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ABSTRACT

We propose a time domain partition-of-unity boundary element method for wave propagation problems at high
frequency. Travelling waves are included as enrichment functions into a space-time boundary element solver.
We present some first numerical experiments with this method for high frequencies, and discuss the algorithmic
challenges, with a view towards engineering applications.
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1. Introduction

Boundary element methods provide an efficient, extensively studied numerical scheme for time-
independent or time-harmonic scattering and emission problems. Unlike finite element discretisations,
they reduce the computation from the three dimensional domain to its two dimensional boundary. Re-
cently, boundary elements have been explored for the simulation of transient phenomena, with appli-
cations e.g. to environmental noise [2] or electromagnetic scattering [5]. For the wave equation, time-
dependent boundary element methods (TDBEM) were first analysed by Bamberger and Ha-Duong [1].

On the other hand, for time-harmonic wave propagation partition-of-unity, finite and boundary element
methods (PUFEM / PUBEM) have emerged as a practically efficient method to achieve engineering
accuracy in spite of the numerical pollution at high frequencies [4]. More recently, first results towards
time-dependent finite elements with partition-of-unity enrichment in space have been obtained in [3].

This work presents a time domain partition-of-unity boundary element method based on enrichments
in space and time. It is the first investigation of a space-time enriched method, here applied to a time-
dependent integral equation. The method extends the above works for time-harmonic wave propagation
to truly transient problems and, as a space-time Galerkin method, can be proven to be numerically stable
and convergent. Practically, it includes travelling plane-wave enrichment functions into an A-version
time domain boundary element procedure.
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2. Problem description and time domain PUBEM

This work considers transient sound radiation problems in the exterior of a scatterer O™, where Q™ is a
bounded polygon with connected complement Q = R? \ Q. The acoustic sound pressure field u(z,x)
due to an incident field or sources on I' = 9Q satisfies the linear wave equation for r € R:

c20%u(t,x) — Au(t,x) =0 forxeQ, u(t,x)=f(t,x) forxel, u(t,x)=0 forr<0. (1)

Here c is the wave velocity, and in the following we set ¢ = 1 for simplicity. A single-layer ansatz for u,

u(t,x) = [ K i ds,, @)



results in an equivalent weak formulation of (1) as a coercive integral equation of the first kind: Find ¢
such that for all ¥

Iy [V x)a (t.%) dsy dot = [ [ f(6.X)0p(1,%) dsx dot ,V(1,X) = [} Wmé

with dt = 727" dt. A theoretical analysis requires o > 0, but practical computations use o = 0 [1, 2].

We propose a time-dependent boundary element method to solve (3), based on numerical approximations
by travelling plane waves:

dnar = Yicidi, where ¢;(,%) = Ai(1)A; (X) cos(w; (t —1;) —K; - X+ 077) . 4

Here w; = |k;|, o; € {0,7}, A; a piecewise polynomial shape function in space and Kl- a corresponding
shape function in time. A first work by Ham and Bathe uses space-enriched FEM for waves in 2d [3].

We obtain a numerical scheme for the weak formulation (3): Find ¢ a; such that for all yj, A,

I3 Je (Vnar@.x)0mar (t.%) dsy dt = [ [ f(6.X)00n, a0 (%) dsyc di . (5)

From ¢y s, the sound pressure uj a; is obtained in Q by evaluating the integral in (2) numerically.
Equation (5) leads to a linear system of equations in space-time, Figure 1, where the stiffness matrix
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Figure 1: Full PUBEM space-time system and decomposition of the matrices V/.

fo fr fr ¢m(2t7r|’|(x yy|| D G (£, %) dsy dsy dt

has a block-banded structure corresponding to the time steps. Each of the time-step blocks decomposes
into blocks for the individual enrichments k;.

