlinear 

effects and the great advantage in terms of significant CPU time saving are demonstrated by comparing the results 

obtained on elements of pipe of different lengths.  

 
 

Keywords: Periodic Boundaries, Fixed Boundaries, Flexible risers 

 

1. Introduction  

Unbonded flexible risers have become the main means for transporting oil and gas between the seabed 

and surface in ultra-deep waters. They consist of several polymer and steel layers that can move 

internally relative to each other. Their ability of withstanding large displacements and rotations makes 

them ideal for floating platforms. In many problems of very significant industrial interest sufficient 

accuracy can only be obtained by the use of models that properly take into account contact and friction 

between layers and how these are related to internal and external pressure. Although FE models can 

account for the complex internal structure of flexible risers, their computational requirements limit their 

applicability to just a few meters in length at most. So, a more efficient methodology with lower 

computational cost is required to bridge the gap between nonlinear dynamic simulations at the large 

scale and detailed finite element models at the small scale.  

One approach to reduce computational cost of the analysis of flexible risers is to develop constitutive 

laws for large-scale beam models, which link generalised stresses and strains to model the hysteresis 

loops occurring for flexible pipes subjected to cyclic loading, as shown by Tan et al. [1]. A model based 

on this approach is used by Alfano et al. [2], building on the analogy between frictional slipping between 

different layers of a flexible riser and frictional slipping between micro-planes of a continuum medium 

in non-associative elasto-plasticity. In this way, a linear elastic relationship was used for the initial 

response, in which no slip occurs, and a non-associative rule with linear kinematic hardening was then 

introduced to model the full-slip phase. One major challenge in using the constitutive law based on the 

non-associative elasto-plasticity analogy is the determination of the parameters of the constitutive law 

to bridge the small scale of the detailed FE simulations with the large scale of the model accurately. An 

alternative approach which does not have this limitation is a fully-nested multi-scale procedure [3], 

currently in widespread use for the modelling of composite materials. With this method, at each 

integration point (i.e. cross section) of the large-scale beam model, the stress resultants corresponding 

to assigned generalised strains are determined through the solution of the small-scale FE problem.  Key 

to accurate solution of the small scale FE problem is the use of suitable boundary conditions. The 
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periodic boundary conditions are the most effective and accurate for most cases involving a periodic 

microstructure or when the microstructure is not periodic but the small scale model is sufficiently 

statistically representative [4, 5]. The motivation for this work is that previous models in the context of 

sequential multi-scale analysis [6] are too computationally expensive for a fully nested analysis. Hence, 

this paper describes an efficient modelling approach for the small-scale analysis, which exploits the 

cyclic symmetry of the riser detailed structure, and its implementation based on the introduction of 

periodic boundary conditions for detailed FE models in small scale simulations in a similar method used 

by [7]. The capability of the boundary condition treatment method in capturing the non-linear effects 

and the great advantage of significant CPU time saving by this method over using a larger model is 

shown. 

 
 

2. Small scale model 

A fully-nested computational homogenization scheme is essentially based on the construction of a 

micro-scale (or more generally small-scale) boundary-value problem (BVP) at each integration point 

of a macro (or large-scale) model. The small-scale model is solved numerically to determine the 

constitutive response of the material at each integration point [8]. If the FEM is used at both scales, the 

methods is also known as FE2. If a displacement-based FE formulation and a Newton-Raphson 

incremental scheme are used at the large scale, ‘tentative’ strains resulting from an attempted 

displacement increment are calculated at each integration point for each iteration of each increment in 

the macro model. When a 3D continuum model is used at both scales, the tentative strains are imposed 

on a suitably defined representative volume element (RVE) of the micro scale (down-scaling 

procedure), each large-scale integration point corresponding to one and only RVE. For the flexible 

risers considered in this paper, a 3D continuum model is used at the small scale, which is to be linked 

to a large-scale beam model, where generalised strains and stress resultants are employed. A simplified 

5-layer flexible pipe, made of three polymer layers and two armour layers, was considered. Both the 

inner and the outer armour layers are made of 40 steel tendons, with rectangular cross section, which 

are wound with the same pitch of length 𝐿𝑝 equal  should to 320mm. It is widely accepted that the 

use of periodic boundary conditions in multiscale computational homogenization provides the most 

accurate results, at least at sufficient distance from the real boundary of the structure. On the other hand, 

the solution for a segment of riser whose length is any multiple of  𝐿𝑝/𝑁 should be characterized by the 

same cyclic symmetry if periodic boundary conditions are applied and if such solution is unique. Figure 

1 shows the the smallest model which has a length equal to 1/40 of the pitch length of the tendons. For 

this small slice of pipe the position of each tendon on one end cross section is the same as the position 

of the adjacent tendon on the other end cross section. This makes this slice of 1/40 of length the 

smallest repeating unit of the pipe. Furthermore, as typical in first-order computational homogenisation, 

the assumption is made that the variations of the internal stress resultant (i.e. large-scale stress) and of 

the generalised strain (i.e. large-scale strain) are small enough that, for the element of pipe under 

consideration, they can be neglected. Therefore, to within a rigid motion, the assumption of periodic 

kinematics is made, resulting in the enforcement of periodic boundary conditions. A set of linear 

constraint equations was generated relating the degrees of freedom of each pair of nodes on the 

boundaries having the same position on the cross-section [9].  

 
 

3. Numerical results  

The study in this paper focuses on cases in which the segments of pipes are subject to bending, as well 

as internal and external pressure, the latter being balanced to produce a relatively small and outward 

radial displacement of the inner surface of the inner polymer layer (inner liner). All components are 

modelled with fully-integrated 8-noded 3D solid elements with incompatible strains, with surface-to-

surface frictional contact between all components. Details of the material, dimensions and arrangement 

of constituent layers are given in Table 1. A fully-implicit nonlinear static analysis based on the 

Newton-Raphson method is used to solve the models.  
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Figure 1: cross section of the FE model and FE models with lengths equal to 𝐿𝑝/40   

 

Table 1: Dimensions and materials of components in the model. 

Layer  𝑟0, 𝑟1 (mm) Material 𝐸 (MPa) 𝜐 

1 48, 50 Polyethylene 0.35 0.4 

2 50, 52 Carbon Steel 210 0.3 

3 52, 54 Polyethylene 0.35 0.4 

4 54, 56 Carbon Steel 210 0.3 

5 56, 58 Polyethylene 0.35 0.4 

 

The analyses were conducted by applying internal and external pressure in a first step, after which one 

symmetric cyclic history of bending curvature was prescribed, the maximum and minimum curvatures 

being 0.125 and -0.125 m-1. The internal and external pressures were equal to 4 and 4.5 MPa, 

respectively. The curves in Figures 2 show the bending moment against the (prescribed) bending 

curvature for four models with length equal to 𝐿𝑝/𝑁 , with 𝑁 = 1, 5, 20, 40. It can be appreciated that 

the difference in the results of the models with different lengths is practically negligible when periodic 

BC is used. These results confirm that use of the smallest repeating unit as the model to be used at the 

small scale of a multi-scale analysis is a valid choice. The analyses were carried out in parallel on a 

computer cluster with two dual-core 1.8 GHz processors (32 processors in total) using 8MB of RAM.  

The huge saving in CPU time, from 11 hours for the longest model of one pitch length to only few 

minutes, allows the smallest model to be effectively used in a nested multi-scale strategy.  
 

 
Figure 2: Bending moment vs prescribed bending curvature (internal pressure 4MPa, external pressure 4.5MPa). 
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4. Conclusions 

An effective approach to minimize the computational cost of a detailed nonlinear FE analysis of a 

segment of flexible riser is presented in this paper. In this method frictional contact between all layers 

is taken into account. The key ideas behind the proposed approach are (a) the observation that flexible 

risers can be represented, with very good approximation, with a model having cyclic symmetry, (b) the 

use of such cyclic symmetry to reduce the length of the model to the smallest repeating unit and (c) the 

use of periodic boundary conditions. The enormous saving in computational cost entailed by the use of 

the smallest repeating unit makes this the optimal model to be used in a nested (FE2) multiscale analysis. 
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ABSTRACT 

This paper presents both the theoretical basis for simulating unstable crack propagation in 3D hyperelastic 
continua within the context of configurational mechanics, and the associated numerical implementation.  The 
approach taken is based on the principle of global maximum energy dissipation for elastic solids, with 
configurational forces determining the direction of crack propagation. The work builds on the developments 
made by the authors for static analysis, incorporating the influence of the kinetic energy. The nonlinear system 
of equations is solved in a monolithic manner using a Newton-Raphson scheme. Initial numerical results are 
presented. 
 
Keywords: Fracture; Finite element method; ALE; nuclear 
  

1. Introduction  

The numerical simulation of unstable crack propagation in three-dimensional hyperelastic materials is 
studied within the context of linear elastic fracture mechanics (LEFM) and configurational mechanics 
[3]. Although quasi-static and dynamic fracture has been widely investigated in continuum 
mechanics, this remains a challenging topic. Our approach is to develop the physical and 
mathematical description to determine (a) when a crack will propagate, (b) the direction of 
propagation and (c) how far/fast the crack will propagate. Furthermore, we require a numerical setting 
to accurately resolve the evolving displacement discontinuity within the context of the Finite Element 
Method. In this study, we present a mathematical derivation and numerical implementation that can 
achieve these goals, solving for conservation of momentum in both the spatial and material domains. 
The spatial (or physical) domain can be considered as a description of what we physically observe and 
the material domain is the evolving reference domain due to crack evolution. The theory is an 
interpretation of linear elastic fracture mechanics and consistent with Griffith’s fracture criterion. This 
paper represents a generalisation of the authors’ previous work on static crack propagation, [3]. The 
approach taken is based on the principle of global maximum energy dissipation for elastic solids, with 
configurational forces determining the direction of crack propagation. This approach has been 
successfully adopted by a number of other authors in the context of quasi-static analysis, e.g. [3] and 
[2]. At present we restrict ourselves to the consideration of elastic bodies with energy dissipation 
limited to the creation of new crack surfaces. 
 
In the context of the numerical setting, we have adopted the Arbitrary Lagrangian-Eulerian (ALE) 
method, which is a kinematic framework to describe movement of the nodes of the finite element 
mesh independently of the material. Thus, we are able to resolve the propagating crack without 
influence from the original finite element mesh, and maintain mesh quality. The efficient solution of 
3D crack propagation, with a large numbers of degrees of freedom, requires the use of an iterative 
solver for solving the system of algebraic equations. In such cases, controlling element quality enables 
us to optimise matrix conditioning, thereby increasing the computational efficiency of the solver. 
 
The resulting system of equations is highly nonlinear and requires a solution strategy that can trace 
the entire transient response. The application of this work is the predictive modelling of crack 
propagation in nuclear graphite bricks, which are used as the moderator in UK advanced gas-cooled 
nuclear reactors (AGRs). 
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2. Kinematics of Propagating Cracks  

Differentiable mappings relate the reference material domain to both the current spatial and the 
current material domains. These mappings are utilized to independently observe the deformation of 
material in the physical space Ωt  and the evolution of the crack surface in the material space Bt, see 
Figure 1. 

 
Figure 1: Deformation and configurational change of a body with a propagating crack 

 
  , ,  (1) 
 
3. Numerical Implementation 

The finite element approximation is applied to both the physical and material space. Three-
dimensional domains are discretised with tetrahedral elements with hierarchical basis functions of 
arbitrary polynomial order, following the work of [1]. The higher-order approximations are only 
applied to displacements in the spatial configuration, whereas a linear approximation is used for 
displacements in the material space. The resulting residuals in the spatial and material domain, that 
represent the two primary, nonlinear equations that need to be solved, are expressed as: 
 rs = λ t( )fs,ext − fs,int ,   rm = fm,res − fm,driv  (2) 

where λ is the load factor that scales the external reference load, fs,ext ; fs,int  is the internal force 

vector,  fm,res  is the material resistance and fm,driv  is the driving force for crack propagation. These 

equations are linearised and solved using a Newton-Raphson procedure. 
 
The spatial internal force vector is expressed as  
 fs,int = BX

T∫ P dV+ ρNT∫ a dV  (3) 

and the material driving force is expressed as 
 fm,driv = BX

T∫ Σ dV− ρ0 F
Ta+ !FTv( )∫ dV =G− ρ0 F

Ta+ !FTv( )∫ dV  (4) 

where P is the first Piola Kirchoff stress tensor,  Σ  is the Eshelby stress, a is the spatial acceleration, 
v = !u = !w−F !W  is the spatial velocity, F is the deformation gradient and G is the configurational 
force. The Eshelby stress is defined as: 
 Σ =WI−FTP  (5) 
where W is the strain energy density. 
 
In the restricted case of quasi-static analysis, the inertia and velocity terms in (3) and (4) vanish and 
the formulation reverts to that presented in [3]. Thus, equations (3) and (4) represent an important 
development in the modelling of dynamic crack propagation, generalising the configurational 
mechanics formulation. It is important to emphasise that, for fast crack propagation, whereby the 
inertia terms in equations (5) and (6) are included, the crack front velocities are calculated to satisfy 
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equilibrium of the crack front in the material space. Therefore, the crack front velocity is not a 
material or model parameter, as is the case in most models, but a natural result of a consistent 
mathematical derivation, starting from the first law of thermodynamics [3]. 
 
4. Mesh Quality 

The continuous adaptation of the finite element mesh to resolve the propagating crack will result in a 
degeneration of the mesh quality. For large problems, where it is necessary to use iterative solvers, we 
need to control the quality of the elements to ensure good matrix conditioning. The key challenge is to 
enforce constraints to preserve element quality for each Newton-Raphson iteration, without 
influencing the physical response. Thus, we introduce a measure of element quality for tetrahedral 
elements in terms of their shape and use this to drive mesh improvement. Here we include both node 
movement and changes in element topology (face flipping). Thus, equations (4) and (5) are 
augmented by a third residual, , defined as 

 fq = BX
T∫ Q dV  (6) 

where Q is a pseudo “stress” at the element level, as a counterpart to the first Piola Kirchhoff stress. 
Since the conditioning of the finite element stiffness matrix is controlled by the quality of the worst 
elements, we advocate that Q is a function of a log-barrier objective function as a means of evaluating 
the quality of an entire mesh (whilst punishing harshly the worst quality element), and the volume-
length quality measure, [4].  
 
5. Numerical Examples 

To demonstrate the performance of the model for quasi-static loading, a numerical example is 
presented which considers a slice of a graphite brick under quasi-static loading of the keyway. Figure 
3 shows a good comparison between the numerically simulated crack path and the experimentally 
observed crack. Figure 3(d) shows that the results are independent of the mesh size. 
 
 
 
 
                
 

       
 
 
 
 
   (a)      (b) 
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   (c)      (d) 
 

Figure 3: Graphite brick slice. (a) Experimentally observed crack; (b) numerically predicted crack; (c) model 
geometry and predicted crack; (d) load-displacement response. 

 
6. Conclusions 

In this study, the basis for unstable crack propagation using configurational mechanics has been 
presented. The highly nonlinear system of equations are implemented in and solved using MoFEM, a 
finite element code for multi-physics problems which is developed at the University of Glasgow. 
Performance of the model is demonstrated on three numerical problems. The implementation has 
proved to be stable, robust and computationally efficient. 
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ABSTRACT

Anumerical implementation of the eXtended Finite ElementMethod (XFEM) is presented. The proposed approach
solves the system of discrete equations using an explicit integration scheme and it is capable of addressing dynamic
and static fracture mechanics problems. Special attention to the mass matrix construction is required in order to
avoid instability issues such a null stable time increment. Hence, different mass lumping strategies are adopted for
enriched elements. The in-house implementation of this approach, so-called X2FEM , is embedded in the main
in-house FE platform called MULE. Numerical tests demonstrate that the proposed approach is able to provide
an accurate calculation of static and dynamic stress intensity factors (SIFs) for different geometries and loading
scenarios. Finally, in order to extend our point of view, an experimental analysis of a 10◦ off-axis carbon fibre
laminate is carried out using Digital Image Correlation (DIC).

Key Words: Extended finite element Method (XFEM); Explicit time integration; Stress intensity factors; Digital
image correlation

1. Introduction
During the last years, the XFEM [1] has been used successfully in the simulation of moving cracks
throughout a structure such as [2, 3, 4]. Using this method for the simulation of fracture, the mesh is
not updated at each time step in opposition to the Finite Element Method (FEM), where the mesh must
be updated at each time step in order to conform with the moving discontinuity. Although, the FEM has
solved many problems of interest such as [5, 6, 7], XFEM is computationally more efficient than the
FEM while simulating the evolution of cracks.
Based on previous experience with XFEM [8] and FE modelling of damage [9] using commercial codes,
the objective of this work is to present a numerical approach to analyze stationary cracks in the framework
of XFEM. This approach will improve the flexibility during programming since an entire in-house code,
so-called X2FEM , is available. This in-house code is implemented in the main FE platform called
MULE. The approach proposed considers an explicit time integration scheme. In this case, the well-
known central difference method (CDM) is adopted for time discretisation. A diagonal mass matrix is
used for solving the discrete momentum equation. Hence, the part of the mass matrix corresponding with
the standard Degree Of Freedom (DOF) are lumped by direct mass lumping. However, for the lumping
of the enriched DOF there is not straightforward way and a limitation exists. The limitation was found by
Belytschko et al. [10]. Basically, they found out that the critical time step of the explicit XFEM decreases
notably as a discontinuity gets closer to nodes. To alleviate this restriction, Belytschko et al. [10] used
an implicit integrator for the enriched element and explicit integrator for standard elements. Recently,
other possible solutions for solving this limitation are based on using mass lumping strategies. In this
work, using specific lumping techniques for enriched elements the diagonalized mass matrix is obtained
avoiding the possibility of having a null critical time step.
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2. General problem
A two-dimensional dynamic problem is considered where a body Ω with boundary ∂Ω is defined. This
boundary is divided into ∂Ωu, ∂ΩF and Γc (see Figure 1). Hence, ∂Ω = ∂Ωu ∪ ∂ΩF ∪ Γc, where ∂Ωu

represents the prescribed displacements in the body Ω, ∂ΩF is the part of the body subjected to surface
forces and Γc corresponds to the displacement discontinuity e.g. a crack. Note that crack ’s faces are
traction free. The motion of the body is defined by the displacement uuu(xxx, t), which is a function of the
location of the material point xxx and the time t. The material has a linear behaviour, it is isotropic and
its mass density is ρ. The body presents applied displacements ūuu on the Dirichlet boundary ∂Ωu and
applied traction t̄̄t̄t on the Neumann boundary ∂ΩF ; ∂Ωu ∩ ∂ΩF = ∅, ∂Ωu ∩ Γc = ∅, ∂ΩF ∩ Γc = ∅ . The
outward normal vector in the material boundary is defined as nnn⊥ and bbb is the body force per unit mass.
Thus, the strong form of the problem is written as follows:

𝜕Ω

Ω
Γc

u

Crack
𝜕ΩF

X

Y

Figure 1: A two dimensional body cracked and its boundaries.

∇σσσ + ρbbb − ρü̈üu = 0 in Ω (1)

subjected to the boundary conditions:
uuu = ūuu on ∂Ωu (2)

σσσ · nnn⊥ = t̄tt on ∂ΩF (3)

σσσ · nnn⊥ = 0 on Γc (4)

The constitutive relation of the material is written:

σσσ(xxx, t) = CCC · εεε (uuu(xxx, t)) (5)

where σσσ is the Cauchy stress tensor, CCC the constitutive matrix and εεε the strain tensor.

3. Numerical framework
The displacement at a generic point xxx, uuu(xxx, t) is approximated by uuuh using continuous and discontinuous
terms as follows [11]:

uuuh (xxx, t) = uuucont (xxx, t) + uuucut (xxx, t) + uuutip (xxx, t) (6)

where uuucont corresponds to the continuous approximation of the displacement, uuucut corresponds to the
discontinuous approximation for addressing the crack and uuutip denotes the discontinuous approximation
corresponding to the crack tip.
For the implementation of approach presented, an in-house code developed in MATLAB is built. The
element type considered in this code is a 4-node quadrilateral element. Each node for a standard element
presents two DOF. The nodes of full cracked elements have two classical DOF and two additional DOF
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addressing the strong displacement jump. The construction of the global mass matrix is not a trivial
task. The mass lumping strategy adopted for the enriched part is critical for the stability of the CDM.
Therefore, different mass lumping strategies are adopted depending on the type of enrichment. For
standard elements, the calculation of the stiffness matrix considers four integration points. In the other
hand, for elements containing the tip of the crack or cut by the crack, the integrals for the calculation
of internal forces cannot be derived by standard quadrature methods since the integrand is defined as
discontinuous. Therefore, the standardGauss quadrature does not adequately considered the discontinuity
and a subdivision of the elements into triangles is required. This subdivision of the elements has just
integration purposes, hence, no additional DOF are added to the system.

4. Computational tests
In order to check the performance of the proposed approach, a semi-infinite stationary crack within an
infinite plate is simulated. The plate is loaded in its vertical edge as depicted in Figure 2. The influence
of the external loading on the Stress Intensity Factor (SIF) calculation is addressed. Hence, the load
applied is introduced in three different manners: as a step, a ramp and a sinusoidal wave. The dynamic
SIFs obtained from the code are compared with the analytical solution.

4.1. Analysis of a stationary crack: mode I

A schematic representation of the problem under consideration is depicted in Figure 2 where a tensile
stress is applied perpendicular to the crack. The analytical solution of the SIF in mode I (denoted as
KI ) for a linear elastic material was first proposed by Freund [12]. The analytical solution was obtained
under the assumptions of an infinite plate with a semi-infinite crack. This solution is valid till the tensile
wave stress is reflected in the bottom of the plate and reaches again the crack tip. The dimensions of the
plate are L=10 m, h=2 m and the crack length is a=5 m. The material properties are presented on Table
1 where E is the elasticity modulus, ν the poisson ratio and ρ the density.

a
L

2h

o

Figure 2: Geometry and loading for a infinite plate with a semi-infinite crack.

Table 1: Mechanical properties

E[GPa] ν ρ[kg/m3]
210 0.3 8000

In Figure 4, the normalized mode I dynamic SIF KI

σo

√
h
is depicted against the normalized time t

tc
being

tc = h
cd
= 3.36 · 10−4s, where cd is the dilatational wave speed. This graph serves to point out the mesh

independence of the solution using two different discretisations with 92x39 and 140x59 elements. These
discretisations were considered in order to have an aspect ratio of approximately one within the mesh.
Note that the time step considered is ∆tXFEM

c = 5µs (a simulation of 200 time steps). The tensile load
applied σ0(t) is defined as σ0(t) = σgn(t), where σ = 500MPa and gn(t) defines the way that the load
is provided. Initially, a step load g1(t) is applied to the plate as follows:
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g1(t) =


0 if t ≤ 0

1 otherwise
(7)

Twomore loading scenarioswere considered: a ramp and a sinusoidalwave. The results depicted onFigure
4 while loading with g1(t) show a reasonable agreement between the analytical and the computational
solution for the coarse and fine meshes. Consequently this proves the ability of the proposed code for the
calculation of SIF considering different discretisations.

t/t
c

0 0.5 1 1.5 2 2.5 3

K
I/ σ

 H
0.

5

0

0.5

1

1.5

Analytical Solution
140x59 elements
92x39 elements

Figure 3: Normalized mode I stress intensity factor against normalized time for a stationary semi-infinite crack.
The analytical solution is plotted as well as the computational solution considering two different discretizations:
92 by 39 and 140 by 59 elements .

5. Validation using Digital Image Correlation
Digital Image Correlation (DIC) [13][14] is an optical technique based on digital image processing and
numerical computing. This technique provides the full-field displacements and strains for a surface by
comparing a digital image reference (un-deformed) with a deformed image stage.

Figure 4: (a) Macro-crack observed during experimental tensile testing and (b) Map of maximum shear strain
before failure.
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In order to extend our point of view, a 2D experimental analysis of a 10◦ off-axis carbon fibre laminate is
carried out using Digital Image Correlation (DIC). Therefore, the full-field of strains was obtained and
those outcomes were compared with simulations. In Figure 5 (a), it is depicted the crack path for the
10◦ laminate once the specimen breaks. Additionally, in Figure 5 (b), it is presented a map of maximum
shear strain before the macro-crack appears. Notice a peak of maximum shear strain in the zone where
the crack is initiated.

6. Conclusions
A numerical approach for the simulation of stationary cracks in the context of XFEM is presented.
This approach is numerically implemented in an in-house code programmed in MATLAB. By means
of several tests, the performance of the in-house code is tested. The results obtained and its comparison
with the analytical solutions proves the reliability of the approach. Additionally, in order to expand our
point of view, an experimental analysis is carried out using DIC.
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ABSTRACT 

The interface strength in an adhesive joint plays a major role in load transfer across bonded joints. However, the 

presence of defects hinders or deflects the load transmission. In this study, an attempt has been made using the 

cohesive zone method to study the effect of interfacial strength (or residual strength) on the interfacial crack 

propagation under indentation contact. Stable and unstable crack growth behaviour have been investigated and 

the effect of the presence of defects along one of the interfaces has been analysed. It has been concluded that 

higher interfacial strengths favour unstable crack propagation. The presence of defects does not affect the crack 

initiation but affects the crack initiation load because of the reduction in the apparent interface length. 

 

Keywords: adhesive joints; interface defects; finite element (FE); cohesive zone model (CZM); indentation 

  

1. Introduction  

Adhesive joints are being widely implemented in a variety of applications such as aircraft structures, 

wind turbines and automotive body parts, etc. The failure prediction of adhesive joints has been studied 

and failure criteria have been established for various geometries and loading conditions. The previous 

research in this field is mostly based on analytical closed form solutions of stress and displacement 

fields in the adhesive and hence predict the failure based on stress or strain based criteria. However, 

these studies can only be used under the assumption that the interface between the adhesive layer and 

adherends is perfectly bonded and that there exist no defect within the adhesive layer. In the real world 

manufacturing of the adhesive joints, there exists a possibility of inclusion of defects in the form of air 

bubbles and foreign materials within the adhesive and improper bonding (Kissing bonds), the presence 

of oxide layers or the presence of interfacial defects because of improper surface cleaning 

methodologies. Investigation of the effect of these defects on the strength of the adhesive joint can be 

carried out either through experimentation or through numerical calculations based on finite element 

(FE) method. It is apparent that the interface between adhesive and adherends plays an important role 

in the load transmission through the adhesive joint. However, the isolation of the interface in terms of 

strength and fracture toughness is a difficult task as the crack propagation along the interface is always 

accompanied by plastic deformation either in the adhesive or the adherends.  

The formation of a cohesive zone ahead of the crack tip and the size of this zone determines the 

steady state fracture toughness and the adhesive strength of the interface. The estimation of the interface 

toughness can be carried out through the calculation of the work of adhesion of the adhesive on the 

adherend material which is estimated to be around 0.1 J/m2 [1] using the surface free energy of the 

adhesive and the contact angle of an adhesive droplet on the adherend surface. This estimate assumes a 

perfect interface without defects and 0o contact angle. However, in the presence of defects or improper 

adhesion because of oxide layer formation on the metal surface this value can be lower than the 

estimated value. In the present study the different interfacial strengths have been represented by a 

cohesive zone model (CZM) embedded into an outer FE model of the adhesive and the adherends. The 

CZM models the interface as a series of springs whose stiffness is a function of the normal and 

tangential displacements. The principal advantage of the CZM is that the stress state at any node is 

independent of its distance from the crack tip. Moreover, the use of linear elastic fracture mechanics 

(LEFM) is limited to small-scale yielding conditions where the dissipation of work in the cohesive zone 

in front of the crack tip is negligible. LEFM breaks down where large scale yield conditions exist as in 

adhesive joints in front of an interfacial crack [2]. The importance of different CZM parameters has 
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been studied numerous times. The initial opening stiffness does not have a significant effect on the 

behaviour of the model. Increasing the critical traction (𝜎𝑐
𝑚) increases the crack propagation load and 

increasing the steady-state toughness increases the overall load carrying capacity of the bonded joint.  

In the present investigation, the toughness of the interface (i.e. area of the traction-separation curve) 

has been maintained constant and the critical traction (𝜎𝑐
𝑚) has been varied as fractions of the adhesive 

material yield strength ‘σy’ (e.g. at 0.25σy, 0.5σy, 0.75σy, σy). In addition, interfacial defects were 

assumed to be along the lower interface. Three crack radii were considered (R = 200 µm, 400 µm, 600 

µm) in addition to a joint with a perfectly bonded interface. The crack propagation with respect to 

indentation depth and the effect of varying the critical strength have been studied. It has been observed 

that the crack initiation load and depth varied with adhesive thickness and interfacial strength. Also, at 

lower adhesive thickness and lower interfacial strengths, cracks appeared at both the interfaces.  

 

2. Indentation Simulations 

The adherends (aluminium, Al) and adhesive have been modelled using an elastic-plastic bi-linear 

model in ANSYS APDL using PLANE 182 elements. The interfaces have been modelled using 

CONTACT 172 and TARGET 169 elements. The element size has been maintained at 5 µm in the 

adhesive to increase the accuracy of the model. A plane strain element formulation has been used along 

with a two-dimensional (2D) model. The simulation was displacement controlled with a 150 µm 

vertically downward displacement applied as boundary condition on the indenter (Rockwell B scale of 

1.558 mm diameter). The material properties and geometry is shown in Fig. 1. The crack propagation 

has been analysed at various displacement levels. The lower edge of the lower adherend has been 

constrained in the Y-direction and the axis of symmetry is as shown in the above figure. The location 

of the crack along the lower interface is also shown in the Fig. 1.  

 
 

  

Figure 1: Representation of the model employed 

 

2.1. Cohesive zone model (CZM) formulation 

The CZM is governed by a traction-displacement law as shown in Fig. 2. The behaviour follows a 

triangular law (the area under which gives the steady-state fracture toughness). The behaviour is 

reversible below the critical stress and the elements retain the stiffness in this zone. After the critical 

stress is exceeded the behaviour is as indicated by the dotted line (shown in Fig. 2). Once the critical 

displacement (𝛿𝑐
𝑚) has been exceeded, the surfaces become de-bonded and assume frictional contact. 

The mixed-mode displacement is calculated as a root-square value of the normal and tangential 

displacements. The initiation of a crack or delamination is tracked using a damage parameter and the 

stiffness is expressed as a function of this parameter so as to incorporate irreversible damage to the 

contact pair after the stress exceeds the corresponding critical value.  
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Figure 2: Traction-separation law of the CZM 

The mixed-mode stress is given by Equation (1):  

  Pm = KmUm(1-dm)                                                          (1) 

and the fracture criterion is given by Equation (2): 

𝐺𝑛

𝐺𝑛𝑐
 + 

𝐺𝑡

𝐺𝑡𝑐
 =1           (2) 

where ‘dm’ is the damage parameter and varies between 0 and 1 between 𝛿1
𝑚 and 𝛿𝑐

𝑚 respectively, ‘Km’ 

is the initial stiffness of the interface, ‘Um’ is the mixed mode displacement ‘Gn’, ‘Gt’ are the normal 

and tangential energy release rates and ‘Gnc’ and ‘Gtc’ are the critical values. As can be seen, the traction-

displacement relation is represented by a triangle, the area of which is the steady-state toughness of the 

interface the value of which depends on the mode-mixity and the loading nature. Parameter 𝛿𝑐
𝑚 

represents the critical mixed-mode displacement beyond which the crack opens. Parameter 𝜎𝑐
𝑚 

represents the critical stress. The above parameters are for a mixed-mode cohesive law and are suitable 

for mixed-mode loading conditions. The Table 1 shows the CZM parameters employed for simulations. 
 

Table 1: CZM parameters employed in the simulations  

 

Parameter 

set no. 

