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ABSTRACT

We propose a time domain partition-of-unity boundary element method for wave propagation problems at high
frequency. Travelling waves are included as enrichment functions into a space-time boundary element solver.
We present some first numerical experiments with this method for high frequencies, and discuss the algorithmic
challenges, with a view towards engineering applications.
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1. Introduction

Boundary element methods provide an efficient, extensively studied numerical scheme for time-
independent or time-harmonic scattering and emission problems. Unlike finite element discretisations,
they reduce the computation from the three dimensional domain to its two dimensional boundary. Re-
cently, boundary elements have been explored for the simulation of transient phenomena, with appli-
cations e.g. to environmental noise [2] or electromagnetic scattering [5]. For the wave equation, time-
dependent boundary element methods (TDBEM) were first analysed by Bamberger and Ha-Duong [1].

On the other hand, for time-harmonic wave propagation partition-of-unity, finite and boundary element
methods (PUFEM / PUBEM) have emerged as a practically efficient method to achieve engineering
accuracy in spite of the numerical pollution at high frequencies [4]. More recently, first results towards
time-dependent finite elements with partition-of-unity enrichment in space have been obtained in [3].

This work presents a time domain partition-of-unity boundary element method based on enrichments
in space and time. It is the first investigation of a space-time enriched method, here applied to a time-
dependent integral equation. The method extends the above works for time-harmonic wave propagation
to truly transient problems and, as a space-time Galerkin method, can be proven to be numerically stable
and convergent. Practically, it includes travelling plane-wave enrichment functions into an h-version
time domain boundary element procedure.
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2. Problem description and time domain PUBEM

This work considers transient sound radiation problems in the exterior of a scatterer Ω− , where Ω− is a
bounded polygon with connected complement Ω = R3 \ Ω− . The acoustic sound pressure field u(t,x)
due to an incident field or sources on Γ = ∂Ω satisfies the linear wave equation for t ∈ R:

c−2∂2
t u(t,x) − ∆u(t,x) = 0 for x ∈ Ω, u(t,x) = f (t,x) for x ∈ Γ, u(t,x) = 0 for t ≤ 0. (1)

Here c is the wave velocity, and in the following we set c = 1 for simplicity. A single-layer ansatz for u,

u(t,x) =
∫
Γ

φ(t−|x−y|,y)
2π |x−y| dsy , (2)



results in an equivalent weak formulation of (1) as a coercive integral equation of the first kind: Find φ
such that for all ψ∫ ∞

0

∫
Γ

(Vφ(t,x))∂tψ(t,x) dsx dσt =
∫ ∞

0

∫
Γ

f (t,x)∂tψ(t,x) dsx dσt ,Vφ(t,x) =
∫
Γ

φ(t−|x−y|,y)
2π |x−y| dsy ,

(3)
with dσt = e−2σtdt. A theoretical analysis requires σ > 0, but practical computations use σ = 0 [1, 2].

We propose a time-dependent boundary element method to solve (3), based on numerical approximations
by travelling plane waves:

φh,∆t =
∑

iciφi , where φi (t,x) = Λ̃i (t)Λi (x) cos(ωi (t − ti ) − ki · x + σi ) . (4)

Here ωi = |ki |, σi ∈ {0, π2 }, Λi a piecewise polynomial shape function in space and Λ̃i a corresponding
shape function in time. A first work by Ham and Bathe uses space-enriched FEM for waves in 2d [3].

We obtain a numerical scheme for the weak formulation (3): Find φh,∆t such that for all ψh,∆t∫ ∞
0

∫
Γ

(
Vφh,∆t (t,x)

)
∂tψh,∆t (t,x) dsx dt =

∫ ∞
0

∫
Γ

f (t,x)∂tψh,∆t (t,x) dsx dt . (5)

From φh,∆t , the sound pressure uh,∆t is obtained in Ω by evaluating the integral in (2) numerically.
Equation (5) leads to a linear system of equations in space-time, Figure 1, where the stiffness matrix

Figure 1: Full PUBEM space-time system and decomposition of the matrices V j .

Vmn =
∫ ∞

0

∫
Γ

∫
Γ

φm (t−|x−y|,y)
2π |x−y| ∂tψn (t,x) dsy dsx dt

has a block-banded structure corresponding to the time steps. Each of the time-step blocks decomposes
into blocks for the individual enrichments ki .

