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ABSTRACT

The isogeometric boundary element method (IGABEM) based on NURBS is adopted to model fracture problem
in 3D. The NURBS basis functions are used in both crack representation and physical quantity approximation. A
stable quadrature scheme for singular integration is proposed to enhance the robustness of the method in dealing
with highly distorted element. An algorithm is outlined and validated to be stable for fatigue crack growth, thanks
to the smoothness not only in crack geometry but also in stress/SIFs solution brought by IGABEM.
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1. Introduction

The fracture modeling by the boundary element method (BEM) exhibits more advantages than by FEM
in terms of mesh/re-mesh efforts as only the boundary discretization is required in BEM in order to
approximate the quantity of interest. When cracks evolve, only the boundary surfaces are updated instead
of re-generating the volume mesh.

The isogeometric analysis (IGA) was first introduced by Hughes et al [1]. The basic idea of IGA is to use
the same spline basis functions to represent the CAD geometries and approximate the physical quantities
of interest. And the investigation on the joint of IGA and BEM (IGABEM) [2] has increasingly drawn
attention recently since only the boundary representation of the geometry is required in IGABEM, which
facilitates the integration of design and analysis.

The advantages of the application for fracture based on the IGA framework can be concluded as:

(1) The higher-order continuity of spline basis functions improves the accuracy of the stress field near
the crack front which is crucial to fracture analysis and the degrees of freedom is reduced compared to
the C0 Lagrange basis;
(2) The curvature, tangential and normal vectors are exactly retained and evolved for the crack growth
thanks to the exact representation of the curved cracks;
(3) The local crack tip (front) system can be constructed directly based on the spline-based curve or
surface-represented cracks, which helps to accurately evaluate the fracture parameters;
(4) The concept of integration through design to analysis facilities the mechanical/structural design based
on the fatigue fracture analysis.

2. Boundary integral equations (BIE) for crack modeling

Consider an arbitrary domainΩwhich contains a crack. The boundary of the domain ∂Ω = S∪Sc+∪Sc− ,
where S is composed of Su where Dirichlet boundary conditions are prescribed (known displacements
ū), St where Neumann boundary conditions are prescribed (known tractions t̄). The displacement BIE



(Equation (1)) is used on one face (Sc+) and on the rest of the boundary S. The traction BIE (Equation
(2)) is used on the other crack face (Sc−).

ci j (s+)u j (s+) + ci j (s−m )u j (s+) =

∫
S

Ui j (s+,x)t j (x)dS(x) −
∫
S

Ti j (s+,x)u j (x)dS(x)

− −

∫
Sc+

Ti j (s+,x+)u j (x+)dS(x) − −
∫
Sc−

Ti j (s−m ,x
−)u j (x−)dS(x)

+

∫
Sc+

Ui j (s+,x+)t j (x+)dS(x) +

∫
Sc−

Ui j (s−m ,x
−)t j (x−)dS(x),

(1)

ci j (s−)t j (s−) + ci j (s+
m )t j (s−) =

∫
S

Ki j (s−,x)t j (x)dS(x) −
∫
S

Hi j (s−,x)u j (x)dS(x)

− =

∫
Sc−

Hi j (s−,x−)u j (x−)dS(x) + =

∫
Sc+

Hi j (s+
m ,x

+)u j (x+)dS(x)

+ −

∫
Sc−

Ki j (s−,x−)t j (x−)dS(x) − −
∫
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Ki j (s+
m ,x

−)t j (x+)dS(x),

(2)

where the Ui j , Ti j are called fundamental solutions, and

Hi j (s,x) = Eik pq

∂Tp j (s,x)
∂sq

nk (s), Ki j (s,x) = Eik pq

∂Up j (s,x)
∂sq

nk (s), (3)

where −
∫

denotes the integral is interpreted in the Cauchy Principal Value sense and =
∫

denotes the
Hadamard Finite Part integral. s−m denotes the mirror point of s+ on Sc− , which means s−m and s− share
the same physical and parametric coordinates but their normal vectors are opposite. The last two terms
of both equations and left hand side of Equation (2) are omitted due to the traction-free crack.

3. Singularity subtraction technique (SST) for singular integrals

For the hyper-singular integral

I = lim
ε→0

∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)
H (ρ,θ)R(ρ,θ) J̄ (ρ,θ)ρdρdθ, (4)

where H is the hyper-singular kernel, R is the NURBS basis function and J̄ is the Jacobi transformation
from parent space to physical space. The integrand F (ρ,θ) = H (ρ,θ)R(ρ,θ) J̄ (ρ,θ)ρ is expanded as:

F (ρ,θ) =
F−2(θ)
ρ2 +

F−1(θ)
ρ

+ F0(θ) + F1(θ)ρ + F2(θ)ρ2 + · · · =

∞∑
i=−1

Fi (θ)ρi . (5)

The singularity can be represented explicitly with respect to the parametric distance between the source
point and field point ρ. Then the singular terms are subtracted from the integrand, leaving the remaining
to be regular for which regular Gaussian rule is applied. the subtracted terms are added back semi-
analytically, resulting in:

I = I1 + I2,

I1 =

∫ 2π

0

∫ ρ̂(θ)

0

[
F (ρ,θ) −

F−2(θ)
ρ2 −

F−1(θ)
ρ

]
dρdθ,

I2 =

∫ 2π

0
I−1(θ)ln

ρ̂(θ)
β(θ)

dθ −
∫ 2π

0
I−2(θ)

[ γ(θ)
β2(θ)

+
1
ρ̂(θ)

]
dθ,

(6)

where I1 is regular and I2 are regular line integrals, Both can be applied with Gaussian quadrature rule.
The evaluation of α(ε,θ), β(θ) and γ(θ) as well as the limiting process can be referred in [3].