Mode-I critical 

stress (σn) 

Mode-II critical 

stress (σt) 

Mode-I critical 

displacement (δn) 

Mode-II critical 

displacement (δt) 

 1 34 0.0005 34 0.0005 

 2 17 0.001 17 0.001 

 3 25.5 0.00067 25.5 0.00067 

4 8.5 0.002 8.5 0.002 

 

3. Results and Discussion 

The variation of the crack initiation load with various interfacial strengths for an adhesive joint with no 

defect has been shown in Fig. 3(a). This critical initiation load increases with increasing interfacial 

strength and for the interface with no defect and interface with 200 µm long defect the critical initiation 

loads are very similar. However, for the interfaces with 400 µm and 600 µm long defects, the critical 

initiation loads are lower. This might be because of two reasons: (a) due to the appearance of crack tip 

stress concentration leading to premature failure, and/or (b) due to the reduction in overall interfacial 

load carrying capability because of the reduced interfacial bond length. In the present case the latter 

seems to be more applicable as there does not seem to be any stress concentration at the tip of the defect. 

This is because of the existence of the crack within the highly compressed zone underneath the indenter 

and so the initiation of the crack does not happen near the tip of the defect. The decrease in the critical 

load with the decreasing interfacial strength is also expected. The Fig. 3(b) shows the variation of the 

normalised (with respect to load-displacement data from joint with no interfacial bonding ‘Po’) load 

with the normalised (with respect to total interface length ‘L’) crack length. The Fig. 3(b) shows that 
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the crack propagation behaviour changes from stable to unstable growth as the interface strength 

increases. As can be seen, the joint with interface strength of σy (yield strength of the adhesive) exhibits 

an unstable crack growth after a particular crack length where the load drops suddenly. Moreover, the 

crack initiation load is similar for interfaces with interfacial strengths 0.5σy and 0.75σy. However, after 

the crack initiation, the crack extension in the latter case (0.75σy) takes place under an almost constant 

load where as for the former (0.5σy) the load increases. This observed behaviour at higher interface 

strengths is because of the accumulation of the energy within the adhesive layer and the interface with 

increasing indentation load and the sudden release of this energy beyond a critical load leading to crack 

extension under constant load. The area under the load-displacement curve can be used as a measure of 

the indentation energy. Also, the slope of the load-displacement curve (Fig. 3) after the crack initiation 

gives a fair idea of the crack propagation scheme. It has also been found that the joints with lower 

interfacial strengths exhibit a gentler slope of the load curve after crack initiation. 

 

  
 

Figure 3: (a) Variation of crack initiation load with various interfacial strengths, and (b) various defects and 

variation of normalised load with normalised crack length 

 

4. Conclusions and Future Work 

a. Indentation based contact mechanics can be used as a testing method to evaluate the strengths 

(or residual strengths) of adhesively bonded joints of various adhesive layer thicknesses. The 

crack initiation load decreases with decreasing interfacial strength. 

b. The effect of the presence defects (at the adhesive bond interface) on the load carrying 

capability can be seen as a reduction in the overall interfacial load carrying capability. This 

does not affect the crack initiation or propagation behaviour because of the presence of the 

crack within the high compressive stress zone (at indentation sub-surface zone). The effect of 

cracks situated away from this zone will be part of ongoing investigations.   

c. The adhesive bond interfaces with higher bond strengths exhibit unstable crack growth 

behaviour and those with lower bond strengths exhibit stable crack growth. This is because of 

the higher crack length initiation loads at higher interfacial strengths leading to accumulation 

of strain energy in the bulk of the adhesive and adherends thus increasing the energy available 

for crack propagation.  
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ABSTRACT 

Many geo-energy and geo-environmental problems require reliable and accurate predictions of fluid flow 

through fractured/faulted media. Examples of such problems include the extraction of methane from shale, the 

sequestration of carbon dioxide in coal beds and the circulation of water through faulted rock as part of an 

enhanced geothermal system (EGS). Computational modelling is important for the systematic assessment of the 

feasibility, reliability and performance of these technologies. Central to this computational modelling are the 

procedures used to account for the fluid flow through the fractures and its transfer in/out of the surrounding bulk 

material. In the following, a computational approach to modelling fluid flow through fractures is summarised, 

with an example simulation considered to demonstrate the influence of fracture aperture on the flow 

characteristics. 

 

Keywords: fracture; flow; discrete; finite elements; geo-energy 

  

1. Introduction  

Based the work of Thomas and He [1], and following many subsequent developments, the 

computational code, COMPASS, has been developed at Cardiff University for the assessment of 

transport phenomena in deformable partially saturated media. COMPASS assumes 𝐶0 continuity in 

the spatial domain via the use of finite elements and makes use of a finite difference scheme to 

discretise the underlying equations in time. While previous work has been undertaken using the code 

to model discretely fractured media [2, 3], this involved meshing both the interior of the fractures and 

the surrounding continuum. This approach is appropriate for problems involving a small number 

(<10) of large faults, but for more complex fracture networks it is impractical owing to the need to use 

a highly refined mesh for each fracture and the consequential high computational cost. Further, it does 

not lead naturally to an extension to consider fracture propagation. 

 

An alternative approach is to consider the fractures as entities of one spatial dimension less than that 

of the overall continuum (i.e. as one-dimensional entities in a two-dimensional continuum and two-

dimensional entities in a three-dimensional continuum), with the flow considered to be uniform across 

the aperture of the fracture. In the following, developments undertaken to implement such an 

approach to discrete fracture flow modelling in a finite element context are summarised. 

 

2. Governing Equations, Fracture and Bulk Flow Coupling and Discretisation 

The equations governing flow through the bulk material are those of continuity and Darcy’s law, 

given respectively (using tensor notation) as: 
 

𝜕(𝜌𝑣𝑖)

𝜕𝑥𝑖
+ 𝜌𝑞𝑏𝑢𝑙𝑘 +

𝜕(𝜌𝑆𝑛)

𝜕𝑡
= 0                    (1) 

𝑣𝑖 = −
𝑘𝑖𝑗

𝜇

𝜕𝑝

𝜕𝑥𝑗
                         (2) 

 

where 𝜌 is the fluid density, 𝑣𝑖 is the fluid velocity (in the global Cartesian coordinates, 𝑥𝑖), 𝑞𝑏𝑢𝑙𝑘 is 
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the fluid flux per unit volume, 𝑆 is the degree of saturation, 𝑛 is the porosity, 𝑘𝑖𝑗 is the intrinsic 

permeability tensor, 𝜇 is the isotropic (scalar) viscosity and 𝑝 is the fluid pressure. The fully saturated 

case is considered here; 𝑆 = 1. Applying Galerkin’s weighted residual method and introducing a 

finite element basis gives the following discrete form of the bulk transport equations: 
 

𝐹̅𝑎 = 𝐾̅𝑎𝑏𝑃𝑏                          (3) 
 

where: 
 

𝐾̅𝑎𝑏 = ∫
𝜕𝑁𝑏

𝜕𝑥𝑗

𝜌𝑘𝑖𝑗

𝜇

𝜕𝑁𝑎

𝜕𝑥𝑖Ωb
𝑑Ω                     (4) 

 

𝐹̅𝑎 = − ∫ 𝜌𝑣𝑛𝑒𝑁𝑎Γext,b
𝑑Γ + ∫ 𝜌⟦𝑣𝑛⟧𝑁𝑎Γf

𝑑Γ − ∫ 𝜌𝑞𝑏𝑢𝑙𝑘𝑁𝑎𝑑Ω
Ω𝑏

− ∫
𝜕(𝑛𝜌)

𝜕𝑡Ωb
𝑁𝑎𝑑Ω      (5) 

 

Here, Ωb is the spatial domain of the bulk material, Γext,b is the external boundary of Ωb, Γf is the 

boundary of a fracture within Ωb, 𝑃𝑖 are the nodal pressures, 𝑁𝑖 are the shape functions, 𝑣𝑛𝑒 is the 

normal component of outflow on Γext,b  and ⟦𝑣𝑛⟧ is the difference in the normal component of 

velocity across the fracture. Similar equations govern the flow through the fractures:  
 

𝜕(𝜌𝑣̃𝑖)

𝜕𝑥̃𝑖
+

𝜕𝜌

𝜕𝑡
= 0                         (6) 

 

𝑣̃𝑖 = −𝑘̃𝑖𝑗
𝜕𝑝

𝜕𝑥̃𝑗
                          (7) 

 

where 𝑣̃𝑖 is the fluid velocity in the local Cartesian coordinates, 𝑥̃𝑖, and 𝑘̃𝑖𝑗 is the local permeability 

tensor. For a problem in two dimensions (𝑖, 𝑗 = 1,2) with the 𝑥̃1 axis tangential to the fracture, the 

restriction to one-dimensional flow through the fracture is succinctly made by setting the 𝑘̃𝑖𝑗 =

𝑏2

12𝜇⁄  for 𝑖 = 𝑗 = 1, where 𝑏 is the fracture aperture (in accordance with lubrication theory) and 

𝑘̃𝑖𝑗 = 0 otherwise. Again, applying Galerkin’s weighted residual method and introducing a finite 

element basis gives: 
 

𝐹𝑎 = 𝐾𝑎𝑏𝑃𝑏                         (8) 
 

where: 
 

𝐾𝑎𝑏 = ∫
𝜕𝑁𝑎

𝜕𝑥̃𝑖
𝜌𝑘̃𝑖𝑗

𝜕𝑁𝑏

𝜕𝑥̃𝑗Ωf
𝑑Ω                      (9) 

 

𝐹𝑎 = − ∫ 𝜌⟦𝑣𝑛⟧𝑁𝑎Γf
𝑑Γ − ∫

𝜕𝜌

𝜕𝑡Ωf
𝑁𝑎𝑑Ω                 (10) 

 

Here, Ωf is the spatial domain of the fracture (an area in two-dimensions, a volume in three-

dimensions). Owing the restriction placed on the form of 𝑘̃𝑖𝑗, the integrals over the spatial domain of 

the fracture, Ωf, reduce to integration over Γf, so that for a two-dimensional problem: 
 

𝐾𝑎𝑏 = ∫
𝜕𝑁𝑎

𝜕𝑥̃1
𝜌𝑘̃11

𝜕𝑁𝑏

𝜕𝑥̃1Γf
𝑏𝑑Γ                   (11) 

 

𝐹𝑎 = − ∫ 𝜌⟦𝑣𝑛⟧𝑁𝑎Γf
𝑑Γ − ∫

𝜕𝜌

𝜕𝑡
𝑏

Γf
𝑁𝑎𝑑Γ              (12) 

 

Elimination of the term: ∫ 𝜌⟦𝑣𝑛⟧𝑁𝑎Γf
𝑑Γ, allows the bulk and fracture flows to be readily coupled 

together. For brevity in the above, flow through the fractures at their intersection with Γext,b has been 

neglected. 

 

3. Mesh Generation 

The approach considered here does not involve enrichment of the finite element basis to allow 

fractures to bisect elements (as is the case in X-FEM, for example). Instead, the fractures are required 
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to align to element boundaries. It is often reported that generating meshes to align to internal fracture 

boundaries is problematic (e.g. [4]). As such, we elaborate briefly on our approach to mesh 

generation. Figure 1a displays an initial two-dimensional domain, the boundary of which is succinctly 

defined by the function 𝑓𝛼 = 0, where 𝑓𝛼 = 𝑚𝑎𝑥(𝑓1 … 𝑓𝑁) and 𝑓1 = 0, … 𝑓𝑁 = 0 are functions 

defining the lines (in two dimensions) or planes (in three dimensions) that form the boundaries of the 

domain. The introduction of a fracture (Figure 1b), defined by the function 𝑓𝐼 = 0, subdivides the 

initial domain into two subdomains. These two subdomains are succinctly defined by augmenting the 

definition of 𝑓𝛼 to 𝑚𝑎𝑥(𝑓1 … 𝑓𝑁, 𝑓𝐼) = 0 and introducing the second function: 

𝑓𝛽 = 𝑚𝑎𝑥(𝑓1 … 𝑓𝑁, −𝑓𝐼) = 0. Repeating this approach for all fractures gives 𝑀 functions of the form 

𝑓𝛼 = 0, 𝑓𝛽 = 0 … 𝑓𝑀 = 0, each defining one subdomain formed from the intersections of all the 

fractures cutting the domain. With the subdomains defined in this manner, it is a straightforward task 

to deduce the data needed to pass to third-party mesh generation software to obtain the mesh itself. 

For example, the software GiD [5] has been used here to obtain the mesh shown in Figure 1c. This 

approach can also readily be used in three-dimensions. 
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Figure 1: Mesh generation strategy 

  

4. Simulation Results 

The finite element formulation described in the previous sections has been implemented in a 

numerical code. Sample simulation results using this code are shown in Figure 2. The sample problem 

consists of a two-dimensional (plane strain) square domain of 1km side length. The mesh shown in 

Figure 1c was used for this simulation, together with the fracture network indicated by the dashed 

lines on this figure. The intrinsic permeability of the bulk material is 10−7m
2
 and the viscosity of the 

fluid is 10−3Pa s with four values for the fracture aperture considered (0.5mm, 1mm, 2mm and 5mm). 

Fluid is injected at a rate of 0.001m2 s⁄  at the origin with outflow permitted at the point labelled, A. 

Velocity vectors obtained after 1 hour of flow through the domain are shown in the figure (the 

velocity scale of the plots is m s⁄ ). Comparison between the figures reveals that for the 0.5mm case 

(Figure 2a) the flow occurs principally through the bulk, with very minimal preferential flow through 

the fracture network. For the 1mm case (Figure 2b), the flow through the fracture is more pronounced, 

while flow through the fractures dominates for the 2mm case (Figure 2c). For the 5mm case (Figure 

2d), the flow is almost exclusively through the fracture network with negligible flow through the bulk 

material. This sample simulation therefore provides an indication of the relative importance of 

fracture aperture on the flow characteristics of a given fractured rock mass. 

 

5. Conclusions and further work 

A finite element formulation for flow through a fractured body is described, accounting for the fluid 

exchange with the bulk material. Extensions are currently underway to account for the multi-

component unsaturated case, and to analyse convective flows. These extensions build upon the 

modelling framework outlined here. 
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Figure 2: Velocity vectors for various fracture apertures 
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ABSTRACT 

High-performance computing (HPC) techniques, especially parallel computing, can be used to significantly 

reduce the computational time in very large scale simulations. In this work, the popular HPC hardware and 

parallel programming tools are reviewed and discussed. Then a hybrid Message Passing Interface/Open Multi-

Processing (ie, MPI/OpenMP) model is proposed to parallelise the numerical code COMPASS, which adopts a 

coupled thermal/hydraulic/chemical/mechanical (THCM) approach to model the behaviour of 

saturated/unsaturated media. Various optimisation techniques have also been employed to achieve better 

performance. Together with code optimisation, the parallel COMPASS has shown significant performance 

improvement, which has been seen for an example application in carbon dioxide sequestration. 

 

Keywords: high performance computing; parallel computing; THCM; COMPASS 

  

1. Introduction  

Geoenvironmental problems, such as contaminated land, landfills, waste disposal, and carbon dioxide 

sequestration, are generally based upon flow conditions through soils and/or chemical reactions. For 

example, the flow of carbon dioxide through rocks/soils and the associated chemical processes are 

important factors controlling the capacity and long term stability in carbon dioxide sequestration. 

These problems are often complex in respect to both the processes occurring and their geometry and 

scale. In recent years, a coupled thermal/hydraulic/chemical/mechanical (THCM) approach to model 

the behaviour of saturated/unsaturated media has been developed at the Geoenviromental Reseach 

Cenre (GRC) at Cardiff University [1-4]. The model has been implemented in the numerical computer 

code COMPASS (COde for Modelling PArtially Saturated Soils), and used to simulate a number of 

problems. The finite element method is employed for the spatial discretisation, and a finite difference 

time stepping scheme is implemented for temporal discretisation.  

 

As the scale and complexity in geoenergy applications increases, the demands for computational 

resources increase dramatically and eventually become time-limiting for very large simulation 

problems.  Recent developments of high-performance computing (HPC) provide great advantages to 

overcome these large computational demands and time-limiting issues. Parallel computing on HPC 

platforms can significantly reduce the computational time. It is worthwhile to invest time and efforts 

to develop numerical modelling code that run on a HPC system. In this paper, the authors briefly 

demonstrate the development of parallel version of the GRC’s in-house numerical modelling code, 

COMPASS, with cutting-edge HPC technologies. It aims to enable the integrated parallel COMPASS 

code to run on supercomputers efficiently, reliably and quickly. 

 

2. HPC hardware and parallel programming tools  

The November 2015 Top 500 ranking of world supercomputers [5] shows that more than 80% of HPC 

machines are classified as having a cluster architecture. HPC clusters usually consist of a large 

number of distributed computer nodes linked through high performance networks. A well-known 

transport mechanism between nodes is message passing, which was adopted by many parallel 
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programming tools, such as Theoretical Chemistry Group Message Passing System (TCGMSG) [6], 

Parallel Virtual Machine (PVM) [7], and Message Passing Interface (MPI) [8]. With a number of 

features that provide both convenience and high performance communication, MPI is the most widely 

used model, and has become the de facto standard for incorporating parallelism into scientific and 

other application codes. 

 
Table 1: Comparison of features between MPI and OpenMP 

 

MPI OpenMP 

Shared or distributed memory architectures Only shared memory architecture 

Requires an MPI library(MPICH, Intel MPI etc) Doesn’t need other library 

No specific requirements for compiler Requires a compiler that supports OpenMP 

Message based Directive based 

Both process and thread based approach Only thread based parallelism 

Overhead for creating process is one time 
Threads can be created and joined for particular task 

which add overhead 

There are overheads associated with transferring 

message between processes 
No such overheads, as thread can share variables 

Process in MPI  has private variable only, no shared 

variable 
Thread can have both private and shared variables 

Requires more programming changes to go from 

serial to parallel version 

Directives can be added incrementally, less changes 

from serial to parallel version 

Rich functionality, flexible, harder to program Easier to program, data racing bug 

 

In a HPC cluster, each computer node itself is a symmetric multiprocessor (SMP) system, on which 

memory is shared across the processors. Open Multi-Processing (OpenMP) [9] has provided a very 

rich and flexible programming model for such shared memory systems. Now most computers, even 

desktops/laptops, have multi-core CPUs, which can have access to the common memory on the 

machine. This computer architecture provides great convenience for parallelism, and OpenMP 

becomes one of the most popular programming models as it is easy to implement. Table 1 lists the 

major features of MPI and OpenMP. In order to achieve scalable performance, many application 

programs typically maintain and manipulate global data structures that are distributed between the 

memory managed by individual processors. The application programming interfaces (API) that 

provide such functionality include the Global Arrays (GA) toolkit [10], Distributed Data Interface 

(DDI) [11], and Parallel Programming Interface for Distributed Data (PPIDD) [12]. 

 

With the development of new accelerator technologies, general-purpose graphical processing units 

(GPGPUs) now can be used for parallel computing [13]. CUDA and OpenCL are most widely used 

GPU parallel programming tools. The potential performance improvement is enormous if the 

algorithms can take advantage of the GPU's programming model and do most of their computation on 

the GPU. There are cases of over a 100X performance improvement for some codes running on GPUs 

relative to CPUs.  But one of the critical limitations is that you have to rewrite the code for the GPU. 

It is particularly hard to port existing complex code for GPU parallel computing.  

 

Basing on the above analysis and discussions, it is a good option to develop parallel implementation 

with both MPI and OpenMP for currently existing large packages, in order to take full advantage of 

modern HPC facilities available. 

 

3. Parallel strategies for COMPASS  
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As the popular HPC clusters have the hybrid architecture, where memory is distributed across the 

computer nodes but shared within the node, a hybrid MPI/OpenMP model is proposed for parallel 

implementation for the numerical code COMPASS. The hybrid model can take advantage of the 

merits of both MPI and OpenMP. MPI facilitates efficient inter-node reductions and transferring of 

complex data structures, and it helps the application scale across multiple SMP nodes in the HPC 

cluster. OpenMP manages the workload on each SMP node, and makes more efficient use of the 

shared memory. By spawning several OpenMP threads for each MPI process, less replicated data and 

less memory are required due to the decrease of the total number of MPI processes. Within each SMP 

node where only one MPI process is allocated, the synchronization is implicit, which eliminates much 

of the overhead associated with message passing. 

 

In COMPASS, the majority of the computation time is spent in two sections: system matrix build and 

solver. The system matrix build process is to form the matrices for each element, and then assemble 

them into global matrix. In this section, coarse-grained domain decomposition can be employed as 

there is no communication in the matrix forming process for each element. Only at the end are all 

element matrices synchronised and added together. The solver is to provide the solution for the 

equations involved. In general, there are two types of solvers, direct and iterative [14]. A direct solver, 

such as LU decomposition, is very robust and efficient, but for large and complex systems, the 

memory required may become a bottleneck. Iterative solvers require lower memory, which is crucial 

for large scale simulations. Among these iterative solvers, the conjugate gradient algorithm is one of 

the most effective iterative methods. 

 

For LU decomposition, fine-grained parallelism is achieved during the forward and back substitution. 

In conjugate gradient algorithms, vector-vector and matrix-vector operations are heavily involved. For 

vector-vector operations, it is not suitable for MPI parallelism as the communication takes longer than 

the calculation itself [3]. However, OpenMP can take over them as there is no such communication. 

Matrix-vector multiplication is parallelised with MPI. In addition, substantial code optimisation is 

carried out to improve the performance further. For some frequently used code segments, memory and 

file input/output operations are carefully examined. 

 

4. Application simulation and initial performance 

The development of the parallel code is demonstrated by simulating the injection of carbon dioxide in 

a coal seam associated carbon capture and sequestration (CCS) technologies. The simulation 

considers carbon dioxide injection into a 500 m radius, two-dimensional, axisymmetric, 

hypothetically isolated coal bed. This example has a very large domain, which is discretised by about 

20,000 triangle elements. Figure 1 shows the total wall time for system matrix build and solver. The 

      

Figure 1: Total wall time of system matrix build and solver 

320



 

wall time for parallel and serial modes is displayed in Figure 1(a), while the parallel results are 

displayed in a magnified mode in Figure 1(b). The serial code, which is not optimised, is three times 

slower compared with the parallel program with 1 core. Together with code optimisation, the parallel 

code has achieved a maximum 7.5 times speed-up compared to the non-optimised serial one. 

 

5. Conclusions 

This work here has reviewed and discussed the popular HPC hardware and parallel programming 

tools. Then a hybrid MPI/OpenMP model is proposed to parallelise the numerical code COMPASS. 

Together with code optimisation, a significant performance improvement has been seen for an 

example application in carbon dioxide sequestration. The developments presented in this paper will 

facilitate more efficient computational research in the study of carbon sequestration and other large 

scale geoenvironmental applications. 
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ABSTRACT 

An investigation of thermo-osmosis in a saturated and chemically active rock such as shale is presented. The 

model presented is based on an existing coupled thermal, hydraulic and mechanical model (THM) for 

unsaturated soils. A simplified form of a coupled THM model for saturated porous medium is developed which 

considers the effect of solid-fluid thermal expansion and the effects of thermal osmosis in hydraulic behaviour. 

An example problem dealing with pore water pressure development in saturated shale rock surrounding the 

bentonite buffer installed around high-level nuclear waste canister emitting heat is presented. It is demonstrated 

that the heat input from the waste canister can affect the pore water pressure evolution in the shale. In particular, 

under the conditions considered, it is shown that thermally driven liquid water flow due to thermal osmosis 

contributes to the convective transport of dissolved species.  

 

Keywords: saturated shale, hydraulic behaviour, thermal osmosis, coupled modelling 

  

1. Introduction  

The safe storage of high-level radioactive waste is a subject of major strategic international 

importance. The disposal of such waste in geological repositories relies on a multi-barrier system 

consisting of the engineered materials placed within the repository and the natural barrier system 

which includes the repository rock and its surrounding subsurface environment. In the short term the 

heat generated by the waste will induce elevated temperatures in the engineered barrier system and the 

host rock [1]. 

 

During the very long lifespan of a geologic repository, the performance of the multi-barrier system is 

affected by a series of complex and coupled processes. Osmosis is one of the processes identified to 

affect the fluid pressure around the nuclear waste canisters [2]. While electro- and chemo-osmosis 

have been extensively identified and described in clay-rich media, a flow of water driven by 

temperature gradient, i.e. thermal osmosis has received less attention [2]. It is well known that an 

increase in temperature causes thermal expansion of mineral solids and pore water usually generating 

volume and effective stress changes in saturated soils [3]. The lower the hydraulic conductivity of the 

porous medium, the longer the time required for this pore water pressure to dissipate. However, it has 

been shown that in low porosity and chemically active porous media, inclusion of thermal osmosis 

provides further insights into pressure distribution and flow in shale layers [2].  

 

In this work, the theoretical development of hydraulic behaviour with an emphasis on thermal osmosis 

is presented and implemented within an existing thermal, hydraulic and mechanical (THM) numerical 

model [4]. In order to assess the impact of temperature increase on pore water pressure evolution in 

the shale, a numerical investigation has been conducted with and without including thermo-osmotic 

effects.  
 

2. Constitutive model 

A constitutive model considering thermal expansion relationships, thermal osmosis and associated 

parameters of consolidation is implemented within an existing THM numerical model (COMPASS) 

developed at Cardiff University [5]. 
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The governing equation of water flow is given by: 
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                                                          (1) 

where t, ρ, θ, δV and v are the time, density, volumetric water content, incremental volume of soil and 

the velocity of the liquid, respectively [5]. The subscript l stands for liquid. In this model, soil is 

deformable and the liquid phase is presented as a function of both temperature and pressure while the 

solid phase is presented solely as a function of temperature since the solid grains are assumed to be 

incompressible. Hydraulic, gravitational and thermo-osmosis potentials are considered as the 

mechanisms of water flow. Thermo-osmotic conductivity can be presented as a function of hydraulic 

conductivity: 
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where ΔH is the mean value of excess enthalpy resulting from fluid-solid interactions, kT and kl are the 

thermo-osmotic conductivity and saturated hydraulic conductivity, respectively [2]. 

Expanding the equation 1 for a fully saturated soil with respect to its partial derivatives and using an 

incremental volume as a summation of the void volume and solid volume, yields: 
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where n, β, β’, mv, u, α and T are the porosity, water compressibility, thermal expansion coefficient, 

compressibility of soil, pore water pressure, thermal expansion coefficient of the soil structure and 

temperature, respectively. The subscript s stands for solid. 

 

The formulation for heat transfer is based upon the principle of conservation of energy where 

conduction is the primary mechanism of heat transfer [5]. The model described in this paper is a fully 

coupled THM model, which for the theoretical formulation presented has been tested against an 

analytical benchmark and a heating experiment [4].  

 

3. Computational domain and material parameters 

The properties and the stress state of the shale rock are assumed to be homogeneous for the 

considered area of investigation. The internal boundary of the modelled domain corresponds to the 

external radius of the engineered material, i.e. bentonite buffer which is placed 1.14 m from the axis 

of symmetry while the external boundary was placed to a sufficient distance of 200 m so the influence 

on the computation becomes minimal (Fig. 1). The domain was discretised into 400 quadrilateral 

elements with the mesh concentrated towards the heat source. A maximum time-step of 2 years was 

considered and the duration of the simulation was 10,000 years. The predicted temperature evolution 

over time at the bentonite buffer-shale interface, based on work of Lawrence Berkley International 

Laboratory – Earth Sciences Division [7], was prescribed at the internal boundary where the 

temperature slowly increases from initial ground temperature up to a temperature of 354 K over 65 

years and then slowly and non-linearly decreases to 326 K by the end of the simulation. An 

axisymmetric analysis was performed. 

 

 

 

 

 
 

 

Figure 1: Schematic of the initial and boundary conditions 

Boundary Conditions 

𝜕ul/𝜕x = 0 

T = Timposed 

Initial Conditions 

ul = 5 MPa 

T = 298 K 

Boundary Conditions 

ul = 5 MPa 

T = 298 K 
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The parameters governing the thermal and hydraulic behaviour in shale were collected and established 

from a literature synthesis and are presented in Table 1 [2][3][6][8]. Gonçalvès et al. [2] reported that 

depending on the electro-chemical properties of the porous media, the thermo-osmotic conductivity 

for shale is between 10
-10

 and 10
-15

 m
2
/sK. Hence, a value of 5x10

-13
 m

2
/sK was adopted for this 

investigation. 

 
Table 1: Material parameters 

 

Material Parameter   Value 

Porosity [2]   0.1 

Solid density [2]   2600 kg/m
3
 

Thermo-osmotic conductivity [2]   5x10
-13

 m
2
/sK 

Thermal conductivity [3]   1.5 W/mK 

Hydraulic conductivity [6]   1x10
-13

 m/s 

Solid volumetric expansion coefficient [8]   1.8x10
-5

 1/K 

Water volumetric expansion coefficient [8]   3.0x10
-4

 1/K 

Water compressibility [8]   3.0x10
-10

 1/Pa 

Soil compressibility [8]   9x10
-10

 1/Pa 

 

4. Numerical results  

The major heat-emitting phase from the radioactive nuclear waste is approximated to last about 

10,000 years [5]. To investigate how osmotic flow modifies spatial and temporal pore water pressure 

field around a high-level waste, a case considering only thermal expansion of the shale constituents 

was compared with a case where thermo-osmotic phenomenon is included. The time evolution of the 

temperature can be seen in Figure 2a for different distances from the heat source. Due to the low 

thermal conductivity of the shale, slow heat propagation around the heat source leads to a maximum 

temperature difference of 15 °C between the studied locations within the domain, i.e. 2 m and 10 m 

from the buffer-shale interface. Hence, temperature gradient occurs in the shale around the heat 

source. In Figure 2b, pore water pressure evolution caused by heat emitted from the waste package is 

presented highlighting the thermo-osmotic and thermal expansion respective contributions. In case 

where only thermal expansion is considered, it can be observed that the pore water pressure in shale 

rock continuously increases up to the point where temperature becomes approximately constant and 

then the Darcian flux predominates due to pressure gradient established in the formation yielding slow 

pore water pressure dissipation. In case where thermo-osmosis is considered, when the temperature 

stabilises pore water pressure developed 2 m from the buffer-shale interface is less comparing to 

thermal expansion only case due to water flow induced by temperature gradient. Furthermore, due to 

thermo-osmotic water flow diverging from the heat source, an increase in pore water pressure is 

observed further in the domain, i.e. at the distance of 10 m from the buffer.  

 

5. Conclusion 

Based on observations from the current study, it can be concluded that thermo-osmosis modifies the 

pressure field in a natural environment subjected to heating. In the context of nuclear waste disposal 

and radionuclide release, thermal osmosis might contribute to the overall convective transport of 

water and radionuclides due to the low hydraulic permeability and low thermal conductivity of the 

shale rock. In this work, a value of 5x10
-13

m
2
/sK was chosen although higher values have been 

reported for shales. However, it can be concluded that for even relatively low value of thermo-osmotic 

conductivity, the thermal osmosis contributes to the water flow in such low permeability porous 

medium. This leads to a conclusion that in porous medium with higher thermo-osmotic properties, the 

effect of thermal-osmosis on pore water pressure evolution around the heat source could prevail over 

the Darcian flow. 
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Figure 2: A) Temperature evolution with time at the distance equal to 2 m and 10 m from the buffer-rock 

interface, B) Pore water pressure evolution with and without the thermo-osmotic effect at the distance equal to 2 

m and 10 m from the buffer-rock interface 

 

Hence, inclusion of thermo-osmosis effect in chemically active rock such as shale for long-term 

numerical investigations of nuclear safety may be needed to understand the pressure distribution and 

flow in such porous medium. 
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ABSTRACT

In this paper we apply model order reduction to the criticality problem in reactor physics. Starting from the
eigenvalue problem associated with the multigroup neutron diffusion equation we build a reduced order model
from solutions for different control rod positions using proper orthogonal decomposition. The reduced system of
equations can be solved at a fraction of the cost of the full system, yielding a solution for any given control rod
height. We demonstrate this procedure for a section of a fuel assembly.