A main challenge is the accurate assembly of Vmn . After an analytical evaluation of the time integral, the
y integral requires integration over geometrically complicated intersections of triangles with light cone
shells, with a singular integrand |x−y|−1. It is evaluated in polar coordinates with a geometrically-graded
hp-composite Gauss quadrature [2]. A regular Gauss quadrature is used for the x integral.

Note that the method (5), as a Galerkin method, minimises the energy E
[
φh,∆t

]
= E(c) = 1

2 c ·Vc−F · c.
Stability and convergence are therefore guaranteed, at least for σ > 0 or sufficiently small times [1, 2].

3. Numerical experiments

Example 1: For a regular icosahedron Γ (Figure 2) of diameter 2 and centered in (0, 0, 0), we use
the right hand side f (t,x) = exp(−25/t2) cos(ω f t − k f x), a plane wave with k f =(1.5, 3, 8.5) which
is smoothly turned on for times [0,5]. The partition-of-unity TDBEM approximation is compared to
h-TDBEM results with 1280 triangles and constant CFL ratio = 0.19. Figure 2 depicts the reference
solution φ at times 3.8, 4.2 and 4.6 and Figure 3a the PU solution in the centroid of a triangle. The
PU TDBEM uses a mesh of 20 triangles and n enrichment functions in each triangle, for n ≤ 15 and
∆t = 0.1,0.2.

We quantify the numerical error by studying the convergence of the energy E[φh,∆t ].



Figure 2: Example 1 - meshes for PU (20 triangles) and h-method (1280 triangles), density at t = 3.8,4.2,4.6.
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Figure 3: Example 1 - a) density φ, b) relative error in energy: h-method, PU with ∆t = 0.1,0.2.

Figure 4: Example 2 - meshes for PU (8 triangles) and h-method (1250 triangles), density at t = 3.8,4.2,4.6.
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Figure 5: Example 2 - a) density φ, b) relative error in energy: h-method, PU with ∆t = 0.1,0.2.
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Figure 6: a) GMRES vs. preconditioned GMRES, b) condition number of V0 for PU, c) density φ on car tyre.

Figure 3b shows a comparison of convergence in the energy, between our h-TDBEM and PU-TDBEM.
The PU method reduces the degrees of freedom by a factor up to 8.

Example 2: We now consider a screen Γ = [0,0.5]2 × {z = 0} (Figure 4). We compare a PU method on
8 triangles with n ≤ 30 enrichment functions to an h-TDBEM with 1250 triangles and CFL ratio 0.56.
We use f (t,x) = exp(−4/t2) cos(ω f t − k f x), with k f =(1.5, 3, 8.5) for times [0,5].

Figure 5a shows the density φ at the centroid of a triangles, Figure 4 the h-TDBEM density at 3.8,4.2,4.6.
Figure 5b depicts the comparison of convergence in energy for h-TDBEM and PU-TDBEM, for ∆t =

0.1,0.2. For larger systems, we observe a significant reduction of the degrees of freedom for PU.

Since the memory requirements are too large for solving the large space-time linear system in Figure
1, we use an iterative GMRES solver which allows us to refer implicitly to the memory-intensive stiff-
ness matrix via matrix-vector products only. We have developed a preconditioner for h-TDBEM, which
requires less than 25 iterations independent of degrees of freedom (Figure 6a). For PU, the number of
iterations is reduced. As known for time-independent PU methods, the stiffness matrix exhibits high
condition numbers, here up to 108 on the square (Figure 6b).

4. Conclusions and Outlook

This work presents a first step towards space-time enriched methods for the wave equation, here for
boundary elements. Even for finite elements such space-time enriched methods are just beginning to
be explored. They present a promising approach to efficiently achieve engineering accuracy for rapidly
oscillating solutions, with applications from imaging to sound radiation.

Our preliminary results for PU TDBEM already save a factor of 8 for the degrees of freedom compared
to the h-method for accuracies as low as a fraction of a percent. We expect further improvements with a
more thorough analysis of the time-enrichment, as well as the possibility of using larger time steps.

Outlook: Future work will investigate optimal time enrichments and preconditioning of PU TDBEM.
One motivation comes from the sound radiation of tyres [2], Figure 6c.
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