A main challenge is the accurate assembly of V,,,,,. After an analytical evaluation of the time integral, the
y integral requires integration over geometrically complicated intersections of triangles with light cone
shells, with a singular integrand |[x—y|~!. It is evaluated in polar coordinates with a geometrically-graded
hp-composite Gauss quadrature [2]. A regular Gauss quadrature is used for the x integral.

Note that the method (5), as a Galerkin method, minimises the energy E[¢pn.a;| = E(c) = %c -Ve—-F-c.
Stability and convergence are therefore guaranteed, at least for o > 0 or sufficiently small times [1, 2].

3. Numerical experiments

Example 1: For a regular icosahedron I' (Figure 2) of diameter 2 and centered in (0, 0, 0), we use
the right hand side f(¢,x) = exp(—25/t2) cos(wyt — Krx), a plane wave with ky=(1.5, 3, 8.5) which
is smoothly turned on for times [0,5]. The partition-of-unity TDBEM approximation is compared to
h-TDBEM results with 1280 triangles and constant CFL ratio = 0.19. Figure 2 depicts the reference
solution ¢ at times 3.8, 4.2 and 4.6 and Figure 3a the PU solution in the centroid of a triangle. The
PU TDBEM uses a mesh of 20 triangles and n enrichment functions in each triangle, for n < 15 and
At =0.1,0.2.

We quantify the numerical error by studying the convergence of the energy E[¢j a:].
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Figure 2: Example 1 - meshes for PU (20 triangles) and h-method (1280 triangles), density at t = 3.8,4.2,4.6.
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Figure 4: Example 2 - meshes for PU (8 triangles) and h-method (1250 triangles), density at ¢ = 3.8,4.2,4.6.
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Figure 5: Example 2 - a) density ¢, b) relative error in energy: h-method, PU with A7 = 0.1,0.2.
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Figure 6: a) GMRES vs. preconditioned GMRES, b) condition number of V° for PU, c) density ¢ on car tyre.

Figure 3b shows a comparison of convergence in the energy, between our h-TDBEM and PU-TDBEM.
The PU method reduces the degrees of freedom by a factor up to 8.

Example 2: We now consider a screen I' = [0,0.5]% x {z = 0} (Figure 4). We compare a PU method on
8 triangles with n < 30 enrichment functions to an h-TDBEM with 1250 triangles and CFL ratio 0.56.
We use f(z,x) = exp(—4/t2) cos(wyt — Kyx), with kp=(1.5, 3, 8.5) for times [0,5].

Figure 5a shows the density ¢ at the centroid of a triangles, Figure 4 the h-TDBEM density at 3.8,4.2,4.6.
Figure 5b depicts the comparison of convergence in energy for h-TDBEM and PU-TDBEM, for Ar =
0.1,0.2. For larger systems, we observe a significant reduction of the degrees of freedom for PU.

Since the memory requirements are too large for solving the large space-time linear system in Figure
1, we use an iterative GMRES solver which allows us to refer implicitly to the memory-intensive stiff-
ness matrix via matrix-vector products only. We have developed a preconditioner for h-TDBEM, which
requires less than 25 iterations independent of degrees of freedom (Figure 6a). For PU, the number of
iterations is reduced. As known for time-independent PU methods, the stiffness matrix exhibits high
condition numbers, here up to 10® on the square (Figure 6b).

4. Conclusions and Outlook

This work presents a first step towards space-time enriched methods for the wave equation, here for
boundary elements. Even for finite elements such space-time enriched methods are just beginning to
be explored. They present a promising approach to efficiently achieve engineering accuracy for rapidly
oscillating solutions, with applications from imaging to sound radiation.

Our preliminary results for PU TDBEM already save a factor of 8 for the degrees of freedom compared
to the h-method for accuracies as low as a fraction of a percent. We expect further improvements with a
more thorough analysis of the time-enrichment, as well as the possibility of using larger time steps.

Outlook: Future work will investigate optimal time enrichments and preconditioning of PU TDBEM.
One motivation comes from the sound radiation of tyres [2], Figure 6c.
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