Key Words: Reduced order modelling; proper orthogonal decomposition; multigroup neutron diffusion; eigen-
value problem; reactor criticality

1. Introduction

Using reduced order models (ROMs) [1] when solving parameterised problems is known to be beneficial,
as the problem size can be reduced by several orders of magnitude whilst retaining reasonable solution
accuracy. In this paper, ROM is applied to the eigenvalue problem arising from the study of criticality in
nuclear reactors. The method proposed is based on proper orthogonal decomposition (POD) [2] and the
method of snapshots [3]. There has been a considerable amount of attention in POD from within the fluid
dynamics community, having been successfully applied to a range of applications such as the mixing
of fluid layers [4] and ocean models [5]. However, its application to solving reactor physics problems
is less common. Notable exceptions are [6] which recasts the criticality eigenvalue problem as a time
dependent problem, and [7] which develops a control-oriented model of nuclear reactor spatial kinetics.

The growth of the neutron population in a reactor is one of the most important characteristics of a
nuclear system, knowledge of which determines the state of the reactor encapsulated in the effective
multiplication factor keff. Ideally, for a particular reactor, keff needs to be calculated for any position
of the control rods and any temperature distribution. As these change constantly, solving a demanding
computation for each control rod height and temperature distribution is not practical. Reduced order
modelling is ideally suited to such a problem.

The following section describes the multigroup diffusion equation and the formulation of the criticality
problem. In section 3 the reduced order model is described. Section 4 presents some preliminary results,
and the final section concludes and identifies future work.

2. Governing Equations

Under operating conditions in a reactor, the multigroup neutron diffusion equation can be used to model
the neutron population. The multigroup discretisation splits up the energy into a number of so-called
energy groups determined by a discrete set of values EG < EG−1 < · · · < E1 < E0. Each group
has an associated scalar flux solution, φg , and a set of material parameters. The behaviour of the neu-
trons is described by the macroscopic cross-sections corresponding to fission, scattering and absorption,
denoted Σ fg , Σsg′→g , Σag respectively, where the subscripts g and g′ indicate a particular group. The cross-
sections represent the probabilities that fission, scattering or absorption will occur. The parameter Dg
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which controls how the neutrons diffuse through the domain, depends on the cross-sections according
to Dg (x) =

(
3(Σag (x) + Σsg (x))

)−1
. Criticality is a measure of the growth or decay of the neutron pop-

ulation in a system over successive neutron generations in a fission chain reaction. In order to study
criticality, the governing equation is cast in the form of an eigenvalue problem by introducing the ef-
fective multiplication factor, keff. If neutrons removed from the system exactly balance those created,
the system is adjudged critical (keff = 1). If more neutrons are produced than removed then the sys-
tem is super-critical (keff > 1). If fewer neutrons are produced than removed the system is sub-critical
(keff < 1).

For group g, the criticality eigenvalue problem of the multigroup neutron diffusion equation is

−∇ · (Dg (x)∇φg (x)) + Σag (x) φg (x) −
G∑

g′=1
g′,g

Σsg′→g (x) φg′ (x) =
χgνg

keff

G∑

g′=1

Σ
f
g′ (x) φg′ (x), (1)

where G is the total number of groups, χg is the probability that fission will result in a neutron being
born in group g, νg is the average number of neutrons produced per fission event and keff is the effective
multiplication factor. There are two types of boundary conditions considered here: reflective boundary
conditions where Dg∇φg (x) · n = 0, and void boundary conditions − 1

2 Dg∇φg (x) · n = 1
4φg (x).

Considering the case of two energy groups, we can make assumptions that (i) any neutrons created will
be born into the higher energy group (ie. χ1 = 1 and χ2 = 0), (ii) upscatter from the low energy group
to the fast energy group will not occur (ie. Σs2→1 = 0) . For the full model, a Galerkin finite element
discretisation is applied in space, so the solution is expanded in terms of piecewise polynomial functions
(shape functions), φg (x) = Nj (x)φ̂g, j , the governing equation is weighted by the shape functions and
integrated over the domainΩ. The divergence theorem is applied in order to impose boundary conditions,
resulting in

A φ ≡
[

A11 A12
A21 A22

] {
φ1
φ2

}
=

1
keff

[
B11 B12
B21 B22

] {
φ1
φ2

}
≡ 1

keff
B φ (2)

where
(
Agg

)
i j

=

∫

V

(
−Dg∇Ni · ∇Nj + Σag NiNj

)
dV +

1
2

∫

Svoid
NiNjdS, for g = 1,2 (3)

(A21)i j =

∫

V

−Σs1→2NiNjdV (4)

(
Bgg′

)
i j

= νg χg

∫

V

Σ
f
g′NiNjdV for g,g′ = 1,2 . (5)

The dependence of the shape functions on x is no longer indicated explicitly.

3. ROM
Reduced order modelling aims to solve a computationally costly problem in a cheaper way, by using in-
formation from a series of pre-calculated solutions. For a range of values of a parameter, high resolution
solutions are sought, known as snapshots. A singular value decomposition (SVD) is then applied to the
matrix of snapshots which results in a set of orthogonal basis functions and a set of singular values. The
magnitudes of the singular values indicate the importance of each basis function therefore not all need
be retained in the POD basis if their contribution is deemed sufficiently small relative to a predefined
tolerance. Once the POD basis has been found the discretised governing equation is projected onto the
reduced order space where it is then solved for desired values of the parameter. The parameter varied
in this paper is the control rod height, which takes a set of values from h1 (fully inserted) to hn (fully
withdrawn), yielding n snapshots. The fraction of energy of the original information which is contained
by m POD basis functions is determined by the singular values σk :

energy of the first m modes =

∑m
k=1 σ

2
k∑n

k=1 σ
2
k

. (6)
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For each control rod height, the matrices A and B are projected by the m POD basis functions from finite
element (FE) space to the reduced space by the following

APOD
k = RT Ahk

R (7)

where the POD basis functions make up the columns of R and Ahk
is given by equation (2) evaluated

for a control rod height of hk . In order to solve a problem in the reduced order space, for a control rod
height of h̃ ∈ [hi , hi+1], a linear interpolation is performed between APOD

i and APOD
i+1 such that

APOD = ωAPOD
i + (1 − ω)APOD

i+1 where ω =
hi+1 − h̃
hi+1 − hi

. (8)

BPOD is constructed similarly. Now we are able to assemble and solve the reduced order system

APODφPOD = λPODBPODφPOD . (9)

Finally we project the flux solution from the reduced space into the FE space by calculating R φPOD .

4. Results

h

Figure 1: Left, part of a fuel assembly showing the region
where the control rod is located. Right, view from above of
the assembly showing fuel pins and control rod (shaded). (Not
to scale.)

Part of a fuel assembly is modelled
to test the ROM procedure described
in the previous section. The domain is
[−1.845,1.845]× [−1.845,1.845]× [−5,5].
There are 8 fuel pins and one control rod
of radii 0.48, surrounded by a moderator
which in this case is water (see figure 1).

The cross-sections were generated us-
ing the ANSWERS software, WIMS, and
some values are reported in table 1. The
mesh used has 431883 tetrahedral ele-
ments and 76712 nodes. The snapshots
were taken for a control rod at heights of
{−5,−3,−1,1,3,5}. Each energy group had 6 POD basis functions so the reduced order system is of size
12 × 12. For the same heights the reduced order model gives values of keff which agree with those of
the snapshots to within 6 decimal places (see figure 2). For so-called unseen values of the control rod
height, the reduced order model predicts keff to a reasonable accuracy. The computational time to solve
the full order model for one parameter was 379.8 seconds, whereas the reduced order model solves in
less than 0.1 seconds.

Σa1 Σa2 Σs1→1 Σs1→2 Σs2→2 Σ
f
1 Σ

f
2

fuel 300K 6.003E-03 9.583E-02 3.364E-01 1.336E-03 4.048E-01 3.333E-03 4.994E-02
2000K 6.042E-03 9.499E-02 3.370E-01 1.340E-03 4.079E-01 3.333E-03 4.945E-02

moderator 300K 1.447E-04 6.597E-03 3.395E-01 5.957E-02 1.281E+00 0.0 0.0
2000K 1.447E-04 6.584E-03 3.395E-01 5.954E-02 1.279E+00 0.0 0.0

Table 1: Cross-sections for the fuel and moderator at a given temperature are interpolated from the values above.

5. Final remarks

This paper has applied model order reduction to the criticality eigenvalue problem associated with the
multigroup neutron diffusion equation. Snapshots were taken for different values of control rod height.
When comparing the eigenvalue of the snapshots generated by the full model with that of the reduced
order model, the agreement is excellent. For unseen problems, the agreement is reasonable. The full
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Figure 2: Two comparisons, first of keff from the snapshots (full model) with keff from the reduced order model as
the control rod height varies (blue crosses and red circles), and second of keff for full model solutions with keff of
unseen values of the control rod height predicted by ROM (black crosses and cyan squares).

order model has 153424 unknowns whereas the reduced order problem has just 12 and solves in a
fraction of the time.

Future work will involve (i) quantifying the error between the reduced order model solution and the
full model for unseen problems and (ii) introducing temperature to the ROM as a parameter, as the
cross-sections depend on this.
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ABSTRACT 

The major process in geothermal energy stimulation is the injection and extraction of fluid through wells to 

generate power. One of the methods utilised in examining the long-term behaviour of such systems is 

modelling. In this paper, a three-dimensional (3-D) thermo-hydro-mechanical (THM) coupled model of a 

geothermal reservoir is developed to probe the productivity of the reservoir via the extraction well at different 

placement locations using a Multiphysics Finite Element (FE) application solver. Coupling between the thermo-

hydro (HT) processes was achieved through convective velocity term and thermo-mechanical (MT) coupling 

through temperature and thermal expansion coefficient. Therefore, the parameters analysed were the total net 

energy rate, enthalpy and temperature using a boundary probe function and a parametric study step solver. The 

results showed that when the extraction well was placed nearer to the injection well, the productivity was found 

to be lower after only a few years of production, on the other hand, further placement of wells gives higher 

productivity. 

 

Keywords: Geothermal reservoir; thermo-hydro-mechanical (THM) coupling; FE modelling; productivity. 
 

1. Introduction 

Geothermal energy is a renewable source and as such listed with solar, wind and biomass 

asalternative energy options[1,2]. To simulate and evaluate the behaviour of a deep geothermal 

system for commercial viability, one needs a reliable code that can handle the complexity of 

subsurface flow [3]. In this work, a geothermal reservoir model was developed using a multiphysics 

finite element (FE) solver (COMSOL) with a link to MATLAB to investigate the productivity of a 

geothermal reservoir via the extraction well under the effect of a coupled Thermo-Hydro-Mechanical 

(THM) processes.  
 

2. FE Modelling of Coupled THM Processes 

In this work, only a brief description of the formulations of coupled THM processes will be 

addressed. Detailed mathematical and finite element formulationshavebeen fully discussedin [4].In a 

fractured porous medium, the governing equations described for fluid flow are the conservation of 

mass and Darcy’s law. For the matrix, the equations areexpressed as, 

hQq
t

T

t

P
S 









 , )( g

k
q wP 


      (1) 

whereSis the specific storage, Pis the pressure, Tis the temperature,  is the fluid compressibility,is 

the vector differential operator,qis the Darcy’s volumetric flux, and Qhis the source term for the 

matrix.Also, k is the permeability, is the dynamic viscosity, wis the density of water, and gis the 

acceleration due to gravity. For the discrete fractures, the equationsare given as, 

  hhh

f

f Q
t

T
qb

t

d

t

P
Sd 














 . , )(
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g
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q wpf
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f 

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wheredf is the mechanical aperture, is the biot’s coefficient, bhis the hydraulic aperture and I is the 

identity matrix.The equations definedfor heat transport are the conservation of energy and Fourier’s 

law. For the matrix, the equations areexpressed as, 

TTP Qq
t

T
C 




 , TCTq PT        (3) 

whereCp is the specific heat capacity of the matrix,  is the density of the matrix,  is the thermal 

conductivity, qT is the heat flux, Cpw and QT is the heat source. The equations describing the discrete 

fractures aregiven as, 

0. 



TwPwf q

t

T
Cd  , qTCbTq PhfT       (4) 

The governing equation defined for mechanical behaviour are the conservation of momentum and the 

Biot's poroelastic model, which are expressed as, 

0)( '  gP  ,   TdDd T '
    (5) 

in which’
is the effective stress, Tis the thermal expansion coefficient, Tis the temperature 

increment,is the total strain and Dis a forth-order material tensor. For nonlinear and isotropic 

elasticity, the material tensor is given as, 

jlikklij GD  2 ,    uuu ST


2

1
     (6) 

where is the Kronecker delta, G is the shear modulus, u is the displacement vector and the 

superscript T means the transpose of the matrix. 

Furthermore, the green theorem and the method of weighted residuals (MWR) are applied to the 

governing equations provided above to derive the weak formulation of the problem as 

  0






dwQdnqwdqwd
t

P
Sw h

T  (7) 

    

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


0dQwdnTwdTwTdqCwd
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Cw T

TT

TpP  (8) 

  0'  


dgwdPw      (9) 

wherew is the weighting function, Ω represents the model domain and г denotes the boundary 

domain. The boundary conditions are specified for all field functions P, T and U. The weak forms of 

the THM balance equations were spatially discretised using the Galerkin method. Primary variables 

are pressure P, temperature T, and displacement U and can be approximated by interpolation 

functions as, 

PNP P

y        (10) 

TNT T

y        (11) 

UNU U

y        (12) 

where P and T are the scalars of the nodal values of the unknowns and U is nodal vector. NP,NTand 

NUare the shape functions for P, T and U respectively. The finite element formulation of the 

governing equations can be given in a matrix form as  

0'  m

h

mm

h

mm

h qPKPM      (13) 
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0'  m
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mm

T

mm

T qTKTM      (14) 




 0'

M

mmT fPCdB       (15) 

where M, K and C are process-specific mass, Laplace and coupling matrices. The term f contained the 

contributions of the coupled processes and B is the strain-displacement matrix.  

 

3. Problem Description 

Based on the formulations presented in the previous section, a 3-D FE model of the Urach Spa 

geothermal reservoir was developed. The model was 800 m long, 300 m wide, with estimated high of 

300 m[5]. However, due to symmetry only half of the reservoir was modelledwith two discrete 

fractures of 2mm thickness each. The initial temperature of the reservoir was given as T0 =10°C + 

0.03[K/m]*z, where 10°C is the surface temperature, 0.03 [K/m] is the geothermal gradient, and z is 

the reservoir depth in metres. Also, the initial pressure of the reservoir was hydrostatic and initial 

stresses applied were lithostatic in all directions, and other reservoir parameters utilisedwere available 

from literature [5]. Moreover, the boundary conditions (BC) used in the model wereDirichlet for both 

the hydraulic and thermal processes;for the mechanical process, all the reservoir boundarieswere 

assumed to be roller except the body load applied at the top.  
 

4. Results and Discussions 

A comprehensive study was carried out on injection-extraction well separation distance. The positions 

of the extraction well were varied systematically using a parametric sweep function to examine the 

location that could yield maximum energy in the reservoir. The parameters investigated were 

temperature, enthalpy, and the total net energy rate under a long-term simulation of 30 years.  The 

first sets of results presented were the effect of cold water distribution in the matrix and the fractures. 

The injected fluid mainly flows in the direction of fractures due to their higher permeability and 

connected the production well effectively. However, the cold water injection decreases the 

temperature of the rock after nearly seven years of the simulation. Also, the cooling fronts presented 

showed that the reservoir temperature is 5°C below the initial rock temperature after one year of 

injection as shown in Figure 1(A), 7°C after five years and 8°C after ten years as presented in Figures 

1(B) and 1(C), respectively. 

  

 

Figure 1: (A) Cold water distribution after one year of production (ºC), (B) Cold water distribution 

after five year of production (ºC), (C) Cold water distribution after ten year of production (ºC). 

 

The second sets of results analysed in this work include the temperature, enthalpy and the total net 

energy rate. The temperature changes at the seven positions of the production wells presented in 

Figure 2(A) showed a temperature drawdown after six years at the production well that was the 

closest to the injection (300 m) and ten years at the well that was the second closest (350 m). At 

twelve and half year drawdown was observed at the well third closest to the injection (400 m) and 17 

years at the well that was furthest (450 m). From the furthest position onwards there was no 

significant drawdown observed because the cold water effect is longer reaching the wells after 30 
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years of simulation. The enthalpy results presented in Figure 2(B) also showed similar behaviour to 

that of the temperature due to the close relationship between the two parameters in systems 

thermodynamics. In the case of the total net energy rate produced at the well head of the reservoir, a 

significant drop is observed from 5.5 MW to 2.5 MW approximately within the first year of 

production, because the injected pressure starts to reactivate the existing fractures and also forming 

new hydraulic fractures (i.e. the breakthrough pressure). The net energy later stabilises after in almost 

all the cases except for the wells closer to the injection well as shown in Figure 2(C). 

 

Figure 2: (A) Production temperature, (B)Enthalpy and (C) Total net energy rate 

 

5. Conclusion 

A three-dimensional numerical model of a coupled thermo-hydro-mechanical interaction in a 

naturally fractured reservoir has been developed using the finite element method. The developed 

model serves as a mechanism for evaluating HDR geothermal reservoir operations and for assessing 

its long-term performance and energy extraction potential using a parametric sweep solver. The 

studies reported here have focused attention on the significance of well (i.e. production) placement in 

HDR geothermal reservoir operations. The model has the potential to serve as a tool for assessing the 

behaviour of deep subsurface media in the context of other related technologies such as hydrocarbon 

reservoirs, carbon dioxide (CO2) sequestration reservoirs and waste disposal reservoirs. 
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ABSTRACT 

This paper investigates the efficiency of artificial recharge of aquifers with treated wastewater using a surface 

basin (pond) system to control seawater intrusion (SWI) in coastal aquifers and to increase their safe yield. First 

a hypothetical case study of an unconfined aquifer is simulated. The effects of the artificial recharge system on 

inland advancement of saline water in a real case study (Wadi Ham aquifer in the UAE ) are outlined in another 

application. The numerical model of the Wadi Ham aquifer is developed based on the available hydrogeological 

data in real scale. The 3D variable-density flow and transport numerical models of both case studies are solved 

using the finite element method. The transient progress of saline water before and after the recharge event is 

presented in both case studies. Both systems initially suffered from aggressive inland encroachment of saline 

water due to pumping. However, by implementation of the recharge pond, the treated wastewater starts to 

infiltrate towards the groundwater table and consequently it helps to alleviate the saltwater intrusion. The results 

highlight that lower equi-concentration lines are generally more sensitive to recharge and abstraction events. 

 

Keywords: seawater intrusion; numerical modelling; coastal aquifer; artificial recharge; treated wastewater 

 

1. Introduction  

In coastal areas, usually, there is a relatively small hydraulic gradient of subsurface flow toward sea. 

But the small density gradient between the seawater and freshwater forces the seawater to penetrate 

into aquifer and then mixing occurs with the inland freshwater sources. Saltwater intrusion is a serious 

problem that continuously threats the quality of the groundwater storage in these areas. The 

groundwater withdrawals can accelerate the rate of saltwater intrusion by disturbing the natural 

hydrostatic equilibrium state between these two fluids [1]. In order to maintain the seaward hydraulic 

gradient against SWI a hydraulic barrier should be planned. The artificial recharge approach which is 

the main focus of this paper is among the most popular techniques that can achieve this. Generally it 

aims at reducing flood flows, storing the water in aquifer, raising groundwater levels, relieving over-

pumping and finally improving water quality and suppressing the saline water [6]. The great potential 

of this approach in repulsion of intruded saline wedge has been suggested by a number of researches 

[1-4]. 

The quality and quantity of the recharge water, the cost and the source of providing the high-quality 

water for recharge especially in the areas that suffer from scarcity of water and also the operational 

cost of the recharge system are the factors that should be taken into consideration in the design of 

recharge systems. Using desalinated seawater is costly and could be difficult to justify. Therefore, 

application of reclaimed water (treated wastewater) can be highlighted as a reliable strategy with low 

economic cost and high environmental benefits. The current work attempts to simulate the 3D patterns 

of evolution of controlling SWI in both hypothetical and real cases of unconfined aquifers using 

ponded treated wastewater. A density dependent finite element model SUTRA (Saturated-Unsaturated 

TRAnsport) [5] is used for numerical simulation of both aquifers. The SUTRA code is a FE-based 

numerical model that employs hybrid finite element and integrated finite difference methods to solve 

the governing equations of flow and transport processes of solute or energy in aquifer systems. The 

background information about the SUTRA code and some of its applications in optimal modelling of 

different SWI management measures can be found in recent papers of the authors [1,8].  
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2. First Application: Hypothetical Aquifer 

The first application is a 3D hypothetical aquifer with 300 m length, 100 m width and 40 m depth 

(Figure 1). The domain is discretized into 24000 elements and 26691 nodes. Hydrostatic water heads 

of  24.5 m and 24.0 m are assigned to the left and right sides of the domain respectively to represent 

the freshwater and seawater boundaries of the simulated unconfined aquifer, where an unsaturated 

layer overlying a saturated layer. The van Genuchten model [9] is used for simulation of unsaturated 

flow through top layer. The system is subjected to continuous pumping of 430 m3/day implemented 

by the local production well screened at coordinates (70, 40, 15) m. The main input data used for the 

simulation model include: the coefficient of water molecular diffusion of 1.0×10-9 m2 /s; fluid 

viscosity of 0.001 kg/(m.s); porosity of 0.35[dimensionless]; transverse and longitudinal dispersivities 

of 0.5 m and 5.0 m respectively;  permeabilities of  1.0×10-12 m2 and 5.0 ×10-11 m2 for the top and 

bottom layers; solute mass fractions of  0.0357 and 0 for seawater and freshwater, and densities of 

1025 kg/m3and 1000 kg/m3 for seawater and freshwater respectively. 

 

3. Second Application: Wadi Ham Aquifer, UAE 

The second application is the Wadi Ham aquifer located in Fujairah emirate in the UAE country. 

Figure ‎2 shows the domain of the Wadi Ham aquifer with the total area of 80.26 km2 used in the 

numerical simulation. The figure also illustrates the available hydrological/natural features and the 

boundary conditions. A hydrostatic pressure boundary condition with a constant head at the mean 

seawater level is used to define the coastline. The 3D model is generally an anisotropic and 

heterogeneous system based on hydraulic conductivity field defined through calibration process. The 

final numerical mesh has 48160 tri-linear hexahedral elements and 55990 nodes. The details about the 

hydrogeological setting and 3D modelling of this study area can be found in [7-8] where a 

considerable amount of SWI is reported as the current condition of this aquifer and more specifically 

due to continuous groundwater withdrawal from available production well located close to the 

coastline that intensifies the inland encroachment of saltwater. 

 

 

 
Figure 1: Geometry and boundary conditions of the 

hypothetical  model 

Figure 2: Boundary conditions of Wadi Ham 

aquifer 

 

4. Results and Discussion 

Figure 3 shows the equilibrium salinity distribution of the considered hypothetical aquifer in the first 

application that is obtained under applied abstraction rate (430 m3/day) and without any management 

action. The average inland advancements of the toes of the 10%, 50% and 90% salinity contours 

along the bottom boundary of the aquifer, measured from the seaside boundary, are 241 m, 232 m and 

133 m respectively. These remarkable ingression trends lead to depletion in freshwater sources and 

thus an essential management action seemed to be necessary in order to protect the aquifer against 
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SWI. Therefore the system is then subjected to one classical scenario of groundwater management 

involving artificial recharge of aquifer using the ponded water. However the treated wastewater as an 

economic and environmentally safe source of water is suggested here and used in a pond to feed the 

aquifer. The recharge is implemented by an artificial surface pond (40m×10m ×1m) centred at 

coordinates (150, 65, 39)m. The recharge pond replenishes the aquifer with 1.0 m constant head of 

water. The corresponding average rate of recharge directly under the pond (calculated by SUTRA) is 

0.39  m/day. The transient advancements of 10%, 50% and 90% iso-concentration lines in the reverse 

direction toward the sea are the evidence of the success of the recharge system to repulse the intruded 

saline water where the saltwater-freshwater interface will migrate back towards the sea by 8 m, 82 m 

and 53 m for this set of contour line respectively. This process is followed by recovering a 

considerable amount of freshwater in the aquifer. The transient variation of the 50% iso-concentration 

line during the recharge stress period (measured at the bottom boundary from the seaside in the XY 

plane) is presented in Figure 4. It can be seen that the amount of SWI mitigation is significant in 

regions away from the pumping well. Also, the retreat of seawater in the central area of the coastal 

zone is mostly attributed to the positive potential of the recharge system.  
 

 
 

Figure 3: 3D salinity  map (%) of hypothetical  

example prior to recharge process  

Figure 4: Transient progress of the 50% ischolar across 

the base of aquifer in XY plane 

 

In the second example, the current condition of flow and salinity in the Wadi Ham aquifer (as a real-

world case study) is first obtained. Figure 5 shows the current 3D distribution of salinity throughout 

this aquifer, pointing out the levels of contamination that are threatening the Kalbha production wells. 

In the numerical experiment conducted to control SWI in this aquifer, the system is again subjected to 

an assumed planning of artificial recharge using treated wastewater. For this purpose and by 

maintaining the current pumping rates (in year 2015) for the next 10 years, three recharge ponds (A,B 

and C) are assumed in the model to continuously feed the aquifers with an average rate of 0.5 m/day. 

The 50% iso-salinty contour for this control approach progressing along the base layer of the model is 

illustrated in Figure 6 and it is compared with the corresponding case with no-management strategy.  

The projections of the surface ponds’ locations are also presented in the figure. In the no- 

management scenario (first scenario), the system experiences a further inland intrusion of 220 m 

compared to the results of year 2015 on X-X section. The recharged water subsequently enhances the 

seaward gradient of water table in the system by raisings the inland piezometric heads. This 

mechanism works as a countermeasure action against the inland encroachment of saltwater. In 

comparison to the first (no-recharge) scenario, the 50% iso-contour line will be pushed back in 

seaward direction by 340 m along section a-a in the second (surface recharge) scenario. The 

corresponding values of backward movement calculated in the second scenario are 550 m and 240 m 

along sections b-b and c-c respectively.  
In general, there are some limitations in implementing of this scenario of the control methods. Direct 

application of recharge by ponding or spreading is not applicable in confined aquifers or even 

relatively thick unconfined aquifers. Under these circumstances, a deep injection by recharge wells 

may satisfy the design criteria in confined systems. In addition, the application of treated wastewater 

with large quantities to recharge aquifers requires further attention in terms of sustainability of the 

host aquifer, and health, environmental and economic risks. 
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Figure 5: Current condition of salinity distribution (%) 

in Wadi Ham aquifer 

Figure 6: Inland progress of 50% iso-concentration 

lines across the base of Wadi Ham aquifer 

 

5. Conclusions 

3D numerical simulations were performed to outline the effects of the artificial recharge on general 

inland advancement of saline water into both hypothetical and real-world examples of coastal 

aquifers. It was shown that a considerable decrease in salinity levels occurs in the aquifers owing to 

the application of the recharge scenario. This is because the recharged water enhances or maintains 

the seaward gradient in the system by raising the inland piezometric heads. Therefore, the design of 

the simple recharge basins to feed the aquifer by collecting the treated wastewater and/or storm water 

can be considered as an efficient countermeasure against saltwater intrusion and could guarantee the 

long term sustainability in small unconfined aquifer systems. 
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ABSTRACT 

One of the emerging issues with renewable energy technologies, such as wind turbines is the intermittent power 

output, in response to wind speed variation. Wind speed variation occurs at different timescales, each timescale 

having a different effect on the power output of the system. The key to understanding the intermittent power 

output is to understand the temporal dynamics of the systems output.  

 

Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of 

advantages over traditional wind turbines, such as reliability, ease of transportation and manufacture. The 

performance characteristics of a VAWT differ from that of a traditional horizontal axis wind turbine. Little work 

has been conducted on the performance of a low tip-speed ratio (0 – 1) VAWT systems in variable wind 

conditions. 

 

In this study a non-linear, dynamic wind turbine model of a novel VAWT design is created to evaluate the wind 

power outputs at ms-sec time-scales. The effect that fluctuating wind patterns and the system topology will have 

on intermittency is of key interest in the study. A key outcome will be to understand the effect of changing 

particular parameters on power output fluctuations. A computationally inexpensive analytical model was 

created, from Newton’s laws of motion. 

 

Keywords: Wind Energy; Renewable Energy; Rotordynamics; Vertical Axis Wind Turbines 

  

1. Introduction  

Wind variability is caused by wind speed variations as a result of changing climatic conditions. The 

classification of wind variability is based on spatial and temporal variations [1]. The time scale of the 

wind speed variation will have a different effect on the power system [1]. Microscale variations (ms -

secs) which can be attributed to wind turbulence can cause power quality and frequency regulation 

problems when integrated into an electrical power system [1].  Rotor parameters can be altered to 

alleviate the negative effect of unsteady winds on the system output. Methods to understand and 

quantify the intermittent output of wind energy will be key to overcoming the technical issues 

associated with wind speed variation. 

 

A suggested method of evaluating a wind energy systems response in unsteady wind conditions is the 

use of a dynamic simulation model. L.Ran et al. [2] studied the use of a dynamic simulation model of 

a horizontal axis wind turbine, to optimise the moment of inertia of the rotor, to alleviate output power 

fluctuations. Y. Hara et al. [3] used a similar simulation method to study the effect of moment of 

inertia in fluctuating wind conditions, deviating around an average wind speed value. T. Wakui et al. 

[4] used a similar model to develop a sensorless condition monitoring technique. A similar simulation 

technique was adopted in this study to investigate the effect of transient wind on the system. 

 

 

 

 

 

 

339



 

2. Dynamic Simulation Model 

The system model is simplified to include the rotational mass of the turbine and generator, coupled 

via a shaft with nominal stiffness and damping terms. A Standard model [5] for a double rotational 

mass was used to create a generic wind turbine model.  

 

 

Figure 1: Schematic of the VAWT system model [4] 

The equation of motion for a rotational mass is described in (1), where 𝜔𝑇 is the rotational speed of 

the turbine rotor in rad/sec, 𝜔𝐺 is the rotational speed of the generator in rad/sec, 𝑗𝑇 is the moment of 

inertia of the rotor in Kg.m
2
, t is time in seconds, 𝜔̇𝑇  is the acceleration of the rotor in rad/sec

2
 and Γ𝑇 

is the aerodynamic torque produced by the turbine in Nm. K and D are the stiffness and damping 

terms of the shaft, in N/m and N.s/m respectively. 𝜃𝑇 and 𝜃𝐺 are the angular displacement of the rotor 

and generator respectively in rads. 

 

 

 

      𝝎̇𝑻 = (
𝟏

𝒋𝑻
) [𝚪𝑻 − 𝑫(𝝎𝑻 − 𝝎𝑮) − 𝑲(𝜽𝑻 − 𝜽𝑮)]     (1 )

      

The net torque value is taken as the net of the aerodynamic torque produced by the rotor and the load 

torque on the system. The aerodynamic torque is taken as an averaged, instantaneous torque value 

from CFD data [6], for a particular tip-speed ratio and wind speed. In the model this is taken as a 

lookup value from a 2D array of data. Previous authors have used Blade Element Momentum methods 

to generate aerodynamic torque data [4]. This data will be specific to a particular rotor, the dynamic 

model used is generic. 

 

The numerical model involves integrating the equation of motion, over time, for a given wind speed 

profile. To integrate the equation of motion an initial value explicit Euler method was used, from the 

following equations: 

 

                                                                   ∆𝝎𝑻 = 𝝎̇𝑻. 𝚫𝐭     (2)

       
 

 

           𝝎𝑻𝒏 = ∆𝝎𝑻𝒏−𝟏 + 𝝎𝑻𝒏−𝟏                                                       (3) 
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The model consists of three main sections, the aerodynamic section, mechanical drivetrain section and 

the control load torque on the system. A number of control load torque regimes can be used. T.  

Wakui et al. [4] employed a constant tip-speed ratio load torque up until a power limit, then a constant 

speed torque mode was used. This is a typical control algorithm, which tracks the maximum power 

point at each wind speed up until a rated speed where a power shedding mode is utilised. A flow chart 

of the model method is shown in Figure 2 below 

. 