Figure 1: Transformation between coordinate system for SST. The nodal coordinates ξ̂
I

are obtained through
bilinear interpolation from (ξ̄, η̄) to the new parametric space (ξ̂, η̂) for the quadrilateral element in conformal
space

A conformal mapping is proposed to enhance singular integration for distorted elements. The curvi-
linear basis vectors ms

i = mi |ξ̄=ξ̄s
, (i = 1,2) and are calculated as:

m1 =
[ ∂x
∂ξ̄
,
∂y

∂ξ̄
,
∂z
∂ξ̄

]
,

m2 =
[ ∂x
∂η̄
,
∂y

∂η̄
,
∂z
∂η̄

]
.

(7)

We introduces two parameters λ = |ms
1 |/|m

s
2 |, cosψ = ms

1 · ms
2/|m

s
1 | |m

s
2 |. The conformal mapping

from the parent space (ξ̄, η̄) to a new parametric space (ξ̂, η̂) can be constructed where the two curvi-
linear basis vectors in the new parametric space are orthogonal and have identical length. The Jacobian
transformation matrix T from ξ̄ = (ξ̄, η̄) to a new parametric space ξ̂ = (ξ̂, η̂) is

T =

[
1 δ1
0 δ2

]
, so that ξ̂ = Tξ̄, (8)

where δ1 = cosψ/λ, δ2 = sinψ/λ. Figure 1 illustrates the transformation for singular integration. Now
the SST is applied in the conformal space.

Figure 2: Crack front updating. C(ξ) is the old crack front curve, C′(ξ) is the new crack front curve after crack
advance

4. Crack growth

In the present work, we use NURBS patches to discretize the crack surfaces. The Paris law is used to
calculate the crack advance. A crack surface updating algorithm is outlined to perform the crack growth
as in Table 1.

5. Numerical examples

Figure 3(a) shows the convergence study on the relative error in the L2 norm crack opening displacement
(COD) for the penny crack problem with inclination angle ϕ = 0. It can be seen that degree elevation



Algorithm 1 Crack front updating algorithm
Data: old crack front curve C(ξ); sample points Mj ; new positions of sample points M ′j
Result: new crack front curve that passes through all M ′j , see Figure 2
t = 0;
tol = 1.e − 4;
e j,0 =

−−−−−−→
Mj,0M ′j ; //the initial error vector

while ‖et ‖ > tol do
t = t + 1;
mi, t = 1

N

∑N−1
j=0 f i je j, t−1; //the motion vector at t-th step

Pi, t = Pi, t−1 + mi, t ; //the new point on the crack front at t-th step
e j, t = e j, t−1 −

1
N

∑N−1
k=0
∑n−1

i=0 Ri j f ikek, t−1; //the error vector at t-th step

end

from 2 to 3 improves accuracy. Yet, the convergence rate (oc) keeps almost the same value (oc = 1).
The deterioated oc is due to the physical singularity along the crack front. Figure 3(b) shows the stress
intensity factors (SIFs) for the sample points on the crack front for the penny crack problem with ϕ =

π/6. It can be observed that the numerical SIFs agrees well with the analytical solution. Figure 4 presents
the fatigue crack growth for inclined elliptical crack.
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Figure 3: (a) The relative error in the L2 norm of COD for penny-shaped crack by uniform mesh refinement in
parametric space.; (b) Stress intensity factors for penny crack with inclination angle ϕ = π/6, θ is the direction
angle for the sample points along the crack front

6. Conclusions

The formulation and implementation of isogeometric boundary element methods (IGABEM) for simu-
lating 3D fatigue fracture problem are outlined in this paper. The same NURBS basis functions are used
for the discretization of geometry/crack and the approximation of displacement/traction in the isogeo-
metric framework. The highlights of this work include: (1) The proposed singular integration scheme
can preserve the quadrature accuracy for highly distorted elements which exist commonly in IGA; (2)
The local crack tip system is setup naturally and uniquely thanks to the NURBS representation of the
crack surface. With the continuity in stress solution in BEM, the obtained SIFs along the crack front are
smooth and accurate; (3) The proposed algorithm for crack propagation is validated to be stable, due to
the smoothness in crack front geometry and numerical SIFs.

The future work will focus on the surface cracks problem, where the crack will have intersection with
the body geometry.
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Figure 4: Fatigue crack growth simulation of an elliptical crack with inclination angle ϕ = π/6 modeled by the
dual equations in a finite domain
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