 

   

 

Figure 2: Outline of Dynamic Simulation Model 

 

A number of unsteady wind conditions can be used in the model, high resolution  (100 Hz) real wind 

data and a standard wind gust model prescribed in the British standard (BS EN 61400-2:2006) was 

used. 

 

 
 

Figure 3: High Resolution (100 Hz) Sample of Wind Data (left), BS EN 61400-2:2006 wind gust model (right) 
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3. Conclusions 

In this work a computational tool to test the effect of unsteady wind on a VAWT was created. The 

model can utilise a number of input wind conditions and control regimes for different rotors. This 

makes the model a useful tool for a parametric study of the rotordynamics in a number of wind 

conditions, at different timescales. The tool will be used for studying the power smoothing potential 

of the moment of inertia in unsteady wind conditions. Also the future work will look at coupling the 

VAWT model with other technologies such as wind pumping technology. 
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ABSTRACT 

Recently, the strengthening of steel structures using carbon fibre reinforced polymer has become more attractive 

for designers due to the advantages of high strength-to-weight ratio and superior environmental durability. 

Significant research has been performed on the behaviour of CFRP strengthened steel members under static 

loads. Dynamic behaviour, and in particular impact loading, of CFRP strengthened steelwork has been scarcely 

studied. In practice, steelwork could be subjected to impact from different events such as road vehicle or ship 

collisions, and impact by flying debris after an explosion etc. 

This study discusses the numerical investigation of the effectiveness of CFRP sheets in strengthening square 

hollow section (SHS) steel columns under transverse impact loads. The study was conducted using the finite 

element (FE) programme ABAQUS 6.13. The proposed three-dimensional FE model was validated using 

existing experimental results. The strain hardening and strain rate effects were accounted for in this model using 

classical metal plasticity and the Cowper Symonds model respectively, while the CFRP and adhesive material 

were modelled using the elastic lamina and traction separation model respectively. The effect of different 

parameters has been investigated in this study such as the compression load level, boundary conditions and 

CFRP configurations. It has been found that the CFRP can significantly improve column performance for 

different values depending on the above parameters. 

 

Keywords:  impact; steelwork; carbon fibre reinforced polymer 

 

1. Introduction 

In recent years, there has been an increasing amount of studies on strengthening and repair of steel 

structures using the technique of adhesively bonded carbon fibre reinforced polymer (CFRP). Most of 

these studies examined the effectiveness of CFRP strengthening on I’ beams such as [1, 2] while  

hollow structural sections have received less attention from researchers.  Photiou [3]  found that the 

ultimate strength of RHS beams with artificial degradation could be restored by using CFRP. In 

another study, the strengthening of circular hollow section (CHS) beams using CFRP fabric was 

investigated with emphasis on curing the resin materials under seawater [4]. Different slenderness 

ratios were examined by Shaat [5] to find out the effect of column slenderness ratio on the 

strengthened members. During it’s life span, a steel structure may be subjected to different types of 

dynamic loading such as impact. To date only a limited amount of research has been conducted on the 

behaviour of CFRP strengthened steel members under impact loads. Recently Alam et al [6] examined 

numerically the effectiveness of fully bonded CFRP plate on SHS columns using  ABAQUS. SHS 

sections with 89×89×3.2 cross section and length 2380 mm strengthened with longitudinal CFRP 

plates were adopted in the numerical model. According to the aforementioned literature review, the 

effect of impact load on the CFRP strengthened members needs more study to find out the influence 

of parameters such as boundary conditions, CFRP configuration and partial bond between the CFRP 

and steel members. This paper focuses on the behaviour of CFRP strengthened SHS columns under 

impact load taking into account the boundary conditions, compression load level and different CFRP 

configurations. 
  

2. Finite element model validation 

The simulation model is built using the general finite element software ABAQUS 6.13-1. The steel 

member was modelled using a four-node shell element S4R, while an eight-node brick element 
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C3D8R is adopted to model the impactor. In the later simulations, the CFRP and adhesive material 

were modelled using S4R and the cohesive element COH3D8 respectively. The strain hardening and 

strain rate effects were accounted for steel using isotropic strain hardening and Cowper Symonds 

model respectively. The failure behaviour of the materials was defined using the progressive damage 

and failure models provided by ABAQUS including the shear damage criterion for steel, Hashin’s 

failure criteria for CFRP and the quadratic traction damage criterion for adhesive material.    

The proposed finite element model is validated using the experimental test results conducted by 

Zeinoddini, et al. [7]. Un-strengthened,  1-meter long CHS specimens were tested with one fixed and 

one sliding end subjected to a 25.54 kg mass with a falling velocity 7 m/s (more detail on the  

experimental test is given in [7]). The specimens were tested under different compression load levels 

(P/Py) from 0 to 70% as listed in table 1. 

Table 1: comparison between experimental and numerical results  

P/Py(%) 
Experimental (mm) Numerical (mm) 

Permanent deflection Shortening Permanent deflection Shortening 

0 15.5 0.3 17.3 0.4 

25 21.5 0.8 19.4 1.4 

50 25.3 2.3 26.6 3.5 

60 28.4 3.1 33.6 5.7 

70 - 113 195.1 112 

 

Table 1 summarises the comparison between experimental and numerical permanent deflection and 

axial shortening. Good agreement was achieved using the numerical model in terms of maximum 

deformation; shortening and deformation at failure (see Figure 1 (a)).  On the other hand, the impact 

load, which is the interface force developed under the indentor, recorded during the tests for different 

levels of axial load was compared with corresponding numerical values as shown in Figure 1(b). It 

can be noticed from this figure that maximum impact load happens with a lower level of axial load 

while the specimen with 70% P/Py has the minimum value of impact load. This indicates the higher 

the pre-compression, the less stiff the response.   

 

Figure 1: comparison between experimental [7], and numerical results (a) deformation shape; (b) impact load 
 

3. CFRP strengthened steel columns  

In order to investigate the effectiveness of CFRP in strengthening steel members under impact loads, 

a full-scale column section 3.5 m long was designed according to Eurocode 3 to carry a load 

consistent with a six storey commercial building. Two different boundary conditions were chosen: 

simply supported and fixed-fixed to find out the effect of the boundary conditions on the strengthened 

members. The modulus of elasticity and yield stress of steel were assumed as 200000 and 355 MPa 

respectively. Different kinetic energies were applied on the designed column (SHS 200×200×8.8) 

with different components (velocity and mass), while four compression static load levels were 

suggested as listed in Table 2. It is clear from previous studies[5] that the CFRP orientation has a 

considerable effect on the strengthening efficiency, therefore three CFRP configurations 6 mm CFRP 

in the longitudinal direction (L), 6 mm CFRP in the transverse direction (T), 3mm CFRP in the 

longitudinal direction and 3 mm CFRP in transverse direction (LT), wrapped around the whole 
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section in all cases) were investigated in this study to ascertain the most efficient. The length of the 

CFRP was kept constant and is equal to the column length.  The material properties of the carbon 

fibre and the adhesive material gained from Al-Zubaidy, et al. [8]. 
 

Table 2: Failure modes for simply supported and fixed-fixed columns 

P/Py BC Mass=0.5 tonnes Mass=2 tonnes 

Impact Velocity  (m/s) Impact Velocity  (m/s) 

5 10 15 5 10 

U L T LT U L T LT U L T LT U L T LT U L T LT 

0 SS S S S S S S S S S S S S S S S S G S S S 

FF S S S S S S S S S S S S S S S S S S S S 

0.25 SS S S S S S S S S G S S S G S S S G G G G 

FF S S S S S S S S S S S S S S S S G S S S 

0.50 SS S S S S G S S S G G G G G S S S G G G G 

FF S S S S S S S S S S S S S S S S G G G G 

0.75 SS G S S S G G G G G G G G G G G G G G G G 

FF S S S S G S S S G G G G G S S S G G G G 

S: Stable; G: Global buckling failure; U: unstrengthened; L, T, and LT: strengthened columns with 

CFRP oriented in the longitudinal, transverse and both longitudinal and transverse direction; SS: 

simply supported; FF: fixed-fixed  
      
As described in section 2 all possible failure modes were included in the validated model. However, 

in this simulation two main failure modes were investigated namely global buckling failure and 

transverse shear failure which likely happens when the impact point is close to a support. Therefore, 

global bucking failure is the unique failure in table 2, while other material failures such as debonding 

and CFRP rupture were not listed in this table because they are not likely to cause a column failure 

during this study. It is apparent from Table 2 that the CFRP can enhance the column capacity for the 

applied compression force in addition to impact load in many cases for the investigated boundary 

conditions, while for the unstrengthened stable columns the corresponding strengthened column 

showed less lateral displacement value under the same loading conditions.  
 

    
 

Figure 2: Lateral displacement reduction against pre-loading level for CFRP strengthened columns in 

longitudinal direction (a) simply supported column; (b) fixed-fixed column. 

 

However, the percentage of lateral displacement reduction is different depending on the CFRP 

configuration, loading level (P/Py), applied kinetic energy and the boundary conditions.  In Figure 2 

there is a clear trend of increasing lateral displacement reduction with high levels of P/Py and kinetic 

energy for simply supported columns strengthened in the longitudinal direction, while for fixed-fixed 

columns it seems that this trend is slightly different in the last value of kinetic energy (KE). The 

reason for this difference is related to the severe deformation happening under the impactor for the 

fixed-fixed columns compared to corresponding simply supported columns, which is caused by the 

relatively high stiffness of the fixed-fixed member. The above reason may also account for why the 

CFRP in the transverse direction plays more significant role in fixed-fixed columns, while the 

enhancement role of the other CFRP configurations reduce with fixed-fixed boundary condition 
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columns as shown in Figure 3 (a). The above finding is consistent with the study by Shaat [5], which 

revealed that the CFRP in transverse directions can reduce the local buckling while having fibres 

oriented in the longitudinal direction can improve the stability of the columns against lateral 

displacement under static load. It can also be seen from Figure 3(a) that the columns strengthened 

with CFRP oriented in the longitudinal direction have the highest lateral displacement reduction, 

whereas the columns strengthened with CFRP in the transverse direction tend to give more severe 

column response (large displacement) compared to other strengthening configurations. However, 

these results are significantly different from a similar study by [6] which revealed that CFRP in 

longitudinal direction can minimise the lateral displacement by about 58% while in this study the 

average reduction in lateral displacement is about 44%. One reason why that happened may be the 

result of using partial bond between CFRP and steel in the current study, this being more 

representative of actual  behaviour. Figure 3 (b) proves that CFRP can enhance local buckling 

resistance of the columns strengthened with CFRP oriented in the transverse direction more than the 

columns in other directions. 
 

 
 

Figure 3: (a) Average lateral displacement reduction against CFRP configuration; (b) Deformation along right 

side at the point of maximum lateral displacement (Mass=2,V10m/s, fixed-fixed column).  

4. Conclusions 

Externally bonded CFRP can improve steel column behaviour under impact loads. The numerical 

results showed that the CFRP could minimise the lateral displacement of the impacted columns with 

different amounts (44% to 17%) depending on factors such as CFRP configuration, preloading level, 

boundary conditions and applied kinetic energy.  
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ABSTRACT

We propose a time domain partition-of-unity boundary element method for wave propagation problems at high
frequency. Travelling waves are included as enrichment functions into a space-time boundary element solver.
We present some first numerical experiments with this method for high frequencies, and discuss the algorithmic
challenges, with a view towards engineering applications.

Key Words: boundary element method; time domain integral equations; partition of unity method; computational
acoustics; traffic noise

1. Introduction

Boundary element methods provide an efficient, extensively studied numerical scheme for time-
independent or time-harmonic scattering and emission problems. Unlike finite element discretisations,
they reduce the computation from the three dimensional domain to its two dimensional boundary. Re-
cently, boundary elements have been explored for the simulation of transient phenomena, with appli-
cations e.g. to environmental noise [2] or electromagnetic scattering [5]. For the wave equation, time-
dependent boundary element methods (TDBEM) were first analysed by Bamberger and Ha-Duong [1].

On the other hand, for time-harmonic wave propagation partition-of-unity, finite and boundary element
methods (PUFEM / PUBEM) have emerged as a practically efficient method to achieve engineering
accuracy in spite of the numerical pollution at high frequencies [4]. More recently, first results towards
time-dependent finite elements with partition-of-unity enrichment in space have been obtained in [3].

This work presents a time domain partition-of-unity boundary element method based on enrichments
in space and time. It is the first investigation of a space-time enriched method, here applied to a time-
dependent integral equation. The method extends the above works for time-harmonic wave propagation
to truly transient problems and, as a space-time Galerkin method, can be proven to be numerically stable
and convergent. Practically, it includes travelling plane-wave enrichment functions into an h-version
time domain boundary element procedure.

Acknowledgements: H. G. is supported by ERC Advanced Grant HARG 268105.

2. Problem description and time domain PUBEM

This work considers transient sound radiation problems in the exterior of a scatterer Ω− , where Ω− is a
bounded polygon with connected complement Ω = R3 \ Ω− . The acoustic sound pressure field u(t,x)
due to an incident field or sources on Γ = ∂Ω satisfies the linear wave equation for t ∈ R:

c−2∂2
t u(t,x) − ∆u(t,x) = 0 for x ∈ Ω, u(t,x) = f (t,x) for x ∈ Γ, u(t,x) = 0 for t ≤ 0. (1)

Here c is the wave velocity, and in the following we set c = 1 for simplicity. A single-layer ansatz for u,

u(t,x) =
∫
Γ

φ(t−|x−y|,y)
2π |x−y| dsy , (2)
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results in an equivalent weak formulation of (1) as a coercive integral equation of the first kind: Find φ
such that for all ψ

∫ ∞
0

∫
Γ

(Vφ(t,x))∂tψ(t,x) dsx dσt =
∫ ∞

0

∫
Γ

f (t,x)∂tψ(t,x) dsx dσt ,Vφ(t,x) =
∫
Γ

φ(t−|x−y|,y)
2π |x−y| dsy ,

(3)
with dσt = e−2σtdt. A theoretical analysis requires σ > 0, but practical computations use σ = 0 [1, 2].

We propose a time-dependent boundary element method to solve (3), based on numerical approximations
by travelling plane waves:

φh,∆t =
∑

iciφi , where φi (t,x) = Λ̃i (t)Λi (x) cos(ωi (t − ti ) − ki · x + σi ) . (4)

Here ωi = |ki |, σi ∈ {0, π2 }, Λi a piecewise polynomial shape function in space and Λ̃i a corresponding
shape function in time. A first work by Ham and Bathe uses space-enriched FEM for waves in 2d [3].

We obtain a numerical scheme for the weak formulation (3): Find φh,∆t such that for all ψh,∆t

∫ ∞
0

∫
Γ

(
Vφh,∆t (t,x)

)
∂tψh,∆t (t,x) dsx dt =

∫ ∞
0

∫
Γ

f (t,x)∂tψh,∆t (t,x) dsx dt . (5)

From φh,∆t , the sound pressure uh,∆t is obtained in Ω by evaluating the integral in (2) numerically.
Equation (5) leads to a linear system of equations in space-time, Figure 1, where the stiffness matrix

Figure 1: Full PUBEM space-time system and decomposition of the matrices V j .

Vmn =
∫ ∞

0

∫
Γ

∫
Γ

φm (t−|x−y|,y)
2π |x−y| ∂tψn (t,x) dsy dsx dt

has a block-banded structure corresponding to the time steps. Each of the time-step blocks decomposes
into blocks for the individual enrichments ki .

A main challenge is the accurate assembly of Vmn . After an analytical evaluation of the time integral, the
y integral requires integration over geometrically complicated intersections of triangles with light cone
shells, with a singular integrand |x−y|−1. It is evaluated in polar coordinates with a geometrically-graded
hp-composite Gauss quadrature [2]. A regular Gauss quadrature is used for the x integral.

Note that the method (5), as a Galerkin method, minimises the energy E
[
φh,∆t

]
= E(c) = 1

2 c ·Vc−F · c.
Stability and convergence are therefore guaranteed, at least for σ > 0 or sufficiently small times [1, 2].

3. Numerical experiments

Example 1: For a regular icosahedron Γ (Figure 2) of diameter 2 and centered in (0, 0, 0), we use
the right hand side f (t,x) = exp(−25/t2) cos(ω f t − k f x), a plane wave with k f =(1.5, 3, 8.5) which
is smoothly turned on for times [0,5]. The partition-of-unity TDBEM approximation is compared to
h-TDBEM results with 1280 triangles and constant CFL ratio = 0.19. Figure 2 depicts the reference
solution φ at times 3.8, 4.2 and 4.6 and Figure 3a the PU solution in the centroid of a triangle. The
PU TDBEM uses a mesh of 20 triangles and n enrichment functions in each triangle, for n ≤ 15 and
∆t = 0.1,0.2.

We quantify the numerical error by studying the convergence of the energy E[φh,∆t ].
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Figure 2: Example 1 - meshes for PU (20 triangles) and h-method (1280 triangles), density at t = 3.8,4.2,4.6.
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Figure 3: Example 1 - a) density φ, b) relative error in energy: h-method, PU with ∆t = 0.1,0.2.

Figure 4: Example 2 - meshes for PU (8 triangles) and h-method (1250 triangles), density at t = 3.8,4.2,4.6.
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Figure 6: a) GMRES vs. preconditioned GMRES, b) condition number of V0 for PU, c) density φ on car tyre.

Figure 3b shows a comparison of convergence in the energy, between our h-TDBEM and PU-TDBEM.
The PU method reduces the degrees of freedom by a factor up to 8.

Example 2: We now consider a screen Γ = [0,0.5]2 × {z = 0} (Figure 4). We compare a PU method on
8 triangles with n ≤ 30 enrichment functions to an h-TDBEM with 1250 triangles and CFL ratio 0.56.
We use f (t,x) = exp(−4/t2) cos(ω f t − k f x), with k f =(1.5, 3, 8.5) for times [0,5].

Figure 5a shows the density φ at the centroid of a triangles, Figure 4 the h-TDBEM density at 3.8,4.2,4.6.
Figure 5b depicts the comparison of convergence in energy for h-TDBEM and PU-TDBEM, for ∆t =

0.1,0.2. For larger systems, we observe a significant reduction of the degrees of freedom for PU.

Since the memory requirements are too large for solving the large space-time linear system in Figure
1, we use an iterative GMRES solver which allows us to refer implicitly to the memory-intensive stiff-
ness matrix via matrix-vector products only. We have developed a preconditioner for h-TDBEM, which
requires less than 25 iterations independent of degrees of freedom (Figure 6a). For PU, the number of
iterations is reduced. As known for time-independent PU methods, the stiffness matrix exhibits high
condition numbers, here up to 108 on the square (Figure 6b).

4. Conclusions and Outlook

This work presents a first step towards space-time enriched methods for the wave equation, here for
boundary elements. Even for finite elements such space-time enriched methods are just beginning to
be explored. They present a promising approach to efficiently achieve engineering accuracy for rapidly
oscillating solutions, with applications from imaging to sound radiation.

Our preliminary results for PU TDBEM already save a factor of 8 for the degrees of freedom compared
to the h-method for accuracies as low as a fraction of a percent. We expect further improvements with a
more thorough analysis of the time-enrichment, as well as the possibility of using larger time steps.

Outlook: Future work will investigate optimal time enrichments and preconditioning of PU TDBEM.
One motivation comes from the sound radiation of tyres [2], Figure 6c.
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ABSTRACT

The material point method (MPM) is a version of the particle-in-cell (PIC) which has substantial advantages over
pure Lagrangian or Eulerian methods in numerical simulations of problems involving large deformations. Using
MPM helps to avoid mesh distortion and tangling problems related to Lagrangian methods and the advection errors
associated with Eulerian methods. In this paper a novel high-order material point method within an isogeomeric
analysis (IGA) framework is developed. Utilizing high order basis functions enables more accurate determination
of physical state variables e.g. stress. Smooth spline function spaces (B-splines) are used to eliminate the non-
physical cell-crossing instabilities caused by use of standard finite element basis functions based on Lagrange
polynomials.

Key Words: material point method; implicit time integration; isogeometric analysis; B-splines

1. Introduction

The material-point method (MPM) is a numerical method for solving continuum problems in fluid and
solid mechanics. Its origins are the particle-in-cell (PIC) method developed at Los Alamos in the 1950s
[1, 2] to model highly distorted fluid flow such as the splash of a falling drop. In the late 1980s, Brackbill
and Ruppel [3] revived the PIC technology with simple modifications that reduced the numerical dissi-
pation and made PIC competitive with current technologies for simulating hydrodynamics. The MPM
[4, 5, 6] is a version of this method that is applicable to solids with strength and stiffness and has been ap-
plied to model diverse applications such as impact, penetration, fracture, metal forming, granular media
and membranes.

In order to combine the advantages of Eulerian and Lagrangian methods, MPM uses two representations
of the continuum. First, MPM discretises a continuum body of fluid or solid with a finite set of material
points in the original configuration that are tracked throughout the deformation process. Each material
point has a mass, position, velocity and stress, as well as material parameters and internal variables as
needed for constitutive models or thermodynamics. These material points provide a Lagrangian descrip-
tion of the material that is not subject to mesh tangling because no connectivity is assumed between the
points. The latter description, an Eulerian framework, is an often regular background mesh that covers
the computational domain. Information is transferred from the material points to the background mesh,
the momentum equation is solved on the background mesh, and then information from the mesh solution
used to update the material points, at which time the background mesh can be modified if desired, the
cycle then repeats.

Despite the MPM being promoted for its ability to solver large deformation problems it suffers from
instabilities when material points cross between elements. These instabilities are due to the lack of
smoothness of the grid basis functions used for mapping information between the material points and the
background grid. By introducing a weighting function with higher degree of smoothness, the generalized
interpolation material point (GIMP) method is capable of reducing these errors and improving accuracy
[7]. Convected particle domain interpolation (CPDI) is another algorithm developed to improve the
accuracy and efficiency of the material point method for problems involving extremely large tensile
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deformation and rotation [8]. However, both methods require the basis functions (normally taken to be
linear) to be integrated over the domain of the material point of interest, they also do not fully eliminate
spurious oscillations due to cell crossing. In this paper an alternative approach is suggested where smooth
B-spline function spaces are used to map between the material points and the background grid. The high-
order smoothness of the splines eliminates the cell-crossing instability.

2. The quasi-static implicit material point method

Let us start by recalling the elastostatic equations. Let Ω ⊂ Rd ,d = 2,3, denote the domain occupied by
the body, and let Γ = ∂Ω be its boundary. Then

∇ · σ + f = 0 in Ω, u = g on ΓD , and σ · n = h on ΓN , (1)

where σ denotes the symmetric Cauchy stress tensor and f is the body force per unit volumeis, u is
the displacement, g and h are refered as essential, Dirichlet, and natural, Neumann boundary condition,
respectively. Here we restrict ourselves to small-strain analysis, where the small strain approximation,
denoted by ε , is computed as the symmetric part of the displacement gradient ε =

(
∇u+ (∇u)T

)
/2. The

constitutive relationship, σ = σ(ε ), is necessary to form a complete set of equations for computing the
state variable, u. Here we assume a linear isotropic relationship between strain and the Cauchy stress.

2.1. Discrete form

The continuum body Ω is discretised by finite set of Np material points
{
xp

}Np

p=1 ∈ Ω in the original
configuration that are tracked throughout the deformation process. Also, space is discretised by a back-
ground mesh defined by a set of Nn control points

{
xi

}Nn

i=1. The discrete MPM equilibrium equations are
constructed by pre-multiplying the strong form of equilibrium (1) by a weighting function and applying
integration by parts. A simple one-point quadrature rule is applied over each volume Ωp associated with
the pth material point to give

−
Np∑

p=1

{(
σ(xp ) : ∇wh (xp )

)
Ωp

}
+

(
h,wh

)
ΓN

+

Np∑

p=1

{(
f (xp ) · wh (xp )

)
Ωp

}
= 0. (2)

(2) is solved on a finite dimensional space using functions represented in terms of B-spline basis func-
tions, Nq

i . A B-spline basis is constructed from piece-wise polynomials joined with a prescribed conti-
nuity. In order to define a B-spline basis of polynomial order q in one dimension it is necessary to define
a knot vector. A knot vector in one dimension is a set of coordinates in the parametric space, written as

Ξ = {0 = ξ1, ξ2, ..., ξn+q+1 = 1} (3)

where ξ1 ≤ ξ2 ≤ ...ξq+n+1 and n is the total number of basis functions. Given Ξ and q, univariate
B-spline basis functions are constructed recursively starting with piecewise

N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(4)

For q = 1,2,3, ..., they are defined by

Nq
i (ξ) =

ξ − ξi
ξi+q − ξi Nq−1

i (ξ) +
ξi+q+1 − ξ
ξi+q+1 − ξi+1

Nq−1
i+1 (ξ) (5)

Note that when ξi+q − ξi = 0, (ξ − ξi )/(ξi+q − ξi ) should be vanished, and similarly, when ξi+q+1 −
ξi+1 = 0, (ξi+q+1 − ξ)/(ξi+q+1 − ξi+1) is taken to be zero as well. These basis functions have the fol-
lowing properties: (i) they form a partition of unity, (ii) have local support and (iii) are non-negative (for
more details see [9]).
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The explicit representation of wh (x) in terms of the basis functions and control variables is assumed to
take the standard form

wh (x) =

Nn∑

i=1

Nq
i wi (x). (6)

Substituting the weighting function approximation into (2) and after simplification, the discrete MPM
equation is obtained as

−
Np∑

p=1

{(
σ(xp ) · ∇Nq

i (xp )
)
Ωp

}
+

∫

ΓN

hNq
i dΓ +

Np∑

p=1

{
f (xp )Nq

i (xp )Ωp

}
= 0. (7)

The numerical solution of this quasi-static problem is typically obtained in steps by incrementally im-
posing displacement boundary conditions, external forces or both in order to obtain increment in dis-
placement, ∆u. Here a fully implicit method is employed to solve the problem. Once the displacement
increment is obtained, the material point position, xp , and displacement, up , are updated as follows

xk+1
p = xkp +

Nn∑

i=1

∆uiN
q
i (xkp ) and uk+1

p = uk
p +

Nn∑

i=1

∆uiN
q
i (xkp ), (8)

where k denotes the loadstep number. After each load step, the spatial position of background grid is
reset to its original undeformed state.

3. Numerical results

Here we present the numerical results for a one-dimensional elastic column quasi-statically compressed
by its own weight through the application of a body force, bf , per unit mass. The initial material density
ρ0 = 1, Young’s modulus E = 106, and initial column height L0 = 50, all in compatible units. The
column initially occupies 50 elements and the body force was applied over 20 loadsteps.
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Figure 1: Numerical and analytical solutions to the one-dimensional elastic column quasi-statically compressed
by its own weight under a body force

Figure 1 shows the stress distribution with bf = −200 and bf = −800, that is with a total column weight
of W = ρ0 |bf |L0 = 10000 and W = 40000, respectively. Results are shown for the standard MPM with
linear basis functions and for the quadratic B-spline MPM (q = 2) and compared against the analytical
solution (as provided in [7]). For the MPM the problem is initially discretised with one particle per grid
cell as, for this very simple problem, increasing the number of material points reduces the accuracy of
the simulation. The B-spline MPM used two particles per grid cell. In both cases the material points
are initially located at the appropriate Gauss quadrature locations within the elements. When bf = −200
both the methods provide a reasonable approximation to the analytical solution. However, for bf = −800
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spurious oscillations can be seen in the MPM results caused by cell-cross instabilities. These oscillations
have been removed by the higher-order basis functions in the B-spline MPM.

Table 1 details the errors in the simulations based on the following error measure and the exact solution
at the current particle locations [7]

error =

Np∑

p=1

Vp |σp − σA(xp ) |
W L0

, where σA(xp ) = E *,
√

2ρ0bf

E
(L − xp ) + 1 − 1+- (9)

and L = L0 + ρ0bf L2
0/(2E) is the current length of the column. xp is the particle location, Vp is the

volume associated with the material point, σp is the material point stress. Errors have also been provided
for an implicit GIMP implementation with two material points per original grid cell but have not been
shown on Figure 1 for the sake of clarity.

total column weight, W 10,000 40,000
MPM 3.667 × 10−3 2.572 × 10−2

GIMP 3.680 × 10−3 2.969 × 10−3

B-spline MPM (q = 2) 6.221 × 10−5 9.894 × 10−4

Table 1: One-dimensional elastic column errors

It is clear from Table 1 that the B-spline MPM is an improvement over both the standard MPM and the
GIMP method.

4. Conclusions

This paper has presented a MPM where the standard linear basis functions have been replaced by B-
splines. The higher order smoothness of the splines significantly improves the accuracy of the method
by removing the cell-cross instabilities seen in other MPMs.
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ABSTRACT 

During preliminary aircraft design when many alternative configurations and load cases need to be 

considered, fast and reliable analysis tools are required. The specialist software VICONOPT is 

designed for efficient, accurate buckling and vibration analysis and optimum design of plates and 

panels. VICONOPT avoids the modelling and computational costs of finite element analysis by 

employing the exact stiffness analysis and the Wittrick-Williams algorithm. The vibration behaviour 

of isotropic plates containing through-the-length damages of different sizes and severities is studied 

using a novel hybrid method. This method, based on a concept that allows VICONOPT to work along 

with finite elements to improve the ability of VICONOPT to model cases of damaged plates, uses 

VICONOPT to model the undamaged parts of the structure in combination with finite elements in the 

area of the damage.  The results show the ability of the hybrid method to handle through-the-length 

damages efficiently. This achievement opens the door for a wide range of more complicated damages 

that can be studied using this method.  

 
Keywords: Vibration, isotropic, damages, exact stiffness, finite element 

  

1. Introduction  

Minimizing the mass of an aircraft's structure reduces the cost of materials and manufacturing, as well 

as fuel consumption and atmospheric emissions. During the preliminary design when many alternative 

configurations and load cases need to be considered, fast and reliable analysis tools are required. The 

VICONOPT (VIpasa with CONstraints and OPTimization) program is designed for efficient, accurate 

buckling and vibration analysis and optimum design of plates and stiffened panels, and is typically 

about 10 times faster than the equivalent finite element (FE) analysis [1]. This program is based on 

the exact finite strip method which assumes a continuous distribution of stiffness over the structure. 

VICONOPT is able to model plates which have different properties in the transverse (y) direction and 

even different thickness by connecting different plates in this direction. However, all the plates need 

to have the same length in the longitudinal (x) direction.  

VICONOPT is able to model many different cases of damaged plates as long as the damaged region 

stretches along the whole length of the plate in the x direction. Damghani et al. [2] studied the critical 

buckling of composite plates with through-the-length delaminations which satisfy these prismatic 

requirements. This work was extended (Damghani et al. [3]) to study the global buckling behaviour of 

a composite plate with a single rectangular delamination. This method is based on replacing the 

longitudinal portion of the plate containing the delamination with an equivalent prismatic structure, 

which is capable of representing the global buckling behaviour but cannot capture local effects. 

The combined VICONOPT and FE method presented here, denoted VFM, is based on using the FE 

method to model the longitudinal portion of the plate containing the damage as shown in Fig 1. 

However, the FE method has been merged with VICONOPT process to model the whole plate. This 

work extends the capability of VICONOPT to use computationally efficient analysis for different 

cases of plate damage which could not previously be modelled.  
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Figure 1: VICONOPT and FE method modelling damaged plate 

 

2. Problem definition  

During the early stages of design when many alternative configuration and load cases are considered, 

fast and reliable analysis tools are required. Finite element analysis (FEA) is capable of handling 

many combinations of loading and boundary conditions for different cases of damage but it is 

computationally expensive. These high computational costs are avoided in VICONOPT by employing 

exact strip solutions and the Wittrick-Williams algorithm [4]. However due to its prismatic 

requirements, VICONOPT can model damaged plates directly only if the damaged region stretches 

along the whole length of the plate. The aim of this study is to develop a novel method which can be 

used to improve the ability of VICONOPT to model more complex cases of damaged plates. For 

validation purposes and to demonstrate the efficiency of the approach a comparison is first made with 

FEA for an isotropic plate with through-the-length damage.   

3. Theory and Formulation used in VFM  

VICONOPT incorporates two earlier programs, VIPASA and VICON.  VIPASA provides a powerful 

analysis for vibration and buckling of prismatic plate assemblies with simply supported ends. 

However, if the structure is under in-plane shear loading, the mode shapes will be skewed and the end 

conditions will not be satisfied. Thus the applicability of VIPASA is limited. VICON [5] provides a 

solution to this problem by coupling the VIPASA stiffness matrices for different wavelength 

responses through the Lagrangian Multiplier Method [5]. The complete VIPASA generality and 

capability are thus retained in the VICON program, which satisfies the end conditions through point 

constraints and also permits attachments to a supporting structure [6]. Thus the VICON stiffness 

matrix comprises a series of VIPASA stiffness matrices which are coupled by the constraints. It is 

complex valued and can be expressed as 

𝐊𝑉𝐼𝐶𝑂𝑁 = [
 𝐊 𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝐼𝑃𝐴𝑆𝐴          𝐂𝑯 

 𝐂          𝟎 

]                                        (1) 

where 𝐊 𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝐼𝑃𝐴𝑆𝐴 is the global VIPASA stiffness matrix, i.e. a series of uncoupled VIPASA 

matrices at different half-wavelengths of response, C is the global plate assembly constraint matrix, 

and C
H
 is its Hermitian transpose. 

The method proposed in this paper uses the VICONOPT solution procedure for finding the critical 

buckling loads and natural frequencies for damaged plates, by using a combination of VICONOPT 

and FE stiffnesses as shown in Fig. 1. Embedded damage is modelled by including finite elements 

with different stiffness properties within the damaged strip. VICONOPT then assembles the hybrid 

stiffness matrix of the plate by using Lagrangian Multipliers to couple the VICON and FE 

components, as follows.  
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Here, the constraint matrices 𝐂1 and 𝐂2 enforce equal displacements and rotations at the nodes 

connecting the undamaged and damaged strips. 𝐂1  also includes any end support conditions in the 

undamaged regions. 𝐂 2
T
 is the transpose of 𝐂2.  𝐊𝐹𝐸  is the FE stiffness matrix for the damaged 

rectangular strip. In the case of vibration problems  𝐊𝐹𝐸  takes the form 

  𝐊𝐹𝐸 = 𝐤 − 𝑛𝟐𝐦                                                       (3) 

where n is the frequency, 𝐤 and 𝐦 are the static stiffness matrix and equivalent mass matrix of the 

damaged rectangular strip. 
 

4. Numerical results 

In this section, plates with through-the-length damage are analysed using VFM, and also pure FEA 

using ABAQUS/Standard [7]. The rectangular mesh is constructed using an approximate global size 

of 5mm, homogeneous continuum shell and elements and a linear perturbation procedure is used. The 

plates are simply supported on all four sides. Natural frequencies are determined for plates containing 

different sizes and severities of through-the-length damage. Plates are assumed to be isotropic for 

simplicity, in order to verify the concept of combining VICONOPT and FE analysis. The isotropic 

plates examined have length l=100mm, width b=100mm, and thickness h=1mm. They have material 

properties of Young’s modulus E=110 kN.mm
-2

 and Poisson's ratio ν=0.3. Fig 1 shows a plate 

containing a centrally located through-the-length degradation of stiffness over a width 𝛽. In this 

parametric study, the width of the damage β is varied and three values of stiffness reduction factor for 

the damaged region are considered: f=0.75, f=0.50 and f=0.25.  

  

             

   

                              

 

 

 

 

 

 

 

 
 

 

Figure 2: Plots of lowest natural frequency (ω1) against width β  of centrally located through-the-length damage, 

for different values of stiffness reduction factor f. (a) f =0.75, (b) f =0.50, (c) f =0.25. 
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Figure 3: VFM and ABAQUS plots of lowest natural frequency mode for plate with through-the-length damage 

of β/b=0.2 

 

Fig. 2 shows that there is an excellent agreement between the two methods when 0 ≤ β/b ≤ 0.7. There 

is a negligible difference (maximum 2%) between the natural frequencies obtained from FEA 

(Abaqus) and VFM when 0.7 < β/b < 1.0. Fig. 3 illustrates the vibration mode shapes obtained from 

VFM and FEA.  

    

5. Conclusions and future work 

 

VFM is based on a concept that allows the computationally efficient program VICONOPT to work 

along with the finite element method to improve its ability to model cases of damaged plates. This 

method has been used for the natural frequency analysis of plates containing through-the-length 

damage. The analysis results are validated against pure FEA. This novel method will be used for more 

complicated cases of damage that VICONOPT could not previously model directly, such as 

embedded rectangular damage. 
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ABSTRACT

The objective of this paper is to propose a time-dependent reliability analysis method to investigate the durabil-
ity of fibre reinforced polymer composites. A stochastic multi-scale finite element method, which is based on
computational homogenization and perturbation technique, is adopted to propagate uncertainties in both micro-
and macro-scale parameters. The influence of water absorption and heat conduction and the induced degradation
of mechanical properties, which is estimated through a hygro-thermo-mechanical model that is integrated into
the stochastic multi-scale finite method, is then studied in the framework of time-variant reliability analysis. It is
shown that the problem reduces to a sequence of time-independent problems that can be solved using the first-order
reliability method. A numerical study is carried out to demonstrate the applicability of the proposed method, and
the evolution in time of the probability of failure is computed.

Key Words: Composite; hygro-thermal effect; computational homogenization; durability; reliability

1. Introduction
Composite materials may provide benifits in terms of reduction of construction time and carbon emission
for civil engineering sector, given their success in other sectors. However, civil engineering structures and
infrastructures are expected to serve in natural environment for 50 years or more. Accurately quantifying
long term durability behaviour is eagerly needed to fully exploit benefits that composite materials could
bring to construction sector. In an on-going UK EPSRC funded research project - Providing Confidence
in Durable Composites (DURACOMP), pultruded glass fibre reinforced composites, which are typical
construction composite materials, have been tested to characterize their ageing behaviours in hot/wet
condition. The evolution in time of moisture uptake ratio and mechanical properties has been measured
and reported in [1, 2]. To numerical simulate these coupon testing based findings to large scale structures,
a coupled hygro-thermo-mechanical model has developed [3] to investigate the long term durability
of composites in a deterministic context. Arising from various sources such as manufacturing process,
assembly and quality control limits, composite materials exhibit uncertainties in their material properties.
Taking these uncertainties into account in designing composites, such as through the use of reliability
based structural design, is essential to ensure that the structures perform with sufficient safety during
their service and fully realize the advantages offered by composites. In the present study, this coupled
hygro-thermo-mechanical is combined with a probabilistic homogenization approach developed in [4] to
propagate micro-scale uncertainties to the macro-scale in the mechanical problem. This is subsequently
integrated with reliability analysis methods to evaluate the reliability of composite structures.

2. Time-dependent structural reliability analysis
For a stochastic structure system, when stochastic processes or functions of time are explicitly present
in the limit state function (LSF), g(x), time-variant analysis is required to quantify the probability of
failure of the structure. Accordingly, the n-dimensional vector x that collects all random parameters in
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the system is split into x1 which is a vector of random variables and x2(t) which is a vector of random
processes. The probability of failure, pf , of the structure within a time interval [tb, te] is defined as

pf (tb, te ) = Pr (∃t ∈ [tb, te], g(x1, x2(t)) ≤ 0) (1)

In this study, the time effect is present in the problem due to the degradation of material properties, the
LSF g thus depends on random variables and functions of time. The computation of pf as defined in
Eq.(1) reduces to

pf , i = Pr (g (x1, x2(t)) ≤ 0) (2)
which is called instantaneous probability. In a degradation problem, the LSF is monotonously decreasing
in time whatever the realizations of the random variables. For each realization of the random vector, the
minimum value of g (x1, x2(t)) over a time interval [tb, te] is attained for t = te . Thus, the time-variant
problem is reduced to a time-invariant analysis to calculate the special case of Eq. (2) at te . First-order
reliability method (FORM) is one of the widely used methods to numerically estimate reliability for time
independent problem. Essentially, it requires to transform random variables x from general probability
space to standard normal space as u, which leads to G(u), and to linearly approximate the LSF through
the first-order Taylor series expansion, which needs to calculate gradient of G. According to the chain
rule of differentiation, the gradient vector of G can be obtained from

∇G =
∂G
∂y
=
∂g

∂ s

∂ s

∂x

∂x

∂y
, (3)

where ∂x
∂y is Jacobian of the probability transformation, ∂g∂s can be analytically obtained since the LSF

g is function of components of s. Thus, the only unknown is ∂s
∂x that will be calculated from stochastic

finite element method.

3. Stochastic multi-scale finite element analysis
3.1. Degradation model for FRP composites in hot/wet condition
Based on experimental data reported in [1], Zahur et al. [3] proposed a generalized model to charac-
terize the degradation of constitutive matrix of matrix material under hygrothermal condition, which is
expressed as

dCm
dt
= −cη log

(
1 − T/Tg

)
C0m or

d
dt

(1 − ω) = −cη log
(
1 − T/Tg

)
(1 − ω) (4)

where C0m is for undegraded material; c is the moisture concentration; η is a model parameter that is
obtained from experiment data; T is the temperature; Tg is the glassy transition temperature; and t is
the exposure time. Thus, this degradation model is actually to get instantaneous temperature T (t) and
moisture concentration c(t), and they are obtained from transient moisture diffusion and heat conduction
analyses.

3.2. Computational homogenization for multi-physics problems
Owing to the multi-scale architecture of composite materials, homogenization method should be used
to estimate the effective properties of composites. In the present paper, the multi-scale computational
homogenization method was used to estimate the effective elastic and physical properties. Thermal and
diffusion homogenization were conducted to get the effective conductivity and diffusivity, respectively.
These were then supplied to transient heat conduction and moisture diffusion analyses to calculate the
instantaneous temperature and moisture concentration for Eq. (4). Finally, the degraded elastic properties
of constituentmaterialswere input to themechanical homogenization to get the effective elastic properties.
In the finite element context, the mechanical homogenization is expressed as[

Kµ PT

P 0

] {
u
λ

}
=

{
0
Dε̄

}
or

[
K̂
]
{û} =

{
F̂
}
. (5)

where λ is the Lagrangian vector, ε̄ is the prescribed or given strain, and P and D are constraint matrix
and global coordinate matrix.
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3.3. Uncertainty propagation with the use of perturbation technique

Considering material properties as random variables, the stiffness matrix
[
K̂
]
and the nodal displacement

vector {û} in Eq. (5) are thus stochastic functions. According to the perturbation technique, stochastic
function can be approximated by Taylor series expansion. In the present study, only the first order
expansion is needed as the first order derivatives of structural responses are required in Eq. (3). By
expanding stochastic functions in the form of

φ(b) = φ(b̄) + ε
n∑

i=1

[
Dbiφ(b̄)

]
δbi, (6)

substituting them into Eq.(5) and equating terms of equal orders of ε , we arrive at the following zeroth-
and first-order equations: [

K̂
]
{û} =

{
F̂
}

(7)
n∑

p=1

{[
K̂
] {

Dbp û
}
+
[
Dbp K̂

]
{û}

}
= 0 (8)

In Eq. (5), the block related to stiffness matrix,
[
Kµ

]
, of the microstructure is function of material

properties. It and its first-order partial derivative can be expressed as

Kµ =

∫

Ωs
µ

BTCµBdV, and
[
DbpKµ

]
=

∫

Ωs
µ

BT
[
DbpCµ

]
BdV, (9)

where B is the strain-displacement matrix, Cµ is the constitutive matrix of constituent material, and[
DbpCµ

]
is its first-order partial derivative. Computing Eqs.(7) and (8) successively, the compact

displacement vector {û} and its first order partial derivative
{
Dbp û

}
can be obtained. These were then

used to calculated the effective constitutive matrix and its derivatives according to C̄ = σ̄
ε̄ (see [4]

for details of the derivation). Once the effective constitutive matrix for the composite is obtained, the
stochastic structural responses at macro level can be calculated by introducing a perturbation-based
stochastic finite element method, and these are input to Eq. (3).

4. Numerical example
A fibre reinforced polymer composite plate is considered in this section to illustrate the time-dependent
reliability analysis scheme. The geometry of the plate is shown in Fig 1a. For the macro-level thermal
problem, a temperature of 80°C is applied to the top and bottom surfaces, and constant heat flux is applied
to the left and right surfaces. Similarly, for the moisture transport problem, a constant concentration of 1,
which represents 100% relative humility, is applied to the top and bottom surfaces, and constant moisture
flux is applied to the left and right surfaces. For the macro-mechanical analysis, a uniform pressure of
1000 MPa is applied along the upper and lower surfaces in the vertical direction to simulate uniaxial
tension state. Considering the symmetry of the geometry and boundary conditions for heat transfer,
moisture transport and mechanical analysis, only 1/8 of the structure, highlighted in Fig. 1a, needs to be
modelled. The plate is made of glass/epoxy plain weave textile composite (see microstructure in Fig. 1b)
with elastic and physical properties indicated in [3].

The multi-scale analysis for heat conduction and moisture transport problems were conducted first to
get the effective heat conductivity and moisture diffusivity required for performing macro level heat
conduction and moisture diffusion analyses. The calculations were conducted in a time interval of 10
days, and a period of 500 days was considered. Thus, a total of 51 times of multi-scale multi-physics
calculation were conducted. Using these 51 instantaneous temperature and moisture concentration fields,
a series of degradation parameter field was computed by Eq. (4). Then the mechanical computational
homogenization was applied to estimate the effective mechanical properties. According to preliminary
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study at initial stage, applied load, longitudinal ply strength and longitudinal Young’s modulus are the
most important parameters in reliability analysis of the considered structures. These three parameters
were considered as random variables in the time-dependent reliability calculation, and Tsai-Wu failure
theory was used to establish the LSF. Finally, the evolution in time of the reliability index is plotted in
Fig. 2. It can be seen that the reliability index decreases about 11% after 500 days degradation.

(a) Plate

(b) Microstructure

Figure 1: FRP plate and its mi-
crostructure
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Figure 2: Evolution in time of the reliability index

5. Conclusions
On-going research and early results on the durability of fibre reinforced polymer composite structures,
which is investigated by time-dependent reliability analysis, are presented in this paper. The time depen-
dent reliability calculation is realized by integrating a multi-scale finite element reliability method with
a hygro-thermo-mechanical model. A numerical study is carried out to demonstrate the applicability of
the proposed scheme through the calculation of the evolution in time of the probability of failure.
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ABSTRACT

The isogeometric boundary element method (IGABEM) based on NURBS is adopted to model fracture problem
in 3D. The NURBS basis functions are used in both crack representation and physical quantity approximation. A
stable quadrature scheme for singular integration is proposed to enhance the robustness of the method in dealing
with highly distorted element. An algorithm is outlined and validated to be stable for fatigue crack growth, thanks
to the smoothness not only in crack geometry but also in stress/SIFs solution brought by IGABEM.

Key Words: Isogeometric analysis; NURBS; Linear elastic fracture; Boundary element method; Crack growth

1. Introduction

The fracture modeling by the boundary element method (BEM) exhibits more advantages than by FEM
in terms of mesh/re-mesh efforts as only the boundary discretization is required in BEM in order to
approximate the quantity of interest. When cracks evolve, only the boundary surfaces are updated instead
of re-generating the volume mesh.

The isogeometric analysis (IGA) was first introduced by Hughes et al [1]. The basic idea of IGA is to use
the same spline basis functions to represent the CAD geometries and approximate the physical quantities
of interest. And the investigation on the joint of IGA and BEM (IGABEM) [2] has increasingly drawn
attention recently since only the boundary representation of the geometry is required in IGABEM, which
facilitates the integration of design and analysis.

The advantages of the application for fracture based on the IGA framework can be concluded as:

(1) The higher-order continuity of spline basis functions improves the accuracy of the stress field near
the crack front which is crucial to fracture analysis and the degrees of freedom is reduced compared to
the C0 Lagrange basis;
(2) The curvature, tangential and normal vectors are exactly retained and evolved for the crack growth
thanks to the exact representation of the curved cracks;
(3) The local crack tip (front) system can be constructed directly based on the spline-based curve or
surface-represented cracks, which helps to accurately evaluate the fracture parameters;
(4) The concept of integration through design to analysis facilities the mechanical/structural design based
on the fatigue fracture analysis.

2. Boundary integral equations (BIE) for crack modeling

Consider an arbitrary domainΩwhich contains a crack. The boundary of the domain ∂Ω = S∪Sc+∪Sc− ,
where S is composed of Su where Dirichlet boundary conditions are prescribed (known displacements
ū), St where Neumann boundary conditions are prescribed (known tractions t̄). The displacement BIE
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(Equation (1)) is used on one face (Sc+) and on the rest of the boundary S. The traction BIE (Equation
(2)) is used on the other crack face (Sc−).

ci j (s+)u j (s+) + ci j (s−m )u j (s+) =

∫

S

Ui j (s+,x)t j (x)dS(x) −
∫

S

Ti j (s+,x)u j (x)dS(x)

− −
∫

Sc+

Ti j (s+,x+)u j (x+)dS(x) − −
∫

Sc−
Ti j (s−m ,x

−)u j (x−)dS(x)

+

∫

Sc+

Ui j (s+,x+)t j (x+)dS(x) +

∫

Sc−
Ui j (s−m ,x

−)t j (x−)dS(x),

(1)

ci j (s−)t j (s−) + ci j (s+
m )t j (s−) =

∫

S

Ki j (s−,x)t j (x)dS(x) −
∫

S

Hi j (s−,x)u j (x)dS(x)

− =

∫

Sc−
Hi j (s−,x−)u j (x−)dS(x) + =

∫

Sc+

Hi j (s+
m ,x

+)u j (x+)dS(x)

+ −
∫

Sc−
Ki j (s−,x−)t j (x−)dS(x) − −

∫

Sc+

Ki j (s+
m ,x

−)t j (x+)dS(x),

(2)

where the Ui j , Ti j are called fundamental solutions, and

Hi j (s,x) = Eik pq

∂Tp j (s,x)
∂sq

nk (s), Ki j (s,x) = Eik pq

∂Up j (s,x)
∂sq

nk (s), (3)

where −
∫

denotes the integral is interpreted in the Cauchy Principal Value sense and =
∫

denotes the
Hadamard Finite Part integral. s−m denotes the mirror point of s+ on Sc− , which means s−m and s− share
the same physical and parametric coordinates but their normal vectors are opposite. The last two terms
of both equations and left hand side of Equation (2) are omitted due to the traction-free crack.

3. Singularity subtraction technique (SST) for singular integrals

For the hyper-singular integral

I = lim
ε→0

∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)
H (ρ,θ)R(ρ,θ) J̄ (ρ,θ)ρdρdθ, (4)

where H is the hyper-singular kernel, R is the NURBS basis function and J̄ is the Jacobi transformation
from parent space to physical space. The integrand F (ρ,θ) = H (ρ,θ)R(ρ,θ) J̄ (ρ,θ)ρ is expanded as:

F (ρ,θ) =
F−2(θ)
ρ2 +

F−1(θ)
ρ

+ F0(θ) + F1(θ)ρ + F2(θ)ρ2 + · · · =
∞∑

i=−1

Fi (θ)ρi . (5)

The singularity can be represented explicitly with respect to the parametric distance between the source
point and field point ρ. Then the singular terms are subtracted from the integrand, leaving the remaining
to be regular for which regular Gaussian rule is applied. the subtracted terms are added back semi-
analytically, resulting in:

I = I1 + I2,

I1 =

∫ 2π

0

∫ ρ̂(θ)

0

[
F (ρ,θ) − F−2(θ)

ρ2 − F−1(θ)
ρ

]
dρdθ,

I2 =

∫ 2π

0
I−1(θ)ln

ρ̂(θ)
β(θ)

dθ −
∫ 2π

0
I−2(θ)

[ γ(θ)
β2(θ)

+
1
ρ̂(θ)

]
dθ,

(6)

where I1 is regular and I2 are regular line integrals, Both can be applied with Gaussian quadrature rule.
The evaluation of α(ε,θ), β(θ) and γ(θ) as well as the limiting process can be referred in [3].
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Figure 1: Transformation between coordinate system for SST. The nodal coordinates ξ̂
I

are obtained through
bilinear interpolation from (ξ̄, η̄) to the new parametric space (ξ̂, η̂) for the quadrilateral element in conformal
space

A conformal mapping is proposed to enhance singular integration for distorted elements. The curvi-
linear basis vectors ms

i = mi |ξ̄=ξ̄s
, (i = 1,2) and are calculated as:

m1 =
[ ∂x
∂ξ̄
,
∂y

∂ξ̄
,
∂z
∂ξ̄

]
,

m2 =
[ ∂x
∂η̄
,
∂y

∂η̄
,
∂z
∂η̄

]
.

(7)

We introduces two parameters λ = |ms
1 |/|ms

2 |, cosψ = ms
1 · ms

2/|ms
1 | |ms

2 |. The conformal mapping
from the parent space (ξ̄, η̄) to a new parametric space (ξ̂, η̂) can be constructed where the two curvi-
linear basis vectors in the new parametric space are orthogonal and have identical length. The Jacobian
transformation matrix T from ξ̄ = (ξ̄, η̄) to a new parametric space ξ̂ = (ξ̂, η̂) is

T =

[
1 δ1
0 δ2

]
, so that ξ̂ = Tξ̄, (8)

where δ1 = cosψ/λ, δ2 = sinψ/λ. Figure 1 illustrates the transformation for singular integration. Now
the SST is applied in the conformal space.

Figure 2: Crack front updating. C(ξ) is the old crack front curve, C′(ξ) is the new crack front curve after crack
advance

4. Crack growth

In the present work, we use NURBS patches to discretize the crack surfaces. The Paris law is used to
calculate the crack advance. A crack surface updating algorithm is outlined to perform the crack growth
as in Table 1.

5. Numerical examples

Figure 3(a) shows the convergence study on the relative error in the L2 norm crack opening displacement
(COD) for the penny crack problem with inclination angle ϕ = 0. It can be seen that degree elevation
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Algorithm 1 Crack front updating algorithm
Data: old crack front curve C(ξ); sample points Mj ; new positions of sample points M ′j
Result: new crack front curve that passes through all M ′j , see Figure 2
t = 0;
tol = 1.e − 4;
e j,0 =

−−−−−−→
Mj,0M ′j ; //the initial error vector

while ‖et ‖ > tol do
t = t + 1;
mi, t = 1

N

∑N−1
j=0 f i je j, t−1; //the motion vector at t-th step

Pi, t = Pi, t−1 + mi, t ; //the new point on the crack front at t-th step
e j, t = e j, t−1 − 1

N

∑N−1
k=0

∑n−1
i=0 Ri j f ikek, t−1; //the error vector at t-th step

end

from 2 to 3 improves accuracy. Yet, the convergence rate (oc) keeps almost the same value (oc = 1).
The deterioated oc is due to the physical singularity along the crack front. Figure 3(b) shows the stress
intensity factors (SIFs) for the sample points on the crack front for the penny crack problem with ϕ =

π/6. It can be observed that the numerical SIFs agrees well with the analytical solution. Figure 4 presents
the fatigue crack growth for inclined elliptical crack.
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Figure 3: (a) The relative error in the L2 norm of COD for penny-shaped crack by uniform mesh refinement in
parametric space.; (b) Stress intensity factors for penny crack with inclination angle ϕ = π/6, θ is the direction
angle for the sample points along the crack front

6. Conclusions

The formulation and implementation of isogeometric boundary element methods (IGABEM) for simu-
lating 3D fatigue fracture problem are outlined in this paper. The same NURBS basis functions are used
for the discretization of geometry/crack and the approximation of displacement/traction in the isogeo-
metric framework. The highlights of this work include: (1) The proposed singular integration scheme
can preserve the quadrature accuracy for highly distorted elements which exist commonly in IGA; (2)
The local crack tip system is setup naturally and uniquely thanks to the NURBS representation of the
crack surface. With the continuity in stress solution in BEM, the obtained SIFs along the crack front are
smooth and accurate; (3) The proposed algorithm for crack propagation is validated to be stable, due to
the smoothness in crack front geometry and numerical SIFs.

The future work will focus on the surface cracks problem, where the crack will have intersection with
the body geometry.
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(a) Step 2 (b) Step 5 (c) Step 10

Figure 4: Fatigue crack growth simulation of an elliptical crack with inclination angle ϕ = π/6 modeled by the
dual equations in a finite domain

Acknowledgements

The first and last authors would like to acknowledge the financial support of the Framework Programme
7 Initial Training Network Funding under grant number 289361 ‘Integrating Numerical Simulation and
Geometric Design Technology’.

References

[1] Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Computer methods in applied mechanics and engineering,
2005, 194(39): 4135-4195.

[2] Scott, M. A., Simpson, R. N., Evans, J. A., Lipton, S., Bordas, S. P., Hughes, T. J., Sederberg, T. W.
(2013). Isogeometric boundary element analysis using unstructured T-splines. Computer Methods
in Applied Mechanics and Engineering, 254, 197-221.

[3] Guiggiani M. Formulation and numerical treatment of boundary integral equations with hypersin-
gular kernels. Singular integrals in boundary element methods, 1998: 85-124.

369



 

Proceedings of the 24th UK Conference of the 

  Association for Computational Mechanics in Engineering 

31 March – 01 April 2016, Cardiff University, Cardiff 

 

IMPLEMENTATION OF A COHESIVE ZONE MODEL INTO THE 

OPEN SOURCE FINITE ELEMENT SOFTWARE ParaFEM 

Athanasios G. Tsamos*, Lee Margetts and Andrey P. Jivkov 

School of MACE, University of Manchester, Manchester, M13 9PL 

 

*athanasios.tsamos@postgrad.manchester.ac.uk 
 

ABSTRACT 

Cohesive elements have proven to be an excellent approach in computational fracture mechanics. Nevertheless, 

massively parallel computations are required in order to capture damage patterns and evolution meticulously in 

Carbon Fibre Reinforced Composites (CFRCs). Commercial packages do not exhibit satisfactory scalability in 

massively parallel computers. Thus, it is essential to implement cohesive elements in suitable codes for large 

scale simulations. The steps that need to be carried out in order to implement a Cohesive Zone Model (CZM) 

into the open source finite element (FE) package: ParaFEM (http://parafem.org.uk) are presented. These steps 

are: (1) a study on the CZM existing in ABAQUS and its key parameters, (2) the generation of a fortran 

ABAQUS User Element subroutine (UEL) of that particular CZM, (3) the integration of the latter into the 

source code of ParaFEM as a Cohesive Interface (zero geometrical thickness) Element Subroutine, (4) 

verification of its accurate functionality with the aid of well established benchmark problems, (5) and finally the 

culmination of scalability tests and direct comparison between the two programs. The work will be of interest to 

researchers wishing to perform very large analyses with cohesive elements using supercomputers. 

 

Keywords: Cohesive Element Subroutine; Modelling of Microstructure; Modelling Damage; Carbon Fibre 

Composites; Large Scale Simulation 

  

1. Introduction  

The motivation of the work is to enable accurate microstructural simulations to be carried out in 

composite damage evolution. Composites exhibit a very convoluted response under loading due to the 

complexity and certain randomness that can be found in their microstructures [1]. Moreover, the 

interaction of their various damage mechanisms with one another is inordinately important as well. 

Despite the fact that there are available tools, both analytical and numerical, that can be employed in 

order to simplify their analysis macroscopically through various homogenization procedures [2] and 

multiscale approaches [3], these are not fully capable of predicting damage evolution and fracture 

under various loading conditions. 

 

The systematic application of advanced composite materials in the sensitive aerospace sector 

(transportation) is probably only inhibited by the lack of serious computational models for the latter. 

Obviously, physical testing is far more expensive compared with computational modelling and 

testing. It is a fact that the use of these more efficient materials in contrast to the conventional heavy 

materials that are currently being used will enact a safer, inexpensive air travel and ultimately will 

have a beneficial impact on the environment as well. 

 

Cohesive elements have been extensively employed inside FE software in order to predict damage 

initiation and progression in composite materials. Nevertheless, the use of cohesive elements 

increases the size of problem that needs to be solved. Thus, they have been used sparingly in areas 

where fracture is expected to occur, i.e. with pre-defined crack paths. As computational power 

increases with the introduction of new generations of supercomputers, it is advantageous to possess 

tools capable of exploiting this potential. A massively parallel and scalability study on damage 

initiation and evolution in laminate structures can be found in [4], where the exact mesoscale solution 

was investigated by employing parallel iterative solvers based on the LaTIn mixed domain 
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decomposition algorithm. Commercial packages such as ABAQUS do not scale well on parallel 

supercomputers and here we investigate the use of cohesive elements in the open source parallel 

software ParaFEM [5]. The implementation steps of a well established CZM into this open source 

software are given below. ParaFEM uses MPI for message passing and has been proven to scale on up 

to 64,000 cores for problems with >1 billion unknowns [6]. The purpose of this research is to improve 

the particular CZM, rendering it into a computational tool that will be able to capture damage in a 

more realistic and physical manner. More specifically, the simulation of damage initiation and 

propagation in CFRCs emphasizing mixed-mode failure conditions for large models where all the 

material interfaces include cohesive elements.  
 

2. The CZM  

The chosen CZM is the same as the one used in ABAQUS [7], [8]. This particular traction separation 

law has been proven to effectively capture the mechanics and physics of damage initiation and 

propagation in CFRCs [9], [10]. More specifically, in the implemented model the damage is assumed 

to initiate when a Quadratic Nominal Traction Criterion is met. nt , st , tt  indicate the current tractions 

in the normal, first shear and second shear directions respectively while the superscript C indicates 

user-defined critical values at damage initiation.  
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The Macaulay brackets < > imply that compressive forces do not contribute to failure initiation in the 

normal direction. The recorded traction values and recorded separation values when the quadratic 

criterion is met are defined as 
o

nt , 
o

st , 
o

tt  and 
o

nδ , 
o

sδ , 
o

tδ  respectively. 

After damage onset, that is after the damage initiation criterion is met, a damage evolution law defines 

the stiffness degradation of the cohesive element due to damage propagation. It can be represented 

with a damage scalar variable D, valued between 0 and 1. D = 0 indicates no damage, whereas D = 1 

indicates fully developed damage. D is the averaged (mixed mode), overall damage progression state. 

The mean traction components nt , st , tt  represent the predicted elastic traction-separation behaviour 

for the current strains without damage based on user-defined penalty stiffness. 
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Now, the fracture energy Gc is the required energy for the formation of a new surface due to fracture 

and can be employed to define the damage evolution. It is represented by the area under the traction-

separation graph (Figure 1). Since in CFRCs the fracture energies along the two shear directions are 

equal, the Benzeggagh-Kenane (η = BK exponent) damage evolution description can be employed to 

describe the mixed-mode fracture energy [9]. nG , sG , tG  indicate the work done (dissipated energy) 

thus far in the normal, first shear and second shear directions respectively while the superscript C 

indicates their user-defined critical values at full degradation. 
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A linear softening (damage evolution) law is adopted. 
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Figure 1: Mixed Mode – Linear Softening Law. 

 

The linear damage evolution, D can be expressed as such: 
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where   
o

m

Cf

m tG /2=δ                    (effective displacement at full degradation)                           (7) 

       
222

o

t

o

s

o

n

o

m tttt ++=        (effective traction at damage initiation)                                 (8) 

         
222

o

t

o

s

o

n

o

m δδδδ ++=    (effective displacement at damage initiation)                        (9) 

 

The 
max

mδ variable is employed in order to record the damage state of the interface averting the latter 

to return to its undamaged state during unloading (maximum value of the effective displacement 

attained during loading history). 

 

3. Method  

The first step that needs to be carried out before the implementation of the above CZM into ParaFEM 

is the generation of an UEL incorporating this cohesive material response. Two different UELs must 

be programmed for linear 3D meshes. A linear ‘wedge’ interface cohesive element and a linear ‘brick’ 

interface cohesive element. 2D interfaces between hexahedral elements are ‘bricks’ and 2D interfaces 

between tetrahedral elements are ‘wedges’. The thickness of these cohesive elements can be specified 

as unity. Therefore, the computed strains from the nodal forces can be equal to the displacements. The 

actual geometrical thickness of these elements in a FE Model is zero despite the fact they are solid 

elements. Thus, the geometry of the FE model can remain unaffected. 

 

The second step is the validation of the precision and correctness of these UELs via well established 

benchmark tests. Based on the work of Camanho & Dávila [8], the original benchmark tests that were 

undertaken for the validation of the cohesive capabilities of ABAQUS are being adopted. These are: a 

double cantilever beam (DCB) test, an end notched flexure (ENF) test and a mixed-mode bending 

(MMB) test. These tests can assess the functionality of the UELs under pure normal decohesion, pure 

shear decohesion and mixed-mode decohesion respectively. The newly generated numerical results 

are being compared with the original numerical and experimental results included in [8]. 
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The third step that needs to be carried out is the integration of the UELs into the source code of 

ParaFEM as a fortran subroutine. The benchmark tests should once more be modelled, this time in 

ParaFEM, and compared with all the data obtained in step 2, thus confirming the accurate 

functionality of the new features of ParaFEM. 

As a last step, scaling tests must be performed between ABAQUS and ParaFEM. The DCB test is 

selected as the benchmark test. The test must be run numerous times with a varying mesh/cohesive-

elements density, by altering the computational resources employed (number of running cores) and 

therefore, evaluating the performance of the two solvers (ABAQUS & ParaFEM) on a particular 

computer based on the overall simulation time. The results of the aforementioned benchmark and 

scalability tests will be presented in the conference. 

 
Figure 2: A typical Scaling Graph of a linear problem in ParaFEM (125 million equations: Cray XE6) [6]. 

 

4. Discussion  

The implementation procedure presented earlier is part of a greater research plan. Its purpose is to 

improve the particular CZM, rendering it into a computational tool that will be able to capture damage 

in a more realistic and physical manner on a very large scale. Simulation of real and artificially 

generated microstructures on large scale has not yet been attempted. Thus, three different interfaces 

will be modelled (matrix/fiber, matrix/matrix & fiber/fiber) with cohesive interface elements. The 

mesh geometry along with the diverse interfaces parameters are of special interest and therefore 

crucial for the delivery of meaningful results from the simulations. 
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ABSTRACT

We investigate multiple fracture evolution under quasi-static conditions in an isotropic linear elastic solid based
on the principle of minimum potential elastic energy in the framework of the extended finite element method. The
technique enables a minimization of the potential energy with respect to all crack increment directions. Results
show that the maximum hoop stress criterion and the energy minimization approach converge to the same fracture
path. It is found that the converged solution lies in between the fracture paths obtained by each criterion for coarser
meshes. This presents an opportunity to estimate an upper and lower bound of the true fracture path as well as an
error on the crack path.

Key Words: Energy minimisation ; linear elastic fracture ; crack growth criterion ; XFEM.

1. Introduction
In computational fracture mechanics as applied, for example, to damage tolerance assessment, it has been
common practice to determine the onset of fracture growth and the growth direction by post-processing
the solution of the linear elastostatics problem, at a particular instance in time. For mixed mode loading
the available analytically derived criteria that can be used for determining the onset of crack growth
typically rely on the assumptions of an idealized geometry e.g. a single crack subjected to remote loading
[9, 5] and that the kink angle of the infinitesimal crack increment is small [7]. Moreover, the growth
direction given by a criterion that is based on an instantaneous local crack tip field can only be valid for
infinitesimally small crack growth increments. Consequently, the maximum hoop stress criterion [4] and
other similar criteria [2] disregard the changes in the solution that take place as fractures advance over a
finite size propagation. Hence, due to the error committed in time-integration, fractures may no longer
follow the most energetically favorable paths that theoretically could be achieved for a specific discrete
problem.

2. Method
In our approach, we investigate multiple fracture evolution under quasi-static conditions in an isotropic
linear elastic solid based on the principle of minimum potential elastic energy, which can help circumvent
the aforementioned difficulties. The technique enables a minimization of the potential energy with respect
to all crack increment directions taking into consideration their relative interactions. The directions are
optimized (in the energy sense) by considering virtual crack rotations to find the energy release rates and
its first derivatives in order to determine, via an iterative process, the directions that yield zero energy
release rates with respect to all virtual rotations [6]. We use the extended finite element method (XFEM)
[1, 8] for discretization of a 2D continuum in order to model an elaborate crack evolution over time,
similar in principle to [3], although here we would like to consider hundreds of propagating cracks.
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3. Governing equations
The energy release rate with respect to a fracture growth direction θi can be obtained by differentiation
of the potential energy Π of the system:

Gsi = −∂Π
∂θi

(1)

Considering a general case of multiple fractures, the rate of the energy release rate can be obtained as:

Hsi, j =
∂Gsi
∂θ j

= − ∂2Π

∂θi∂θ j
(2)

In a discrete setting, the potential energy of a static system can be written as:

Π =
1
2

u′Ku − u′ f (3)

where u, K , and f are the displacement vector, the stiffness matrix, and the applied force vector. The
energy release rate with respect to an arbitrary crack incitement angle θi is defined as the negative
variation of the potential energy:

Gsi = −1
2

u′δiKu + u′δi f − δiu′(Ku − f ) (4)

in which case the last term in (4) disappears due to assumed equilibrium of the discrete system i.e.
Ku = f . Hence, the expression for the energy release rate becomes:

Gsi = −1
2

u′δiKu + u′δi f (5)

where δi f only needs to be accounted for if the applied loads influence the virtual crack rotation, e.g.
due to crack face tractions and body-type loads. The rates of the energy release rate, Hsi j are obtained
by differentiating Gsi in (5) with respect to θ j :

Hsi j = −
(
1
2

u′δ2
i jKu − u′δ2

i j f
)
− δ ju′ (δiKu − δi f ) (6)

The variations of displacements δ ju in (6) are global, and can be determined from the equilibrium
condition and that the variation must vanish, i.e. δ j (Ku − f ) = 0 and thus:

δu = −K−1(δKu − δ f ) (7)

Substituting (7) in (6) gives:

Hsi j = −
(
1
2

u′δ2
i jKu − u′δ2

i j f
)
+ (δ jKu − δ j f )′K−1(δiKu − δi f ) (8)

In (8) the second order mixed derivatives δ2
i jK and δ2

i j f capture the local interaction between the rotations
of different crack increments. However, if the crack tips are sufficiently far apart such that no geometrical
interactions exist between different rotations, then for i , j the interacting terms vanish, i.e. δ2

i jK = 0
and δ2

i j f = 0. As such, it only becomes necessary to retain the non-zero self-interactions i.e. δ2
iiK and

δ2
ii f . Consequently, by leaving out the cross-interactions, equation (8) reads as:

Hsi j = −
(
1
2

u′δ2
iiKu − u′δ2

iiF
)
+ (δ jKu − δ j f )′K−1(δiKu − δi f ) (9)
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Equations (5) and (9) can be used to determine the energy release rates and the rates of the energy
release rates associated with the rotation of different crack increments. The problem of finding the most
energetically favorable growth directions for the candidate finite length crack increments, denoted by a
set Iinc, is one requiring that the corresponding energy release rates must vanish i.e. Gsi = 0, ∀i ∈ Iinc.
The solution procedure at every time step, tn+1 can be cast as Newton-Raphson iterations:

θk+1 = θk − Hk
−1Gsk (10)

where k is the iteration count. The converged solution is attained when |θk+1 − θk | ≤ ε , ε being the
tolerance in the change in the angle of the finite crack increment, e.g. ε = 0.1◦.

4. Implementation
Although XFEM facilitates mesh independent fracture propagation the enrichment must be updated at
each time step. In the current implementation this is achieved by means of a systematic book-keeping of
the element enrichment data, addition and removal of enrichment only where necessary, and a consistent
updating of the global system of equations. Consequently, moderate computational times are obtained,
even in ourMatlab implementation. In the problems we solve, the greatest cost, by far, is in the solution
of the linear system of equations rather than in the assembly/updating.

5. Results and discussion
We compare the fracture paths obtained by different criteria for problems consisting of multiple cracks
and verify that, with mesh refinement, both criteria converge to the same fracture path provided the
criterion for growth is the same. However, the convergence rate of the energy minimization technique
to the converged crack path is found to be only marginally superior to that of the maximum hoop stress
criterion. It is found that the converged fracture path lies in between the fracture paths obtained by each
criterion for coarser meshes. This presents an opportunity to estimate an upper and lower bound of the
true fracture path as well as an error on the crack path. It is found that a more accurate approximation
of the fracture path for coarser meshes can be obtained by averaging the directions determined by each
criteria individually at every time step. Some results are demonstrated in Appendix A. Although there is
no limitation on the number of cracks in the implementation, the example cases presented consider only
few cracks as it is sufficient to demonstrate the key idea clearly.

6. Conclusions
Convergence of the maximum hoop stress criterion and the energy minimization towards the true fracture
path is found to be similar. However, from numerical experiments it is found that the converged fracture
path lies in between the fracture paths obtained by each criterion for coarser meshes. Besides the
opportunity to estimate the error on the fracture path for a given mesh, a more accurate approximation of
the true fracture path can be obtained by taking the average of the propagation directions given by each
criterion separately at every time step.
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Appendix A. Figures

x

y

Fracture paths by different criteria
(double cantilever problem with an edge crack offset by 0.01 above the x−axis)
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Figure A.1: Fracture paths considering different growth criteria for the double cantilever problem with the initial
crack positioned 0.01 above the x-axis. The prying action is exerted by prescribed displacements on the left edge.
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x

y

Fracture paths by different criteria
(simply supported cracked square plate with a pressure loaded center crack)
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Figure A.2: Fracture paths considering different growth criteria for a simply supported square plate with three
pre-existing cracks, where the center crack is subjected to a pressure load acting normal to the crack surface.

x

y

Fracture paths by different criteria
(simply supported square plate with two pressure loaded edge cracks: ∆x=0.6, ∆y=0.04)
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Figure A.3: Fracture paths considering different growth criteria for a simply supported square plate with two initial
edge cracks that are loaded by pressure acting normal to the crack surface.
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ABSTRACT
In this paper, we introduce a new computational method for the analysis of fluids subjected to high frequency
mechanical forcing. We focus attention on surface acoustic wave droplet microfluidics. In these problems, we
distinguish three time scales 1) the fast (µs) time scale of Rayleigh waves on the solid surface, 2) medium (µs-ms)
time scale of acoustic wave in the fluid droplet, and 3) slow (ms-s) time scale of capillary wave propagation on
the fluid-air surface. Finite element modelling of such problems has been limited in its ability to handle the broad
range of timescales. In particular, direct time integration techniques are computationally expensive because of the
need to resolve the smallest timescale.
Here we solve the Helmholtz equation in the frequency domain, applying hierarchical finite element approximation
based on unstructured meshes [2], where both pressure field and geometry are independently approximated with
arbitrary and heterogeneous polynomial order. We demonstrate convergence of the numerical scheme and illustrate
model performance using the example of a surface acoustic wave actuation of a droplet, which has applications in
microfluidics and microrheology at high frequency.

Key Words: acoustic modelling ; polychromatic waves ; discrete Fourier transform ; hierarchical shape functions

1. Introduction
Acoustic problems have a wide range of uses in different physical applications, albeit numerical results
can suffer from poor resolution and be computationally expensive. Here we focus on the development of
a computational tool to aid the design of acoustic diagnostic devices (lab-on-a-chip). To avoid the need
of solving the 4D wave equation, the problem is expanded to polychromatic waves via discrete Fourier
transformation in both the spatial and frequency domain with respect to the input signal, solving the 3D
Helmholtz equation instead. As shown in Figure 1b, it is presumed that the computational domain of
a droplet (shown in purple) is a hemispherical shape with contact angle 90 degree. A surface acoustic
wave (SAW) passes along a substrate that then interacts with the droplet. To determine the boundary
conditions (BCs) on the droplet, the incoming Rayleigh waves are expressed as a closed form analytical
equation based on developments from [3] and [4] (Figure 1a). A Fourier transform is then applied to the
analytical equation to establish the BCs. This allows us to solve for the propagation of the acoustic waves
in the fluid droplet in the frequency domain. This yields the pressure and velocity fields in the fluid which
serves to calculate the radiation acoustic forces. These forces can be applied to solve the problem in the
slow time scale using a direct time integration of Navier Stokes equation for droplet, specifically taking
care of the surface tension. This final part of the problem is strongly nonlinear as a result of the evolving
droplet geometry; thus, the calculations of the acoustic wave in the fluid droplet are repeated for each
time step at the slow time scale.
Initially, the problem of a plane wave impinging on the sound hard surface of a cylinder is considered,
where solution convergence is studied for both geometry and multiple physical fields. Moreover, error
estimators and the numerical efficiency of the hp-adaptivity in the context of the Helmholtz equation is
investigated. The application of hierarchical finite element approximation improves the computational
efficiency and accuracy of the acoustic solver [2]. Subsequently, the problem of SAW actuation of a fluid
droplet is considered. The proposed finite element technology is implemented in the open-source finite
element University of Glasgow in-house parallel computational code, MoFEM (Mesh Oriented Finite
Element Method).
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2. Model components

Figure 1: Surface acoustic waves application. (a) SAW actuation of a liquid drop on a LiNbO3 piezoelectric
surface, showing the leaky Rayleigh waves in the drop. (b) Illustration of the different timescales.

2.1. Boundary conditions

Let Ω be a domain in R3 with the smooth boundary and outward unit normal n. The complete form of
Helmholtz equation for the acoustic problem is defined as

∇ · ∇Φ(r) + k2Φ(r) = f (r) in Ω (1a)
(∂Φ(r)
∂n

+ iσΦ
)
= g on Γ (1b)

Φ = ΦS + ΦI (1c)

where Φ is the total acoustic potential, (ΦS and ΦI denote radiation and incident wave respectively) and
the variation of f (r) in (1a) can be regarded as a point source of acoustic wave. (1b) shows the mixed
BC with constant σ and g, which can be used to describe any BCs by modifying the parameters. If
g = 0, the Robin BC can be either Dirichlet or Neumann BC in extreme cases. σ = ρc is called the
dimensionless admittance coefficient. When σ → ∞ the boundary is soft, conversely, when σ → 0, the
boundary becomes rigid [1].

2.2. Application on microfludics

Rayleigh waves are a type of surface wave first proposed by Lord Rayleigh (1887), it is propagating along
a free surface and the amplitude decays exponentially away from the surface. Rayleigh wave consist two
types of surface acoustic waves, their potentials are: longitudinal wave φ and transverse wave (0, ψ, 0).
The closed form solution of Rayleigh waves on solid surface is given by

φ = A0e−q |y |eikx (2a)

The attenuation coefficients in analytical form are:

q2 = k2 − k2 cs
cl
> 0 (3a)

where k = ω
cs

and cs is the phase velocity (speed) of Rayleigh wave (cs = cL for leaky Rayleigh wave),
cl denotes the speed of longitudinal wave on solid surface.

As illustrated in Figure 1(a) when SAW pass beneath droplet, it leaks energy into droplet, this phenomena
is called the leaky SAW. In addition, longitudinal waves propagate into the droplet, with a complex
wavenumber kL = k + iki and speed cL , form Rayleigh angle ΘR = arcsin( clcs ) with horizontal axis. In
[4], the leaky SAW number ki = 2768 for Y-X LiNbO3 is provided.
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2.3. Polychromatic wave
The detailed procedures devised to treat the case of polychromatic waves are shown in Figure 2.


Find u ∈ H1(Ω), such that
a(ukn, vkn ) = f(vkn ) ∀vkn ∈ H1(Ω)

where a(·, ·) is the symmetric bilinear form based on H1(Ω) × H1(Ω) (ukn is the finite element solution
of ΦS (kn ) ) expressed as

a(ukn, vkn ) =
∫

Ω

∇ukn∇vkn dΩ − k2
∫

Ω

uknvkn dΩ (4a)

+ σ1

∫

Γ2

uknvkn dS + σ2

∫

Γ1

ukn vkn dS (4b)

f(vkn ) =
∫

Ω

f vkn dΩ + (ΦI (kn ) +
∂ΦI (kn )

∂r
)
∫

Γ1

vkn dS (4c)

where σ1 and σ2 are admittance coefficients corresponding to surfaces Γ1, Γ2. The system of linear
equations required to be solved

KnUn = Fn (5)

Figure 2: Diagram of polychromatic wave problem
solved by Helmholtz equation

this equation is solved for n frequency where n
frequencies is considered here. Once the results
are computed, we then apply the inverse Fourier
Transform to transfer the acoustic potential back
to the time domain. With that at hand, we can
calculate radial stress where it drives fluid into
motion at the slow time scale. The radial stress is
calculated from acoustic potential by averaging
velocities [5].

3. Computational procedure and results
a

In the pre-processor, a parameterised geome-
try with uniform mesh containing tetrahedras is
made in Cubit. Problem is solved using MUl-
tifrontal Massively Parallel sparse direct Solver
(Mumps). In this work, hierarchical Legendre
type shape functions are used. The l2 norm of
solution error is calculated for different approximations and various frequencies, plots of convergence
analysis were compared.

Figure 3(a) shows the absolute acoustic potential of computational domain around the hard cylinder.
Figure 3(b) and (c) present the convergence of the relative error. In 3(b) the polynomial order p is fixed
to 2, the mesh size h is gradually decreased. In 3(c) we increase approximation order from 1 to 7 but
keep the mesh density constant.

In Figure 3(d) and (e), we have absolute acoustic pressure and radial stress for micro-droplet with 440966
number of degrees of freedoms (DOFs) and 4th order polynomials, and in Figure 3(f) the values of stress
components on nodes along x-axis are plotted.

As we can notice from the plots (b), (c) of Figure 3, the convergence speed of p enrichment is nearly
two times faster than h refinement. Notably, the convergence speed of relative error in plot (c) started to
decrease up to certain percentages (k=3, 5, 10. 0.44%, 0.32%, 0.26% respectively), this reveals the fact
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(a) Solution for hard cylinder with
coarse mesh, p = 2

(b) Relative error of h convergence
analysis in l2 norm for impinging
cylinder (a=0.5 r=4)

(c) Relative error of p convergence
analysis in l2 norm for impinging
cylinder (a=0.5 r=4)

(d) SAW actuation of droplet with
diameter&SAW width 0.002 m, RF
power 14dBm, 5.3 MHz frequency, t =
1.2830e-07 s out of 1.8868e-07 s

(e) Cross-sectional of x-y plane radial
stress σxx in droplet

(f) Plot data over x-axis of radial stress
in droplet

Figure 3: Numerical results

that the remaining error could be due to non-reflection BC . This errors can be minimised by increasing
the domain of computation or implementing exact BCs.

In Figure 3-(d)&(e) the distribution of acoustic pressure and radial stress of droplet is presented [3], the
energy of LSAW is attenuated with height and distance travelled. the radial stress derived from pressure
can be further employed as the input source stress into separated microfluidic equations in future research.

4. Conclusions
A computational framework for polychromatic waves based on the time dependant Helmholtz equation is
described for microfluids applications. In this paper we show that improving solution quality by increasing
approximation order is more efficient than making mesh denser. Moreover we calculated radial stresses
in droplet subjected to Leaky SAW.

References
[1] Ihlenburg, F. Finite element analysis of acoustic scattering, Springer Science & Business Media,,

Vol. 132. 2006.

[2] Ainsworth, M. & Coyle, J. Hierarchic finite element bases on unstructured tetrahedral
meshes.International journal for numerical methods in engineering, 58(14), 2103-2130. 2003

[3] Reboud, J., Bourquin, Y., Wilson, R., Pall, G.S., Jiwaji, M., Pitt, A.R., Graham, A., Waters, A.P.
& Cooper, J. M. Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic
technologies. Proceedings of the National Academy of Sciences, 109(38), 15162-15167. 2012

[4] Vanneste, J., & Buhler, O. Streaming by leaky surface acoustic waves. In Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, (Vol. 467, No. 2130, pp.
1779-1800). The Royal Society. 2011

[5] Lighthill, J. Acoustic streaming. Journal of sound and vibration, 61(3), 391-418. 1978

383



 

Proceedings of the 24th UK Conference of the 

  Association for Computational Mechanics in Engineering 

31 March – 01 April 2016, Cardiff University, Cardiff 

Two Droplets interaction on substrate 

*A. Jameel, BJ. Bowen and K. Yokoi 

School of engineering, University of Cardiff, 14-17 The Parade, Cardiff, CF243AA 

 

*jameelas@cardiff.ac.uk 

 

ABSTRACT 

Dynamics of two droplets interactions on a substrate (droplet impact on a sessile droplet) are numerically 

investigated using OpenFOAM. The impact speed, location of the impacting droplet, viscosity and surface tension 

were varied in the numerical studies. We found that when the surface tension dominates the flow, the mass canter 

of two droplets moves to impacting droplet side. When the inertia dominates the flow, the mass centre moves to 

the opposite direction. 

 

Keywords: two droplets; composite location; mass centre; OpenFOAM. 

  

1. Introduction  

Accurate and controlled deposition of droplets on solid surfaces or solid surface with another pre-

located sessile droplet is a principle in many of industrial processes or applications such as solid inkjet 

printing, micro-fabrication, rapid prototyping and electronic packaging [1]. Droplets in touch must 

overlap and coalesce during the impact process to avoid breaks in the pattern being fabricated. However, 

surface tension-driven flows that happen when contacted droplets touch can shift droplets location after 

they have been deposited and such unpredictable movements may make lines break or vary in thickness. 

Although great progress has been made in the recent coalescence studies on a solid substrates, there are 

still a few issues to be addressed in the context of its wide applications. To the best of our knowledge, 

no information in literature on the trend of final footprint location between two consecutively deposited 

drops which is limited on the variety of impact speed at different lateral displacement, substrate 

wettability and liquid parameters. The contributions of this work are to study the location trend at 

different impact velocities, liquid properties, surface wettability and centre to centre displacements. 

Composite droplet edges will be tracked with time at one displacement case and different velocities to 

identify coalescence mechanism and its effect on final location.  

 

2. Numerical method and setup 

A hemispherical cap sessile droplet deposited with initial diameter Ds=4.4 mm, and located in a steady 

flow field with static contact angle equal 63o. Glycerol-water mixture liquid used here with density 

ρ=1220 kg/m3, viscosity µ=85.8 mPa.s, and surface tension 𝜎=67.1 mN/m. computational domain 

opened to atmospheric air at 23Co presenting no walls except substrate showing no boundaries influence 

on the droplet dynamics. A spherical droplet with initial diameter Do=2.8 mm, generated right to sessile 

for an overlap ratio 𝜆 = 1 − 𝐿 𝐷𝑠⁄  [1] defined as in Fig.1 and given an impact speed U. The 

computational domain has given zero initial condition, while the boundary condition was no slip for 

velocity at substrate and zero gradient for other geometrical boundaries. For pressure, zero gradients 

applied for substrate, total pressure equal zero are applied on other boundaries. The mesh used was 

166*166*45=1,240,020 cells for a domain size 14*14*3.8 (mm) in x, y and z direction respectively. 

Cell size Δx is 8.4*10-5, which provides 52 mesh nodes for sessile and 34 nodes for impacting droplet. 

This mesh resolution considered high enough for our physical demands and our resources abilities.  

The governing equations for the two isothermal, incompressible, and immiscible fluids include the 

continuity, momentum, and interface capturing advection equations based on the VOF method: 

  

𝛻. 𝑢⃑ = 0                                                                      (1) 

                                                 𝜌 (
𝜕𝑢⃑⃑ 

𝜕𝑡
+ 𝑢⃑ . ∇𝑢⃑ ) = −∇𝑝 + ∇. (2𝜇𝑆) + 𝐹 𝜎                                              (2)    
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𝜕𝛼

𝜕𝑡
+ ∇. (𝑢⃑ 𝛼) + ∇. [𝑢⃑ 𝑟𝛼(1 − 𝛼)] = 0                                                 (3) 

 

Where ρ is the fluid density, 𝑢⃑  the fluid velocity vector, S the viscous stress tensor defined as                

𝑆𝑖𝑗 = (𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖)/2 , μ is the dynamic viscosity, p is the scalar pressure, and 𝐹 𝜎 is the volumetric 

surface tension force. The volume fraction function α is used to represent a space mesh cell whether is 

occupied by the dispersed phase or the continuous phase. When the cells are full of the dispersed phase, 

the value of α is unity; the continuous phase corresponds to zero; when the mesh cells contain both the 

dispersed phase and the continuous phase, the value of α is between 0 and 1, which denotes an interface 

between the two phases. 𝑢⃑ 𝑟 Is the liquid–gas relative velocity, compressing the interface to improve its 

resolution [2]. The term α (1- α) limits the effect of the 𝑢⃑ 𝑟 to the interface region. Moreover, 𝑢⃑ 𝑟 can be 

calculated as follows: 

                                                      𝑢⃑ 𝑟 = 𝑚𝑖𝑛(𝐶𝛼|𝑢⃑ |,𝑚𝑎𝑥(|𝑢⃑ |))
∇𝛼

|∇𝛼|
                                                    (4) 

 

Where the default value of  𝐶𝛼 = 1 was used; however, a larger value of 𝐶𝛼 can enhance the 

compression of the interface. The boundedness of α function is guaranteed by a special solver named 

Multidimensional Universal Limiter for Explicit Solution (MULES) [3]. A new level set field is 

introduced to provide a more precise interface reconstruction and then reduce the parasitic currents. The 

LS field is estimated from the VOF field in each time step by ∅ = (2𝛼 − 1)𝛤, 𝛤 is a small non-

dimensional number whose value depends on the mesh step size (Δx) at the interface of the two fluids, 

and it is defined as 𝛤 = 0.75Δx [4]. The LS field is corrected by solving the re-initialization equation: 

 
𝜕∅

𝜕𝑡
= 𝑠𝑖𝑔𝑛(∅)(1 − |𝛻∅|)                                                           (5) 

 

Where ∅ should satisfy |∇∅| = 1 by its definition. The normal vector of the interface 𝑛̂ =  ∇∅ |∇∅|⁄  

can be accurately determined due to the continuity of the LS function. Thus, more precise and smoother 

interface curvature 𝜅 = ∇ ∙ 𝑛̂ can be obtained. Based on the Continuum Surface Force (CSF) model [5], 

the volumetric surface tension force can be calculated as: 

 

𝐹 𝜎 = 𝜎 𝜅(∅)𝛿(∅)∇∅                                                             (6) 

 

Where 𝜎 is the surface tension coefficient, and 𝛿 is the Dirac function used to limit the influence of the 

surface tension to a narrow region around the interface. The function of 𝛿 is cantered at the interface 

and takes a zero value in both fluids as: 

 

𝛿(∅) = {
0                                                |∅| > 𝜀
1

2𝜀
(1 + 𝑐𝑜𝑠 (𝜋∅

𝜀⁄ ))            |∅| ≤ 𝜀
                                         (7) 

 

Where 𝜀 is the interface thickness which is chosen as 𝜀 = 1.5Δx. The physical properties and the 

fluxes across the cell faces can be defined using a smoothed Heaviside function: 

𝐻(∅) = {

0                                                            ∅ < −𝜀
1

2
[1 +

∅

𝜀
+

1

𝜋
𝑠𝑖𝑛 (

𝜋∅

𝜀
)]                     |∅| ≤ 𝜀 

1                                                             ∅ > 𝜀  

                              (8) 

 

𝜌 = 𝜌𝑔𝐻 + (𝜌𝑙 − 𝜌𝑔)𝐻                                                           (9) 

𝜇 = 𝜇𝑔𝐻 + (𝜇𝑙 − 𝜇𝑔)𝐻                                                         (10) 

 

Results and discussion 

 

Three overlap ratios 𝝺 = 0.5, 0.34 and 0.18 respectively are implemented in this study as shown in Fig.2. 

Increasing impact velocity expected to force the final composite droplet to be located on the opposite 
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side of impact. From results, for small impact velocity, droplet composite location was moving 

gradually towards impact direction (to right), this trend changed at specific critical velocity and 

composite located away from direction of impact for higher value of velocity. Fig 3 shows the final 

(steady state, T=0.5s) edges and mass centre location at different values of velocity compared with the 

mass centre location of two droplets at zero condition for case 𝝺 = 0.34. Comparing mass centre at 

before impact, mass centre always located to the right side for a velocity range U= 0.2 - 1.5(m/s). We 

noticed max location to the right at a critical impact speed U=0.5(m/s) where location trend deflected 

to the left but still located at the right side of initial mass centre. Mass centre located to the left side of 

initial mass centre for U=1.5(m/s) and above. To understand the reason behind such non trivial trend of 

composite location, the right and left edge displacement 𝑋𝐿 , 𝑋𝑅 = |𝑑𝐿,𝑅| 𝐷𝑆⁄ + 𝐿 [1] of composite 

droplets have been tracked with time as shown in Fig.4. For velocity range U= 0.2 - 0.5 (m/s), tracking 

right edge with time showed spread to right, this spread increase due to increasing velocity. The left 

edge stayed pinned with substrate showing no spread because of no sensible effect reached from the 

impact droplet within this range of velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

When maximum spread reached, capillary forces effected to recoil the composite due to surface tension. 

 Figure 3: Final edges and mass centre location of composite droplets at different impact speed.  
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Figure 1: Deposition of 

two droplets on a solid 

surface (a); Spread length 

Dy (b); maximum spread 

length Dy,max (c); 

minimum spread length 

Dy,min (d). 
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Figure 2: Contour of composite of two droplets at steady state for  

three different overlap ratios (𝝺) and different impact speeds. 
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This recoiling reflected on retracting both right and left edges and considered the reason of locating 

composite droplet on the side of impact droplet. For bigger impact velocity (U > 0.5 m/s), impact droplet 

influenced on the left edge of sessile due to bigger liquid wave transferred from the right. Sessile left 

edge unpinned and exhibited spread to the left, this spreading increases with bigger impact velocity. 

Sessile left edge unpinned and exhibited spread to the left, this spreading increases with bigger impact 

velocity. Recoiling due to surface tension represented in retracting of both edges towards equilibrium 

condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

Effect of lateral separation, impact speed and liquid properties on composite droplet location was conducted 

numerically using OpenFOAM. We found that composite droplet location relative to initial condition 

controlled by the impacting droplet velocity and liquid properties but showing same non-trivial final 

location movement for different overlap ratios used in this research. For high value of surface tension, no 

inertia effect, composite droplet always located to impact side. Opposite happens for lower value of 

surface tension, inertia dominates and mass centre moves to the opposite direction. 
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Figure 4: displacement of the right and left edges relative to maximum points.  

(a) U= 0.5 (m/s); (b) U= 0.8 (m/s); (c) U= 1.5 (m/s); (d) U= 3 (m/s). 
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ABSTRACT 

An existing model[1] capable of predicting concentration polarisation and cake formation in crossflow 

membrane filtration is implemented on different parallel platforms. The governing equations, Navier Stokes 

equations for the hydrodynamics and convection diffusion equation for suspended particles, are solved 

numerically using the lattice Boltzmann method. The equations are coupled through velocity, viscosity and 

diffusion coefficient, which are assumed to vary with the solute concentration. 

 

The sequential algorithm is analysed to identify potential parallelisation sections and is implemented in C++ 

with OpenMP for multicore CPU, MPI for distributed memory CPUs clusters and CUDA for GPUs clusters. For 

each parallel implementation, optimisation is carried out too remove all identified bottlenecks. In general, these 

optimisations aim to fully utilise pipelines concurrently and eliminate unnecessary workload. 
 

The parallelised algorithms are validated by comparing the results obtained for a number of problems with the 

predictions produced by other computational models and experimental results available in literature. With the 

current setup, the algorithms are both memory bound and compute bound, which allow them to scale well with 

increasing number of computing units. The paper will demonstrate the bottlenecks, effectiveness of 

optimizations and the performance of the parallel codes. 
 

The parallel implementation of the modelling process demonstrates the potential of the computational technique 

to be deployed for the prediction of concentration polarisation and cake formation in a fast and efficient manner. 

Simulations can be done with higher resolution in a much faster timeframe, which allows better optimization of 

membrane filtration processes. 

Keywords: filtration; parallel computing; optimization 
  

1. Filtration Model  

The lattice Boltzmann method(LBM) is used to solve the Navier Stokes equations for fluid and 

convection diffusion equation for solute particles[1]. The general formulation of LBM is as follow. 

)(),()1,( ftxftexf ii    

The left hand side represents the streaming step as each partial distribution function(PDF) shifts to a 

neighbour cell. The right hand side represents the collision step, where the collision operator 

rebalances each PDF to simulate change in direction due to particle collision. The details of the 

collision operator depend on the type of flow. For fluid flow we adopt the multiple relaxation time 

method by d’Humieres et al[2], for porous cells, such as membranes and cake formation, we adopt the 

modified BGK operator by Freed[3], and for solute particles the BGK operator is applied with 

variables altered to suit the convection diffusion equation. 
 

To couple the Navier Stokes equations and convection diffusion equation the viscosity and diffusion 

coefficient are subject to changes according to the local concentration and shear rate. 
 

When the local concentration of particles reaches a pre-set value, a lattice cell is considered to be a 

cake layer and modelled as a porous cell. 

 

2. Code Restructuring 

The first and foremost problem to identify is the dependencies of the simulation, as parallel 

computing involves multiple computational units it is vital to assign workload that does not clash with 

each other. 
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The collision step in LBM is completely local, as it only uses local information. Different processors 

can work on different lattice cells without interference. However at a processor level, reordering 

instructions can also improve performance, this is achieved by fully utilising all pipelines available. 

By calculating variables such as density, momentum and concentration at the beginning of a time step, 

most calculations in the collision step can be issued independent of each other, thus able to use all 

available pipelines and achieve a higher performance. Below is a comparison between the original and 

revised algorithm. 

 

Solve fluid collision 

Compute macroscopic variables 

Solve solute collision 

Compute concentration and update viscosity 

Compute concentration and update viscosity 

Compute macroscopic variables 

Solve fluid collision 

Solve solute collision 

Algorithm 1: Original code     Algorithm 2: Revised version 
 

In algorithm 1, each section of calculation is dependent on the previous section, which means there 

are three bottlenecks that the processor cannot proceed before every current workload is completed. In 

the updated version (Algorithm 2) calculations are independent of the last section of code, which 

means that as soon as a pipeline becomes free, it can carry out the next set of calculations instead of 

waiting for all other pipelines. 

 

In a naive approach to perform the streaming step, one would shift the data to the neighbouring cells. 

This means reading data from the original location and saving to a new location, altering the value 

that was stored there. It requires a specific shifting order to ensure data correctness, and prohibits 

proper parallelisation. Moreover streaming is no more than a read and write operation to the 

processor, which is also exactly what the collision step has to do. By combing the two steps together 

only half as many memory transactions are required. 

 

To accommodate these issues we adopt the AA pattern by Bailey et al.[4] There are two schemes for 

odd and even time steps. Figure 1 shows the memory operations for the cell in the centre. In odd time 

steps data is read as normal (first from left), but the PDFs are stored in the memory space of the 

opposite direction PDF (second from left). Even time steps perform a pull - collision - push, reading 

data from the neighbouring cells(second from right) and then storing similar to the previous step, 

swapping back to the natural memory space in the neighbours (first from right). The memory 

operations of this scheme is then completely local for each cell at each time step, since the processor 

read and write at the same location, and is inherently parallel. 

        

Figure 1: Read and write operations with AA pattern. Left: Odd time steps. Right: Even time steps. 
 

The restructuring on the previous code has improved the performance by a factor of two. 
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3. Grid Division 

For a cluster of CPUs or GPUs it is essential to divide the grid so that each CPU or GPU have equal 

workload and know which processors to communicate with. The current work concerns 2D problems 

and there are two different methods on grid division; dividing the grid along the longest axis, or 

dividing the grid along both axes. The former method is simpler and each processor has up to two 

neighbours, but has a longer boundary, the latter attempts to divide the grid into squares, thus having a 

smaller boundary but can have up to eight neighbours. 

 

In GPU programming the simple grid division is clearly superior, due to coalesced memory access. 

On the other hand CPUs are less reliant on memory access pattern and a test was conducted to find 

out the differences.   

 

Figure 2 shows the performance of 60 CPU cores on filtration simulation of various gird sizes, the 

performance in presented in terms of million lattice update per second (MLUPS), given by  

step afor  taken cells/time ofnumber  = MLUPS  

 

 
Figure 2: Performance of 60 CPU cores,    Figure 3: Efficiency of CPU cores on 3 grid sizes 

  using different grid division methods  

 

The simple approach performs much better on small grids due to smaller communication overheads, 

and on large grids where the complex method communicates faster, the differences are minimal since 

calculations took much more time compare to communication. This shows that the simple grid 

division is better on CPU clusters as well. 

 

4. Results and Discussion 

Results on CPUs 

Table 1 shows the speed up when fully utilising an 8-core CPU instead of just 1 core, the grids tested 

ranged from small 2D problem to large 3D problem. Up to 7.49 times was achieved which is 

equivalent to 93.75% efficiency. 

 
Table 1: Factor of speed up on an 8-core CPU 

 

Number of cells 13,680 123,120 1,368,000 5,472,000 34,200,000 136,800,000 

Speed up 5.78 7.29 7.05 7.16 7.49 7.39 

 

On a cluster of CPUs we tested the larger grids due to the scale of computing power when compared 

to one CPU. Figure 3 shows the efficiency of up to 240 CPU cores, which is over 85% and 92% for 

the 5.5million cells and 130million cells grid, whereas the 1.3million cells grid scale well with over 

80% efficiency until over 140 cores were deployed. This is because the time taken for each time step 

falls under 1 millisecond, and the communication time becomes significant.  
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Bottleneck on CPUs: 

While many other LBM simulations are described as memory bound, the current model includes 

coupling the fluid and solute particles, which introduced a long dependency chain and doubles the 

amount of calculations. Thus to a certain degree it is compute bound, which is why our multicore code 

is able to scale well with additional processors. However as it is necessary to inspect whether a cell is 

a fluid cell or porous cell, it requires reading information before any calculations can begin, which 

incur a section of code that is memory bound. This can be observed in Figure 2 as some of the smaller 

grids have the highest performance due to data fitting in the CPU cache and has a higher bandwidth. 

 

Results on GPUs: 

The current code was tested on a Titan Z and Quadro K5200. The Titan Z is a dual GPU with 5760 

CUDA cores and 1:3 ratio of double precision units to single precision units. The Quadro K5200 has 

2304 CUDA cores and 1:24 ratio of double to single units. Due to the difference in double precision 

capability, our code is compute bound on the Quadro and memory bound on the Titan. Kernels are 

launched with blocks of 512 threads, which allow each thread to have up to 128 registers and give 

optimal performance.  

 

Table 2 shows the speed up compared to a sequential code. The Quadro K5200 GPU has a much 

lower performance at all stages than a single GPU on Titan Z due the lack of computing power. When 

both GPUs on the Titan Z are used, the communication between the two devices incurs a ~0.35ms 

penalty between time steps, which makes small grids very slow to process. On the larger grids the 

Titan Z is able to perform 72.7 times faster than a sequential code. 

 
Table 2: Factor of speed up on two GPUs 

 

Number of cells 13,680 123,120 1,368,000 5,472,000 34,200,000 

Quadro K5200 9.2 17.5 19.1 20.1 20.4 

Titan Z (1 GPU) 24.5 34.9 37.8 38.8 38.7 

Titan Z (2 GPU) 1.8 40.1 55.1 70.5 72.7 

 

5. Conclusion 

An existing filtration simulation code was rewritten to make use of multiple processing units available 

in modern computer structures. The programmes are able to scale efficiently with increasing number 

of processors and provide performance that enable the simulation of industrial problems in an 

acceptable time scale. 
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ABSTRACT

We propose a conservative multi-moment method based on 3rd order polynomial interpolation functions and the
essentially non-oscillatory (ENO) scheme. Based on CIP-CSL3, the proposed method employs two multi-moment
based 3rd order polynomial interpolation functions; CIP-CSL3D where three constraints are used in the upwind
cell with one constraint in the downwind cell-centre, and a new, complementary method CIP-CSL3U, which uses
a constraint in the upwind cell-centre instead. Based on the ENO (Essentially Non-Oscillatory) scheme, either
CSL3D or CSL3U is chosen using a local smoothness indicator.

Numerical results from common benchmark tests in one dimension (both linear and non-linear) show that this
scheme maintains 4th order accuracy for smooth profiles while successfully reducing numerical oscillation around
discontinuity without giving way to numerical diffusion. Its competitive results show that this is a promising high-
order method for CFD applications given its algorithmic simplicity, and can be extended for multi-dimensions.

Key Words: CIP-CSL; multi-moment; ENO; upwind scheme

1. Introduction

Many numerical schemes have been developed for solving hyperbolic equations [1][2][3]. A way to
improve order of accuracy is by increasing the stencil size or by employing the multi-moment method,
where at least two types of moments are used and each is updated using a different formulation. For
example, the CIP-CSL2 (constrained interpolation conservative semi-Lagrangian) method solves the
conservation equation by using two boundary values updated using the finite difference formulation and
a cell integrated average moment updated using the finite volume formulation.

Several variants of the CIP-CSL method have been proposed thus far (CSL3 [4], CSL3D [5]). We pro-
pose a variant of CIP-CSL3 method with an ENO-like formulation [6].

2. Numerical Method

The CIP-CSL method solves the conservation equation

∂φ

∂t
+
∂(uφ)
∂x

= 0 (1)

where φ is the property being transported at a constant velocity u along the x axis.

2.1. CIP-CSL3D method

The CIP-CSL3D uses 3 moments in the upwind cell (i.e. 1 cell average φ̄i−1 and 2 cell boundary values
φi− 1

2
and φi− 3

2
) and 1 moment in the downwind cell centre (φ̂i) which is itself interpolated from the

downwind cell’s boundary values and cell integrated average. Consequently it yields a cubic interpola-
tion function as such, for u > 0

ΦCSL3D
i−1 (x) = CCSL3D

3, i−1 (x − xi− 1
2
)3 + CCSL3D

2, i−1 (x − xi− 1
2
)2 + CCSL3D

1, i−1 (x − xi− 1
2
) + φi− 1

2
(2)
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to interpolate between φi− 1
2

and φi− 3
2
.

Using this interpolation function, the boundary value φi− 1
2

is updated by the conservation equation in a
finite difference form

∂φ

∂t
+ u

∂φ

∂x
= −φ∂u

∂x
(3)

and the cell average is updated by

∂

∂t

∫ x+ 1
2

x− 1
2

φdx = −Fi+1/2 − Fi−1/2

∆x
(4)

where Fi−1/2 is the flux at cell boundary xi−1/2.

2.2. CIP-CSL3U

This is a proposed variant of CIP-CSL3 complementary to CIP-CSL3D, where an upwind moment in
the cell centre (φ̂i−2) is used as a constraint. The cubic interpolation function used to interpolate between
φi− 1

2
and φi− 3

2
is similar as that used for CSL3D

ΦCSL3U
i−1 (x) = CCSL3U

3, i−1 (x − xi− 1
2
)3 + CCSL3U

2, i−1 (x − xi− 1
2
)2 + CCSL3U

1, i−1 (x − xi− 1
2
) + φi− 1

2
(5)

for u > 0. The cell boundary and cell integrated average are updated in the same manner as CSL3D.

2.3. ENO-like Combination of CSL3D and CSL3U

The ENO scheme proposed a way to avoid interpolating across discontinuities to avoid oscillations. A
hierarchy is developed beginning with 1 or 2 cells, and 1 cell is added at a time to the stencil from two
candidates on the left and right based on its local smoothness determined by some smoothness indicator.
Our proposed method departs from the ENO method by instead having 2 fixed stencils, which is selected
depending on their respective smoothness.

The smoothness indicator used to select between the 2 stencils is a modified version of the indicator
proposed by Zhang and Shu (2007) [7].

SCSL3U =

∫ x+ 1
8

x− 1
8

∆x
(
δφCSL3U (x)

δx

)2

dx − 7
9

∫ x+ 1
8

x− 1
8

∆x3
(
δ2φCSL3U (x)

δ2x

)2

dx (6)

SCSL3D =

∫ x+ 1
8

x− 1
8

∆x
(
δφCSL3D (x)

δx

)2

dx − 7
9

∫ x+ 1
8

x− 1
8

∆x3
(
δ2φCSL3D (x)

δ2x

)2

dx (7)

3. Results

We validate the proposed method using both linear and non-linear scalar transport problems. In this
paper, the results by CSL3 and CSL3D are also included in this section for comparison.

393



3.1. Complex wave propagation

We test the proposed methodology using the complex wave propagation problem, with u(x) = 1, grid
size N = 200, ∆t = 0.4∆x, ∆x = 2/N , and periodic boundary conditions.

Figure 1: Numerical results of the complex wave propagation test at t=16 (4000 time steps) with N=200

Figure 1 shows that unlike CSL3, CSL3D and CSL3U capture sharp edges well. It is also evident that
the oscillations generated by CSL3D and CSL3U are on opposite sides of each other (i.e. where CSL3D
has oscillation on the downwind side, CSL3U has the same oscillation on the upwind side). CSL3DU
successfully combines CSL3D and CSL3U by preserving sharp edges and suppressing oscillations.

3.2. Square wave propagation in a non-uniform velocity field

In this test, a square wave is transported in the following non-uniform velocity field

u(x,0) =
1

1 + 0.4sin(2πx)
(8)

Figure 2 shows that while individually, CSL3D and CSL3U generate large oscillations near disconti-
nuities similar to Test 1, the combination of both eliminates oscillations to the same degree as CSL3
without giving way to diffusion.
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Figure 2: Numerical results of square wave propagation in a non-uniform velocity field at t = 1.8 and N = 300

4. Conclusions
We proposed the CIP-CSL3DU method which employs two 3rd order polynomial interpolation func-
tions. One interpolation function is constructed based on 3 constraints in the upwind cell and 1 con-
straint in the downwind cell (CIP-CSL3D) and one interpolation is based on 3 constraints in the upwind
cell and 1 constraint in the further upwind cell (CIP-CSL3U). By selecting the smoother of these two
stencils, we produce CIP-CSL3DU which successfully suppresses Gibbs oscillation while maintaining
numerical viscosity.
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Abstract 

Fluid-Structure interaction (FSI) problems have received significant attention in many applications in the recent 

decade. An FSI problem can be simulated either in an inertial frame of reference or in a moving (non-inertial) 

frame of reference. In the latter case, which is mainly applicable when there is only one moving body, the frame 

of reference in which the governing equations are solved is attached to the moving body.  

In this paper, an immersed boundary (IB) interpolation approach is used to simulate fluid flow. A 

comprehensive parametric study is performed to find the optimum mesh size and computational domain extent. 

In addition, the effect of the fluid inertial force in a moving frame of reference is investigated by studying 

hydrodynamic forces. It is shown that the difference between the governing equations in the relative and inertial 

frames of reference are the fluid inertial forces which can be added separately to the simulation results. In 

addition, results of simulations using two frames of reference are contrasted. It is shown that the main sources of 

noise in the lift coefficient are the pressure fluctuations in the non-inertial frame of reference.  

 

Key words: Immersed-Boundary, interpolation/Reconstruction method, pressure gradient, Vortex shedding, FSI 

 

1. Introduction  

Fluid flow around a moving bluff body with an irregular geometry has been extensively studied and 

can be categorised in various ways [
1,2

]. Regardless of the simulation approach (conforming grid, e.g. 

ALE or non-conforming grid, e.g. IB), it is possible to simulate moving boundaries in either inertial or 

non-inertial frames of reference. Here an immersed boundary (IB) method is applied in both frames of 

references [
3
]. 

Paskin [
4
] was the first to employ the immersed-boundary method for solving flow problems in 

regions with complex/moving boundaries. These methods are normally classified, by the way that the 

solid boundary is enforced, into continuous and discrete forcing approaches. In the later scenario, the 

interpolation/reconstruction method is a popular approach: When the boundary does not align with a 

mesh line, the solution algorithm is locally replaced by a velocity interpolation to enforce 

the boundary conditions on the flow field [
5
]. Note that in order to fulfil the conservation of mass near 

the immersed boundary, extra measures need to be taken (more detail see [
5
]).  

When there is only one moving body, employing a relative frame of reference that is attached to the 

body could improve non-conforming grid approaches significantly as there is no need to update the IB 

formulation due to movements of the body relative to the background computational grid.   

To solve the governing equation in the relative frame of reference two fundamental changes are 

necessary. First of all, the governing equation should be adapted for usage in the relative frame of 

reference [
6
] by adding additional terms to compensate for the effect of the moving frame in the 

calculation. Also, the boundary conditions should be transformed for usage in the relative reference. 

Here, only movements in the transverse direction are considered. 

 

2. Numerical model 

This section briefly outlines the theory and governing equations necessary to simulate a moving body 

in inertial and non-inertial frames of reference. For reasons of simplicity and easiness of 

generalization of the solution algorithm, the non-dimensional form of the Navier-Stokes equation is 

used. The non-dimensional Navier-Stokes equations in primitive variable are given in equation     (1). 

In the moving frame of reference the acceleration of the structure needs to be added to the governing 

equations and  the velocity boundary conditions will also need to be transformed to the relative frame 

(for more details see [
6
]).  

The flow governing equations in both frames of reference are solved by the fractional step (Chorin 

projection approach) method. The intermediate velocity is calculated at first instance using a Runge-

Kutta method for integrating the momentum equations in time. The velocity is subsequently projected 
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onto a solenoidal space by adding the pressure obtained by solving the pressure Poisson equation 

(PPE), which is solved using a SIP solver. The Neumann condition for the PPE should be updated by 

projecting the momentum equation at the immersed boundary to account for the solid acceleration [
6
]. 

 
∂V

∂t
+ V ∙ ∇V = −∇p + 1

𝑅𝑒⁄ ∇2V 
        (1) 

∇. V = 0  

 

3. OSCILLATION OF A BODY IN CROSS FLOW DIRECTION  

In this problem, the body oscillates with a prescribed motion in the cross flow direction at specific 

range of oscillations where the frequency of vortex shedding around the body becomes similar to the 

oscillation frequency (‘lock-in’ phenomenon). Here, the prescribed motion is defined in equation (2), 

where 𝑦𝑐(𝑡) is the location of the centre of the cylinder and 𝐴0𝑦 , 𝜔 and 𝑓  are the amplitude, the 

frequency in rad/s and the frequency in Hz of the prescribe oscillation, respectively. 

 

𝒚𝒄(𝒕) = 𝑨𝟎𝒚𝑺𝒊𝒏(𝝎𝒕) = 𝑨𝟎𝒚𝑺𝒊𝒏(𝟐𝝅𝒇𝒕) (2) 

In the moving frame of reference approach the reference frame is attached to the moving body and the 

boundary conditions are transformed accordingly. Note that the flow about a circular cylinder forced 

to oscillate in the cross flow direction is kinematically the same as the flow about a fixed cylinder in a 

free stream with a superimposed oscillatory cross flow. It should be noted, however, that these two 

flows differ dynamically due to the inertial effects. This effect is known as the Froude-Krylov force in 

the literature [
7
]. To simulate flow over a moving body using an IB approach in an inertial frame of 

reference the interpolation formula needs to be regularly updated, while in the moving frame of 

reference the interpolation formula remains unchanged. The main advantage when using an IB 

approach is the ability to simulate the Fluid-Structure-Interaction (FSI) for a moving/deforming object 

on a fixed grid.  

 

4. Results   

Various parameters, which could potentially affect the hydrodynamic forces exerted by the uniform 

stream on an oscillating cylinder, are studied. According to the parametric study for flow around a 

moving cylinder with prescribe motion, the mesh size, the domain size upstream of the cylinder and 

the domain size in the cross stream direction are the most influential factors. Here, these effects are 

studied for a cylinder oscillating in the cross flow direction with an amplitude of A/D=0.2, while the 

frequency of excitation is fe=1.05fs. The parametric study is performed at Re=100, based on the free 

stream velocity and the cylinder diameter, where fs=0.167 is the Strouhal frequency for a stationary 

cylinder.  

 

  
Figure 1: The effect of domain size in the y direction on the mean drag and maximum lift 

 

The numerical results show that lift and drag coefficient changes become negligible (less than 1%) for 

the grid sizes finer than 0.025D. Also, if the size of the domain upstream of the cylinder is increased 

from 20D from 30D, the mean drag and maximum lift coefficients only change by 0.2% and -1.5% 

respectively. In addition, the blockage effect on the lift and drag coefficient is less than 1% when the 

size of the domain in the transverse direction exceeds 40D (Figure 1). 
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4.1 Effect of inertial forces 

When the flow governing equation is solved using relative velocities rather than absolute ones, 

without deriving the equations in a moving frame, inertia effects need to be added to the relative 

hydrodynamic forces (case A). On the other hand, if the flow governing equations are derived in the 

moving reference frame the flow forces will include inertia effects (case B).  This has been shown 

Figure 2, where in both simulations, Re=150, 𝐹 = 𝑓𝑒 𝑓𝑠⁄ =0.9 and the relative velocities are defined at 

the inlet and far-field boundaries (top and bottom).   

In both cases (Case A and B) the pressure, the lift due to shear, the drag coefficient due to pressure 

and the shear stress are found to be identical (Error! Reference source not found.). The only 

difference is in the lift due to the pressure which is caused by the inertial force. In Figure 2 (left), the 

red line and the green line show the lift coefficient (due to pressure) for cases A and B, respectively. 

In this figure, once the lift in case A (red line) and the inertial effect (orange line) are added together 

(back dots), the results become in good agreement with the lift coefficient obtained in the case B 

(Green line).    

 

 

 

 
Figure 2:  inertial effect to correct lift coefficient calculated in moving frame of reference 

 

4.2 Moving frame verses inertial frame of reference  

The governing equations are solved in both the moving frame of reference and the inertial frame of 

reference. In both approaches an IB interpolation method is used to enforce the immersed boundary. 

In the moving frame of reference, however, the interpolation formulas are not updated so that the 

simulation is less time consuming and the results are much smoother.  In both cases a cylinder is 

forced to oscillate in the cross flow direction, the Reynolds number is 100 (Re=100), the amplitude of 

the oscillation is 0.2D and the frequency of the oscillation is 1.05 times the vortex shedding frequency 

(0.167). The Reynolds number is based on the free stream velocity and the cylinder diameter, D. 

The lift and drag due to pressure for both approaches (moving and fixed frame of reference) are 

shown in the Figure 3. The results from the inertial frame of reference simulations show noise in the 

lift and drag signals due to pressure (dotted line). The reason for this is that the interpolation formulas 

are updated at each time step.  

The lift and drag due to shear stress for both non-inertial and inertial frames of reference are similar 

and do not show any noise (Figure 3, right). It can be concluded that the noise in the lift and drag 

coefficients are due to the calculation of the pressure. Also this possibly explains why the inertial 

frame of reference approach is so time consuming. Not only updating the interpolation formulas is 

taking extra simulation time but also the Pressure Poisson equation needs more iteration to converge 

due to the noise in the pressure.  
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Figure 3: dotted lines, inertia frame of reference; dash lines, moving frame of reference  

 

5. Conclusion  

The flow around a circular cylinder with a prescribed motion in cross flow using an IB approach is 

studied in inertial and non-inertial frames of reference. A comprehensive parametric study is 

performed to find the optimum mesh size and to define the size of the computational domain. The 

effect of flow inertial forces is presented in both frames of reference. Also the lift and drag 

coefficients were compared in detail and source of the noise in the lift and drag coefficients was 

identified to be due to spurious pressure fluctuations caused by the regular changes of interpolation 

parameters at the IB.   
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ABSTRACT 

In this paper, the behaviour of fractures and their effect on the stress state in a reservoir is investigated as one of 

the key factors to predict fractures evolution throughout the process. For the numerical modelling, an Extended 

Finite Element (XFEM Model) has been developed. Also, a model based on an EPR-based (data mining) 

method has been adopted to predict the fracture behaviour. The data collected from numerical simulations are 

used to train the EPR-based Models [1]. 

Keywords: Fracture model, XFEM, EPR 

  

1. Introduction  

Stress state in geological formations going through hydraulic fracturing is significantly different from 

stress state in a normal geological formation especially in the zones near a wellbore. The drilling of a 

well or injecting high pressured fluid into a formation can form a complex stress regime close to a 

wellbore [6]. In order to study this near wellbore stress state, it is necessary to investigate the 

evolution of hydraulic fractures in a formation. 

 

This research attempts to make a comparison between a numerical model and a data mining model to 

capture the fracture behaviour. First, an Extended Finite Element (XFEM) model has been developed 

to simulate the fracture response and calculate the stress fields and displacement in a fractured 

medium. The XFEM model is an elastic 2D model under plain strain and quasi-static conditions. 

Fracturing process is modelled based on linear elastic fracture mechanics (LEFM) theory. XFEM 

allows discontinuities to be modelled within the finite element mesh and fracture geometry can evolve 

in any step of the simulation without any need of re-meshing of the finite element mesh [3,4]. Also, a 

new method is adopted to model the fracture response by applying evolutionary polynomial 

regression technique. The results obtained by the proposed EPR-based model illustrate very good 

agreement with the numerical results and available analytical solutions. It is possible to generate more 

than one model for a specific case using EPR approach. These models could have different accuracy 

their predictions. More detailed discussion regarding the method can be found in [1]. 

 

2. Extended Finite Element Model 

 

Different numerical methods have been proposed by researchers to simulate the crack growth problem 

such as discrete element methods and boundary element methods. In the past, several strategies have 

been developed within the finite element framework in order to address the feasibility of numerical 

simulation. Most effective one is the extended finite element method (XFEM). In this approach, 

discontinuities such as cracks are permitted to propagate independently of the finite element mesh by 

allowing the crack to cross the elements. In XFEM, the finite element mesh will be enriched by 

additional degrees of freedom on the nodes affected by the cracks (figure 1). 
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XFEM will allow you to preserve the symmetry and sparsity of stiffness matrix, arbitrary crack 

geometry to the mesh and employing automatic enforcement of continuity [3,4]. The extended finite 

element (XFEM) approximation to calculate the displacement of a certain point (x) in a domain with a 

discontinuity is [2] 

 

 u(x) = uFE + uenr 
 

(1) 

 

u(x) = ∑ NI(x)uI

IϵN

+ ∑ ÑI(x)(H(x) − H(xI))aI

IϵNcr

+ ∑ ÑI(x)

IϵNtip

∑(Fk(r, ɵ

4

k=1

) − Fk(xI))bI
k 

 

(2) 

   

Where 𝑥 is the position vector; 𝑁𝐼 and 𝑁𝐼 are the standard and enriched shape functions; 𝑁 is the 

number of nodes in the finite element domain; 𝑁𝑡𝑖𝑝 is the number of nodes of elements containing a 

crack tip; 𝑁𝑐𝑟 is the number of nodes of elements cut by a crack but do not contain a crack tip. 

 

In XFEM, The nodes of an element cut by a discontinuity are enriched by Heaviside function [2] 

 
H(x) = {

−1, x < 0
1, x > 0

 

 
(3) 

And the nodes belong to an element containing a crack tip are enriched by the crack tip enrichment 

functions defined as [2] 

 F1(r, ɵ) = √rsin
ɵ

2
 , F2(r, ɵ) = √rcos

ɵ

2
 , F3(r, ɵ) = √rsin

ɵ

2
sinɵ , F4(r, ɵ) = √rcos

ɵ

2
sinɵ 

 
(4) 

Where 𝑟 and ɵ are local polar coordinate system at the crack tip. 

 

 

 

Figure 1. Enriched finite element mesh. Nodes enriched by tip functions are marked with red 

squares. Nodes enriched by step function are marked with red crosses. 

3. Evolutionary Polynomial Regression Model 

Evolutionary polynomial regression (EPR) is a data mining method based on evolutionary algorithms. 

EPR is designed to search for polynomial structures representing a system. A general EPR 

formulation can be presented as [1]: 

 
y = ∑ F(X, f(X), aj) + a0

n

j=1

 (5) 
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Where 𝑦 is the estimated vector of output of the process; 𝑎𝑗 is a constant; 𝐹 is a function constructed 

by the process; 𝑋 is the matrix of input variables; 𝑓 is a function defined by the user; and 𝑛 is the 

number of terms of the target expression. In EPR algorithm, the evolutionary starts with computing a 

constant mean of output values. The number of parameters in the model equations will increase by the 

raise in the number of evolutions in the process. The accuracy of each EPR model can be determined 

based on coefficient of determination (COD) as the fitness function [1]: 

 

 
COD = 1 −

∑ (Ya − Yp)2
N

∑ (Ya −
1
N

∑ YaN )2
N

 

 

(6) 

Where 𝑌𝑎 is the real output value; 𝑌𝑝 is the output predicted by EPR model and 𝑁 is the number of 

data points used to determine the COD. Any EPR-model which does not reach an adequate value of 

fitness or other termination conditions, maximum number of generation and maximum number of 

terms, needs to go through another evolution loop to obtain a new model [5]. 
 

4. Results 

A number of conventional fracture mechanics problems are simulated by XFEM. Figure 2 shows a 

tensile plate with an edge crack. The analytical solution for the mode I stress intensity factor for this 

example is 

 𝐾𝐼 = [1.12 − 0.23(𝑐) + 10.56(𝑐)2 − 21.74(𝑐)3 + 30.42(𝑐)4]𝑃√𝜋𝑎 
 

(7) 

Where P is the applied tensile stress; 2𝑎 is the crack length and 𝑐 is the ratio between the crack length 

and width of the plate. The following range of inputs are used in the XFEM simulation, 250 ≤ 𝑃 ≤

2500 𝑝𝑠𝑖 with increment of ∆𝑃 = 10 𝑝𝑠𝑖 which will provide 226 unique values for the stress value. 

Also, 0.05 ≤ 𝑐 ≤ 0.45 and increment of ∆𝑐 = 0.025 gives 17 different values. The EPR-based 

models are computed based on the results determined by XFEM. The size of the dataset used in the 

EPR-based analysis is 3842. About 85% of the data is used to train the EPR model and 15% for 

validation of the models. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Tensile Plate with an edge crack. 
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Table 1 Shows 6 models produced by EPR. The EPR model with higher COD and less complexity is 

the best choice [5]. Stress intensity factor (K) values predicted by best EPR model show a good 

agreement with the numerical results and exact analytical solutions (see Figure 3). 

 

Conclusion 

 

Fracture models have been developed using evolutionary polynomial regression method. Models 

predict stress intensity factor values at crack tips. The results demonstrate that EPR models can 

predict stress intensity factor values effectively and accurately. EPR-based fracture models can be 

implemented into numerical calculations to decrease the computational time and effort. 
 

Table 1: EPR expressions 

 

Figure 3. Stress intensity factor (K) vs applied stress 
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ABSTRACT 

Artificial turf systems are increasingly prolific, and are typically comprised of multi-components. Their 

responses to interactions with users and equipment can be relatively complex under different loading conditions 

as they tend to be polymeric and elastomeric and hence can exhibit non-linear and strain rate dependent 

behaviour. To further study and better understand the behaviour of these systems, the development of a 

numerical model to accurately predict individual layers’ behaviour as well as the overall system’s response 

under different loading conditions is necessary. Such a model can be used to better optimise surface design such 

as material choices and layer thickness, also possibly reducing construction costs. The purpose of this study was 

to model the mechanical behaviour of the rubber shockpad layer used in 3G artificial turfs using finite element 

(FE) analyses. Shockpad layers in artificial turf play a vital role in the shock absorption and ball interactions, 

and affect user safety. The rubber shockpad used in this study was an elastic prefabricated mat comprised of 

recycled rubber shreds approximately 2 to 8 mm in size bonded with polyurethane.  

A series of 3D finite element dynamic analyses were carried out using ABAQUS applying compressive cyclic 

loading to simulate the shockpad behaviour under different loading frequencies. The frequencies were based on 

biomechanical data for an athlete walking, running and sprinting. Arruda-Boyce hyperelastic constitutive model 

was employed to best describe the stress-strain response of the rubber shockpad under compressive loading. A 

series of uniaxial compression tests were conducted and the results were employed to characterise the 

mechanical behaviour of the material. The best Arruda-Boyce’s coefficients, for different strain rates were 

obtained using initial estimation (IEM) method and trial-and-error approach. The FE results showed the best-fit 

hyperelastic material model which can describe and predict the material behaviour under various strain rates. 

Finally, using finite element results a series of models were proposed to accurately predict the stress-strain 

behaviour of the material in different loading frequencies relevant to athlete.   

 

Keywords: Rubber shockpad, Finite element modelling, Hyperelastic, ABAQUS, Mechanical Properties. 

1. Introduction 

Third generation (3G) artificial turf was developed in the late 1990s, and designed to better simulate 

natural turf [7]. Most of 3G turf surfaces have a similar structure comprising the key components of 

an artificial carpet, a shockpad layer and an engineered aggregate foundation (Fig 1). Shockpad layer 

creates desired playing characteristics for the particular sport in addition to maintain the initial 

qualities of the artificial pitches during their service life. There are three types of shockpads on the 

market: integral shockpad, in-situ and prefabricated [6]. Cast in-situ shockpads are constructed from 

recycled rubber particles bonded together using polyurethane binder. Design and mechanical features 

of the prefabricated shockpads are very similar to the in-situ type; however, the prefabricated 

shockpads are manufactured in factories based on specific requirements. Their significant advantage 

is the uniformity of their mechanical properties and thickness as a result of the controlled construction 

environment. The principal force applied to a shockpad layer in artificial turf systems is mainly 

vertically compressive. Physical and mechanical behaviour of rubber-like material when subjected to 

compressive loading have been investigated by different researchers using experimental, analytical 

and numerical studies [10]. Thomson et al. [8] attempted to create a finite element model (FEM) of 

experimentally measured quasi-static response of a particular treadmill surface made of flexible 

rubber mat under compressive loading using ABAQUS. Song et al. [2] assessed the strain rate 

dependency of ethylene–propylene–diene monomer (EPDM) rubber for a range of 0.0015 to 

4700 s
-1 

and concluded rubber becomes increasingly non-linear by increasing strain rate. Andena et al. 
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[5] studied the possibility of predicting the force reduction (FR) and shock absorbing capability of 

running tracks using ABAQUS software. However, no studies have looked at different components of 

3G artificial turfs in particular their behaviour under complex dynamic loading conditions.  

The purpose of the present study was to investigate the mechanical characterisation and strain rate 

dependency of rubber shockpad layer used in third generation artificial turf using finite element 

method. To that end, the mechanical response of the material under various loading frequency were 

characterised by a series of uniaxial compression tests and then Arruda-Boyce’s hyperelastic model 

which is already implemented into ABAQUS was selected to fit the experiments. Arruda-Boyce’s 

parameters were estimated firstly using an initial estimation method (IEM) and subsequently 

improved by trial-and-error approach. Finally, based on the finite element analyses, a series of 

equations were proposed combining the Arruda-Boyce’s material model parameters with a new 

parameter to consider strain rate dependency of the material behaviour for various loading frequencies 

ranging between 0.9 to 10 Hz. 

2. Material characterisation and compression test 

The shockpad used in this study was an elastic premanufactured mat made from rubber aggregates 

bonded with polyurethane. The rubber particles were graded ranging between 2 to 8 mm, and the 

average density of the rubber shockpad was 557 kg/m
3
. The uniaxial compression behaviour of the 

material under different cyclic loading frequencies (0.9, 3.3 Hz and 10 Hz) relevant to athlete 

walking, running and sprinting was measured using electropuls instron compression machine. The 

peak vertical impact force for all dynamic cyclic loadings was controlled within the range of 

1800N±15%. This load was applied by a cicular loading feet (50 mm diameter) to simulate a 

shod adult’s heel [10].  
 

3. Model geometry and mesh 
To achieve precise results, three-dimensional finite element analyses of above experiments were 

carried out using ABAQUS. Taking advantage of the symmetrical nature of the problem, only a 

quarter of the entire system was modelled. Figure 2 represents the typical finite element mesh for the 

rubber shockpad layer, used in this study. A number of different mesh densities in which element 

sizes around and under the loading area are refined were performed to obtain accurate results in a 

reasonable computational time. The mesh is extended 5B (B=50mm is the diameter of loading area) 

from the layer centre line.  Boundary conditions were defined according to the adopted experimental 

condition. In order to model the rubber, first-order, eight-node linear brick, reduced integration with 

hourglass control element (C3D8R) was employed.   

                    
    Figure 1: Schematic of a 3G artificial turf system [11]                    Figure 2: finite element mesh and boundary conditions        

4.  Constitutive hyperelastic modelling  

Generally, rubber like material can exhibit instantaneous elastic response up to large strains without 

permanent set, and are defined by stored energy function as hyperelastic material. In this paper, the 8-

chain Arruda-Boyce hyperelastic constitutive model including compressibility has been selected to 

simulate rubber shockpad behaviour under various dynamic loading conditions. Arruda-Boyce 
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constitutive model has been preferred because it has been shown to accurately capture the large strain 

equilibrium response of several types of elastomers [4], and it is the most successful expression of a 

strain energy function using the non-Gaussian method of the statistical molecular theory [3]. The form 

of Arruda-Boyce strain energy potential in fifth order approximation is expressed as following [9]:  
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in this formulation, μ0 and  k0 are  the initial shear and bulk modulus of the material, and λm  is the  

locking stretch.  

5. Material parameters determination 

The difficulty of hyperelastic material models is determination of the coefficients in their functions 

which should be determined via experiments. On the other hand, hyperelastic models should be 

combined with a rate dependent model to demonstrate the strain rate dependency trait of rubber, since 

the experimental results revealed strain rate dependency behaviour of the material even at low strains 

(Fig 3). The large strain uniaxial compression test results were employed to estimate an initial value 

for the Young’s modulus (E0) as well as the locking stretch (λm) of the material for each frequency. 

Poisson’s ratio of the material is also required for initial estimation of D and μ0 and it cannot be 

determined from a uniaxial compression test. Using the proposed value for initial Poisson’s ratio of 

rubber particles approximately 2 to 10 mm in size, ρ=585kg/m
3
 and porosity, i.e. n = 49%, an initial 

Poisson’s ratio about 0.3 was adopted [1]. This initial estimation method (IEM) for determining 

Arruda-Boyce’s parameters prevents extra effort to find appropriate material parameters to be 

implemented in ABAQUS. The linear elastic part (initial slope) of the stress-strain curve (Fig 3) can 

determine approximate value of initial Young’s modulus (E0), and initial approximation of λm can be 

obtained from the following formulation [4]:  
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(3) 

in which  λl  is the stretch when the stress increases without any further significant changes in the 

strain (Fig 3).   

6. Finite element analyses results  

Firstly, a series of dynamic FE models were created in which the material parameters were calculated 

and implemented into ABAQUS based on IEM predictions. All finite element simulations were 

conducted by applying compressive loads on the same loading area as in the experiments. The 

finite element results based on IEM’s predictions for Arruda-Boyce’s coefficients showed an 

acceptable prediction for stress-strain behaviour, however in order to achieve the best agreement 

between the FEA results and experimental data, trial and error approach was utilised to improve the 

material parameters as suggested. The results of numerical simulations and experimental data are 

presented in Fig 3. It should be noted that the excellent agreement between experimental and FE 

results simply confirms the choice of a suitable model, since the experimental results were used to 

define the input parameters to the FE analysis. Using the obtained values for Arruda-Boyce’s 

coefficients (μ, λm and D) a series of equations are proposed to take into account the strain rate 

dependency of material which is an essential characteristic of the material behaviour. The proposed 

equations cover the 0.9 – 10 Hz frequency range.  

295.031025.107 f  
6829 107.2109103   ffD  0587.00152.1 fm   (4) 
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In which f  is frequency, and the unit of μ and D are Pa(N/m
2
) and Pa

-1
 respectively.  

 
Figure 3: Comparison between FE results and experimental data for 0.9, 3.3 and 10 Hz loading frequency 

7. Summary and conclusions 

In this paper a series of finite element models are developed to study the behaviour of rubber 

shockpad layer under dynamic compression loading. A hyperelastic material model, i.e. Arruda-

Boyce was adapted to simulate the constitutive behaviour of the shockpad. The results of the FE 

simulations were used to propose a model to predict the strain rate dependent material behaviour. This 

model combines the existing Arruda-Boyce’s parameters with an additional parameter, i.e. load-

frequency, to describe strain rate sensitivity of the material under different loading rate. The proposed 

new model, once implemented in FE, will enhance the accuracy and capability of the future FE 

analyses hence improving our understanding and design of such materials.   
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ABSTRACT 

Modelling of vehicle/track/ground dynamic interaction is an important issue for railway design. Better 

understanding of how the moving dynamic loads are distributed through the track components to the ground can 

be derived from these numerical results to improve the stability of the moving train and decrease the cost of the 

maintenance. Nonlinear models of the ground may be required due to the large displacements induced by 

heavier and/or high-speed trains. The aim of this research is to develop a general modelling approach for 

predicting the dynamic behaviour for a variety of situations. 

A three-dimensional vehicle/track/ground approach in the time domain is presented. The finite element method 

is used to model the track/ground vibration. The equations of motion of a multi-body vehicle are implemented to 

couple with the ground/track system. An alternative approach to the commonly used infinite elements is 

proposed for modelling the far-field, based on the use of mass-proportional damping to suppress the reflections 

from model edges. Improved results are shown and better efficiency can be found compared to the results from 

models with infinite elements. Furthermore, two different geometries for the ground model, a hemispherical and 

a cuboid one, are discussed. The issue of transients developed by the moving load is discussed and it is shown 

that long models are required for load speeds close to the wavespeed in the ground to allow the results to 

achieve steady state. Finally, the results are benchmarked against the results from a wavenumber FE/BE model. 

 

 

Keywords: Vehicle/track interaction; Finite Element (FE); viscous damping; ground vibration; track dynamics 

  

1. Introduction  

To achieve better understanding of the ground-borne vibration induced by high-speed trains, 

numerical simulation has become very important, allowing investigations of the dynamic behaviour of 

the track/ground system when the train is passing. Assessment of critical speed, ballast and soil 

degradation, and environmental impact all rely on results from such simulations. To prevent spurious 

reflections from the domain boundaries, a semi-infinite domain model is required for the soil. Several 

numerical methods have been developed recently that incorporate absorption at the boundary. 

Boundary elements (BE) directly include the infinite medium and these can be combined with finite 

elements (FE) either in a fully three-dimensional FE/BE method [1], or in a so-called 2.5D FE/BE 

method [2]-[5]. However, these methods mostly operate in the frequency domain and consequently 

cannot account for the nonlinear behaviour that may occur due to heavy axle loads or higher train 

speeds. Therefore, an alternative scheme has become common for modelling ground vibration 

induced by moving loads in which the FE domain is bounded by infinite elements [6]–[9]. Infinite 

elements form a typical local boundary method that uses viscous dashpots to absorb the incident 

waves at the boundary. They are defined based on the following equation 

 
Ni p

Ti s

c c

c c









                                                           (1) 
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where cNi and cTi are the damping values for the normal and tangential direction, respectively. ρ is the 

material density and cp, cs are the wave speeds of the P-wave (longitudinal wave) and the S-wave 

(shear wave). However, infinite element method does not generally have perfect absorption at the 

boundary. The absorption efficiency of the infinite elements relies on the domain geometry and the 

incident wave field. Usually they should be located in the far field and orientated perpendicular to the 

incident waves. The aim of the present study is to investigate the limitations of the use of infinite 

elements and to determine the optimum modelling approach for track/ground vibration induced by 

moving dynamic loads. Comparisons are made with a 2.5D FE/BE approach [5]. 

 

2. Numerical models 

The purpose of the study is to investigate critical velocity effects, when the load speed approaches the 

speed of waves in the ground. First, however, the model is considered for a stationary harmonic load. 

Two different geometries for the ground model are used for modelling the soil: a hemispherical one 

(Fig. 1(a)) and a cuboid one (Fig. 1(b)). Infinite elements are applied around the boundary of the 

hemispherical model. Even though a hemispherical model can show better absorption efficiency of 

outgoing waves, incorrect artificial displacements of the whole model occur due to the fact that the 

infinite elements are statically unconstrained [10]. The cuboid model therefore has a fixed bottom to 

avoid this incorrect displacement. Fixed boundaries are also used at the ends of the model while along 

the sides infinite elements are considered as an alternative to fixed boundaries. In all cases symmetry 

of the model is used along the track centreline. Furthermore, when the load speed approaches the 

critical speed, a relatively long model is required to allow the results to achieve steady state, 

especially for homogeneous soil models [10]. As a result, the cuboid model is preferred for the 

moving load problem as the required geometry can be generated relatively easily.  

A viscous damping model, based on Rayleigh damping, is used here for the calculations with the FE 

model. The Rayleigh damping is based on two parameters  and , which allow the damping matrix 

C to be determined from the mass and stiffness matrices, M and K: 

C = M + K (2) 

This allows the equivalent loss factor  or damping ratio  to be obtained as a function of frequency: 

 
2 2 2

  



    (3) 

where  is the circular frequency at which the loss factor   applies. For a plane harmonic wave at 

circular frequency  propagating in an elastic medium at a constant wave speed c, the wavenumber k 

is given by k = /c. In the presence of damping with a damping ratio  the wavenumber becomes 

complex with the form (1 )k k i  . The imaginary part is related to the decay with distance which 

can be expressed in dB/m as  

  1020log 8.69Im( ) 8.69ikD e k k      (4) 

From Eq. (3), the decay with distance for stiffness-proportional damping is proportional to the square 

of the frequency, 
24.34 /D c  . So, for example, for  = 0.000636 (equivalent to  = 0.05 at 

12.5 Hz) the decay with distance is around 0.002 dB/m at 1 Hz rising to 5 dB/m at 50 Hz. For the case 

of a constant loss factor  = 2, the decay with distance is found to be 4.34 /D c  which 

increases in proportion to the frequency. For mass-proportional damping D is independent of 

frequency, 4.34 /D c . Thus, e.g. for  = 0.98, D is 0.075 dB/m for all frequencies. As a result it 

can be expected that mass-proportional damping will be equally effective at suppressing reflections 

from the domain boundaries at all frequencies. 

Fig. 2 shows the point receptance of the rail due to a harmonic load for the various different ground 

models shown above. The soil is a homogeneous half-space with shear wave speed 60 m/s. The 

hemispherical domain has a radius 40 m; the cuboid models have a length of 80 m and width of 40 m 

for the case without the infinite elements and 20 m width for the one with infinite elements. In each 
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case the force is applied at the centre of the rail. Two different viscous damping models are used: 

stiffness-proportional damping with =0 and =0.000636 and mass-proportional damping with 

=0.98 and =0. The results from a 2.5D FE/BE model are shown for comparison, in this case with 

constant loss factor  = 0.05. This shows that the hemispherical model with infinite elements gives 

much better results than the cuboid model particularly at low frequency. Furthermore, the results with 

mass-proportional damping agree better than the results with stiffness-proportional damping. Even 

though the results from the cuboid model with infinite elements show less fluctuation than those 

without the infinite elements, some small oscillations still can be found. The cuboid model without 

infinite elements is preferred as, although the model with infinite elements gives improved results, it 

is much less efficient for the moving load problem. For example, for a load speed of 57m/s, the 40 m 

wide cuboid model requires 7.8 hr calculation time compared with 19 hr for the 20 m wide model 

with infinite elements and 12.5 hr for the 40 m radius hemispherical model.   

 
(a) (b) 

Figure 1. Ground model; (a) hemispherical ground model; (b) cuboid ground model 

 
 (a) (b) 

Figure 2. Point receptance on the rail for homogeneous half-space; (a) stiffness-proportional damping; (b) mass-

proportional damping 

Finally, results are shown from a time-domain analysis for various speeds. Fig. 3 shows results for the 

homogeneous half-space (shear wave speed 60 m/s) whereas Fig. 4 shows results for a layered half-

space with a 2 m deep upper layer of the same soft soil overlying a stiffer soil with a shear wave speed 

of 120 m/s. Good agreement can be seen with the results from the wavenumber FE/BE model [5], 

except close to the critical speed 57 m/s (equal to the Rayleigh wave speed in the ground) as shown in 

Fig. 3a. On the other hand, for the results from the layered half-space good agreement is seen even 

close to the critical speed (which here is around 85 m/s).   

 

 
Figure 3. Comparison between the results from FE model and the results from wavenumber FE/BE for 

homogeneous half-space; (a) V=57 m/s; (b) V=80 m/s 
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Figure 4. Comparison between the results from FE model and the results from wavenumber FE/BE for layered 

half-space; (a) V=50 m/s; (b) V=100 m/s 

 

3. Conclusion 

An investigation has been presented of the use of the time-domain finite element approach to 

represent a load moving along a railway track on a flexible ground. The results from a hemispherical 

model with infinite elements show better absorption efficiency than a cuboid model. However, 

incorrect displacements are found due to the infinite elements. A cuboid model with fixed boundaries 

with mass-proportional damping is recommended for modelling the moving load problem due to its 

relatively accuracy and efficiency. Although the results shown are for linear soil models, the time-

domain approach can be readily extended to consider nonlinear soil models. 
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ABSTRACT 

Blasting is believed to be one of the most important operations in mining extraction. One of the main parameters 

which has to be considered in blasting is rock mass quality. Dynamic strengths of rocks, their spacing and 

orientation of joints planes and cracks as well as lithology and thickness of bedding are thought to be the most 

influential factors in blast design. A recognised method to combine these geological characteristics within blast 

design is Blasting Index (BI) which has subsequently been computed for the Jalal-Abad iron mine in Iran. 

Consequently, blasting patterns were designed using the following four principal methods, namely; Ash, 

Thumb, Anderson and Konya. Following a comparative analysis, Konya was found to provide the best 

correlation with regard to BI. As a result of this study it can be shown that around 30% and 70% of the specific 

charge and drilling metres respectively can be reduced. This can be shown to translate into reducing the drilling 

and blasting costs by approximately $50 million over the life of the mining operation. 

 

Keywords: Blasting; rock mass quality; Specific charge; Jalal-Abad iron ore mine 

  

1. Introduction  

The main purpose of drilling and blasting is to break and prepare the fragmented rocks for 

transportation and crushing purposes. The degree of rock fragmentation plays an important role in 

order to control and minimise the total production cost [1, 4]. The fragments produced by blasting 

should be small enough to be easily loaded and transported by transportation equipment. Geological 

characteristics and rock mechanics properties are fundamental keys in blast design. In recent years, 

works in the field of rock mass classification and different rock mass strength criterions have been 

developed. The problem of characterising a rock mass for blasting purposes is so complicated that 

analytical solutions are not possible, but Lilly (1986) developed a new approach called Blasting Index 

(BI) which considers joint spacing and orientation, rock density and hardness [3, 7]. The results of this 

paper show that the Konya was found to provide the best correlation with respect to the calculations for BI in 

the Jalal-Abad iron mine based on nearly fifty studied blasts.  
 

2. Jalal-Abad iron ore mine  

The Jalal-Abad iron mine situated approximately 36 km NW of Zarand, with 200 Mt iron ore 

resources with an average grade of 38.5% is one of the important iron deposits in Kerman Province, 

SE Iran [5, 6]. The deposit occurred in the intersection of Urumia-Dokhtar magmatic zone and 

Sanandaj-Sirjan structural metamorphic zone. There are gabbro, diorite and diabasic rocks as mass 

and dykes. Moreover, sedimentary rocks consisting of dolomitic limestone, siltstones and sandy-

siltstones are present in the area. Main ores include magnetite and hematite which were altered and 

formed to goethite and limonite in the central and NW parts of the area. In addition, there are sulfidic 

ore minerals especially pyrite and chalcopyrite [5]. 

There is at least one blast every day carried out in the studied mine. Blasting parameters have been 

summarised in Table 1. Several problems have arisen during the investigation such as back break, 

high explosives and ground vibration. In addition, there are some boulders after the blasts. ANFO is 
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mixed with Pentaerythritol tetranitrate (PETN) and filled as column charge. Each hole contains about 

0 to 12 Kg of high explosive and is charged with a primed cartridge at the bottom with Shock-tube for 

detonation [6]. 

 
Table 1: Blasting parameters 

 

Parameter Value Unit 

Bench height 12 m 

Sub-drilling 1.5 m 

Spacing 4 to 4.5 m 

Burden 3 to 3.5 m 

Weight of ANFO per hole 100 to 150 Kg 

Blast hole diameter 165 mm 

Stemming length 6.5 to 8.5 m 

 

Subsequently, specific charge and specific drilling are calculated which vary between 0.7 to 1 kg/m
3
 

and 0.065 to 0.09 m/m
3
, respectively. 

 

3. Blasting Index  

A blasting index (BI) developed by Lilly in (1986), correlates powder factors for blasting in mines. 

The blasting index is based on strength, structure, density and hardness of the rock. Equation. 1 

describes the BI, Equation. 2 shows the proper specific charge and the input parameters and their 

ratings are given in Table 2. 

 

   )(5.0 HDSGIJPOJPSRMDBI                                            Equation. 1 

 BItonKgechSpecific  004.0)/(arg                                          Equation. 2 

 

Table 2: Description of BI parameters [3, 7] 

 

Geomechanical parameters Rating 

 Rock Mass Description (RMD) 

Powdery/friable 

Blocky 

Totally massive 

 

10 

20 

50 

 Joint Plane Spacing (JPS) 

Close (< 0.1m) 

Intermediate (0.1 to 1m) 

Wide (> 1m) 

 

10 

20 

50 

Joint Plane Orientation (JPO) 

Horizontal 

Dip out of face 

Strike out of face 

Dip into face 

 

10 

20 

30 

40 

Specific Gravity Influence (SGI) SGI=25 SG – 50 (SG in tons/cu metre) 

 Hardness, Mohs scale, (HD) 1-10 

 

More than 35 faces in the mine were surveyed and determined with respect to the above-mentioned 

parameters in table 2 in order to calculate BIs. BI varies from 50 to 80 however; BI equal to 60 has 

more frequency among the calculated values. As the extraction goes further and the mine becomes 

deeper, possibly, BI trends 70 in the future [2, 6]. Based on Equation. 2, proper specific charge 

according to Lilly model is about 0.7 Kg/m
3
.  
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4. Blasting Design 

In order to design the blasting pattern, 4 methods of the well-known blast models were selected 

namely; Ash, Thumb, Anderson and Konya and subsequently calculated (Table 3). The calculation 

has been done for the 12 m bench height and 250 mm blasthole diameter which is advisable for 7 Mt 

ore production per year. 

 
Table 3: Calculation results 

 

Parameters Units Ash Thumb Anderson Konya 

Burden m 6.3 7.5 6.0 6.0 

Spacing m 7.8 9.2 7.5 7.8 

Stemming m 5.9 5.3 5.7 4.5 

Sub drilling m 2.8 2.3 2.7 2.4 

Total charge Kg 392.09 397.61 397.61 437.23 

Specific charge Kg/m
3
 0.67 0.48 0.74 0.78 

Specific drilling m/m
3
 0.025 0.017 0.027 0.026 

 

5. Conclusions 

Comparative analysis between the results from the blasting methods shows that the Ash and Konya 

have the best correlation with the results for BI. For rock fragmentation point of view, the use of 

Konya blasting model results proper crushed rocks in term of size. Moreover, the economical 

evaluation has been done to find how the proposed pattern would affect the cost. Considering the 

remaining mine life (roughly 30 years), decreasing specific charge (from about 1 to 0.78 kg/m
3
) and 

specific drilling (from about 0.07 to 0.02 m/m
3
) and 15% inflation each year, the discounted saved 

money will be about $50 million.  
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ABSTRACT 

UltraSTEEL material has been reported to have higher yield and ultimate strengths than plain mild steel under 

quasi-static loads. This project aims to study the energy absorption characteristics of UltraSTEEL thin-walled 

structures when subjected to axial impact loads. The numerical modelling starts from duplicating the 

UltraSTEEL dimpling process and defining the resultant material properties by taking strain hardening and 

strain rate sensitivity into consideration. Features including element type, mesh density, symmetric boundary 

conditions and imperfections are then studied. The responses of 1mm gauge plain and UltraSTEEL columns to 

the same impact load are compared by conducting explicit dynamics finite element simulations. Comparing to 

the plain columns, the effect of gauge on the UltraSTEEL columns’ failure mode and specific energy absorption 

(SEA) are analysed through a parametric study. 

 

Keywords: Explicit dynamics analysis; UltraSTEEL; Axial crushing; Thin-walled Structure 

 

1.  Introduction 

The UltraSTEEL process, developed by Hadley Industries plc, is to cold-roll form plain sheet mild 

steel into dimpled sheet steel. During the process, a pair of rolls with specially shaped teeth that 

stretch the surface forming the dimpled shape is used, and the plain sheet steel is progressively fed 

into this pair of rolls [3]. Quasi-static tensile test results showed that the UltraSTEEL dimpling 

process can increase the yield and ultimate strengths of the plain steel material by up to 51% and 34%, 

respectively [3]. The UltraSTEEL process and subsequent quasi-static tensile tests were duplicated on 

a generic finite element model [3]. 

Thin-walled structures are widely used as kinetic energy absorbers because of their low cost, light 

weight and high energy absorbing capacity. Within various dynamic loading conditions, 

representative axial impact load is of particular interest. In order to analytically predict the response of 

thin-walled square tubes to axial crushing loads, the super fold element (SFE) method was proposed 

[1]. This method was then modified by taking effective crushing distance and strain rate effect into 

account, and verified experimentally [1]. Light weight and high mean crushing force are desired in 

general applications, therefore, specific energy absorption (SEA) is employed to describe a certain 

structure’s energy absorbing performance. In recent years, SEA has been improved mainly by 

introducing alternative cross-section profiles, fillers and high strength materials [2, 4, 5].  

To understand the energy absorption characteristics of UltraSTEEL structures when subjected to 

dynamic axial crushing loads, explicit finite element simulations were conducted. Failure modes and 

SEA of plain and UltraSTEEL columns were compared. Effect of the gauge was also analysed 

through parametric studies. 

 

2.  Numerical modelling 

Explicit dynamics method was selected to complete the numerical simulations. The closed square 

hollow cross section with 60 60mm outer dimensions was adopted in this study, with a slenderness 

ratio of 5 (i.e. length is 300mm), to avoid global bending. The hollow columns were fully fixed at one 

end. Both plain and UltraSTEEL models were meshed with shell elements (Element Type 181). 

According to the convergence study, for the plain columns used in this research, an element size of 

1.25mm is capable of providing converged results, and 1mm element size was used in plain models. 
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However, due to the nature of UltraSTEEL dimpled geometry, the element size was specified to be 

0.55mm in UltraSTEEL models. Since the element size is uniform throughout the whole column 

model, time scaling method is not applicable.  

In non-linear dynamic analysis, material properties are critical. According to existing researches, the 

dynamic mean crushing force is greater than the quasi-static crushing force by up to 30%, when a 

mild steel column is subjected to low velocity axial loads. In this study, the impactor was treated as a 

rigid body, while the Cowper-Symonds material model was assigned to plain and UltraSTEEL 

columns. By applying the Cowper-Symonds material model as shown in Equation 1, the materials 

were assumed to be strain rate sensitive and purely plastic. The parameters in the strain hardening 

term were determined based on experimental tensile tests, while the parameters in the strain rate term 

were obtained based on theoretical models. 

   [       
 ] [  (

  ̇ 
 
⁄ )

 
 ⁄

]                                             (1) 

where    represents equivalent dynamic stress flow,   represents hardening constant,     represents 

equivalent plastic strain,    represents hardening exponent,   ̇  represents equivalent plastic strain rate, 

  and   represent strain rate constants. 

In the modelling process, the columns were simplified by modelling a quarter of the original closed 

square hollow cross section with the longitudinal dimension unchanged, since the stress wave is 

dominantly propagating along the longitudinal direction. The rationality of this simplification was 

justified by comparing the responses (failure modes and force-displacement curves) of the original 

and simplified models. The force-displacement curves presented in Figure 1 indicate that phase lag 

appears as the axial displacement increasing. However the SEA curves of two models agree very well. 

The numerical results showed that after simplifying the model, failure modes are the same, the 

difference in SEA and peak crushing force are 0.65% and 0.02%, respectively. 

 

 
Figure 1 Crushing force and SEA vs longitudinal displacement of full and simplified quarter models 

 

Another important feature of the numerical models is the artificially introduced imperfection. Since 

the column is initially regarded by the programme to be perfectly perpendicular to the impactor plane, 

two rigid triggers were introduced to initiate the deformation at the top of the column. A sensitivity 

study reveals that the effect of triggering on the initial peak crushing force can be neglected.  

 

3. Results and discussion 

Figure 2 shows failure modes of 1mm gauge plain and UltraSTEEL columns. It can be observed that 

failure modes of 1mm gauge plain and UltraSTEEL columns are similar. Following the 
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Abramowicz’s theoretical model [1], each layer of folds has been initiated after the last layer of folds 

has been fully developed.   

 

 
   

Figure 2 Failure modes of 1mm gauge (a) UltraSTEEL column and (b) plain column  

 

In lightweight design, specific energy absorption (SEA) is the primary variable used to describe a 

column’s energy absorption characteristics. Equation 2 is the definition of SEA. 

    
∫   

        
                                                                  (2) 

where   represents the instantaneous crushing force,   represents the reduction of the column’s length 

in axial direction,   represents density of the material, and   represents the cross-sectional area of the 

column. Results presented in Figure 3 reveals that SEA converges at the beginning of the second fold. 

It is also revealed that SEA of the 1mm gauge UltraSTEEL column is 12.4% higher than the same 

gauge plain column. The increase in SEA is not as high as static yield strength due to the following 

reasons:  

1.  Impactors have not been stopped, which results in a higher average strain rate in the 

UltraSTEEL. Therefore, the strain rate sensitivity effect on the UltraSTEEL column is less 

significant; 

2. The average plastic strain in the UltraSTEEL column is lower due to a greater longitudinal 

distance between two adjacent layers of folds. 

 

 
Figure 3 Crushing force and SEA vs longitudinal displacement of 1mm gauge plain and UltraSTEEL columns 
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The parametric study on gauge reveals that, in terms of failure mode, UltraSTEEL columns are more 

sensitive than plain columns. Failure modes do not vary significantly in plain columns of 0.7mm to 

1.3mm gauge. However, as the gauge increasing, failure modes of UltraSTEEL columns are different. 

Taking 0.8mm, 1.0mm and 1.2mm gauge UltraSTEEL columns as an example (failure modes shown 

in figure 4), it is noticed that position of the first fold is different on the 1.2mm gauge column. This is 

due to a greater cross-sectional modulus. Moreover, a certain layer of folds is initiated to different 

extend by its previous layer of folds, as highlighted in Figure 4. Since the pre-initiation will reduce the 

energy absorption capacity, the advantage of UltraSTEEL columns compared to plain columns is 

predicted to gradually diminished as the gauge increasing. This prediction is then justified by the data 

shown in Figure 4(d). 

                  

   
 

Figure 4 Failure modes of (a) 0.8mm (b) 1.0mm (c) 1.2mm gauge UltraSTEEL columns after the first fold and 

(d) SEA vs gauge of plain and UltraSTEEL columns 

 

4. Conclusion 

In this paper, explicit dynamics finite element simlations were conducted to analyse responses of 

UltraSTEEL columns to axial impact loads. Cowper-Symonds material models was used to reflect the 

effect of strain rate sensitivity. It is found that SEA is increased by 12.4% in UltraSTEEL material 

than plain mild steel closed square section columns, while both types of columns have similar failure 

modes. The dimpled geometry has made UltraSTEEL column more sensitive than plain columns to its 

gauge. As a result, the advantage of UltraSTEEL columns in SEA is more significant at small gauges. 

sensitive than plain columns to its gauge. As a result, the advantage of UltraSTEEL columns in SEA 

is more significant at small gauges.  
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