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An approach for dynamic analysis of stationary cracks using XFEM
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ABSTRACT

Anumerical implementation of the eXtended Finite ElementMethod (XFEM) is presented. The proposed approach
solves the system of discrete equations using an explicit integration scheme and it is capable of addressing dynamic
and static fracture mechanics problems. Special attention to the mass matrix construction is required in order to
avoid instability issues such a null stable time increment. Hence, different mass lumping strategies are adopted for
enriched elements. The in-house implementation of this approach, so-called X2FEM , is embedded in the main
in-house FE platform called MULE. Numerical tests demonstrate that the proposed approach is able to provide
an accurate calculation of static and dynamic stress intensity factors (SIFs) for different geometries and loading
scenarios. Finally, in order to extend our point of view, an experimental analysis of a 10◦ off-axis carbon fibre
laminate is carried out using Digital Image Correlation (DIC).
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1. Introduction
During the last years, the XFEM [1] has been used successfully in the simulation of moving cracks
throughout a structure such as [2, 3, 4]. Using this method for the simulation of fracture, the mesh is
not updated at each time step in opposition to the Finite Element Method (FEM), where the mesh must
be updated at each time step in order to conform with the moving discontinuity. Although, the FEM has
solved many problems of interest such as [5, 6, 7], XFEM is computationally more efficient than the
FEM while simulating the evolution of cracks.
Based on previous experience with XFEM [8] and FE modelling of damage [9] using commercial codes,
the objective of this work is to present a numerical approach to analyze stationary cracks in the framework
of XFEM. This approach will improve the flexibility during programming since an entire in-house code,
so-called X2FEM , is available. This in-house code is implemented in the main FE platform called
MULE. The approach proposed considers an explicit time integration scheme. In this case, the well-
known central difference method (CDM) is adopted for time discretisation. A diagonal mass matrix is
used for solving the discrete momentum equation. Hence, the part of the mass matrix corresponding with
the standard Degree Of Freedom (DOF) are lumped by direct mass lumping. However, for the lumping
of the enriched DOF there is not straightforward way and a limitation exists. The limitation was found by
Belytschko et al. [10]. Basically, they found out that the critical time step of the explicit XFEM decreases
notably as a discontinuity gets closer to nodes. To alleviate this restriction, Belytschko et al. [10] used
an implicit integrator for the enriched element and explicit integrator for standard elements. Recently,
other possible solutions for solving this limitation are based on using mass lumping strategies. In this
work, using specific lumping techniques for enriched elements the diagonalized mass matrix is obtained
avoiding the possibility of having a null critical time step.



2. General problem
A two-dimensional dynamic problem is considered where a body Ω with boundary ∂Ω is defined. This
boundary is divided into ∂Ωu, ∂ΩF and Γc (see Figure 1). Hence, ∂Ω = ∂Ωu ∪ ∂ΩF ∪ Γc, where ∂Ωu

represents the prescribed displacements in the body Ω, ∂ΩF is the part of the body subjected to surface
forces and Γc corresponds to the displacement discontinuity e.g. a crack. Note that crack ’s faces are
traction free. The motion of the body is defined by the displacement uuu(xxx, t), which is a function of the
location of the material point xxx and the time t. The material has a linear behaviour, it is isotropic and
its mass density is ρ. The body presents applied displacements ūuu on the Dirichlet boundary ∂Ωu and
applied traction t̄̄t̄t on the Neumann boundary ∂ΩF ; ∂Ωu ∩ ∂ΩF = ∅, ∂Ωu ∩ Γc = ∅, ∂ΩF ∩ Γc = ∅ . The
outward normal vector in the material boundary is defined as nnn⊥ and bbb is the body force per unit mass.
Thus, the strong form of the problem is written as follows:
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Figure 1: A two dimensional body cracked and its boundaries.

∇σσσ + ρbbb − ρü̈üu = 0 in Ω (1)

subjected to the boundary conditions:
uuu = ūuu on ∂Ωu (2)

σσσ · nnn⊥ = t̄tt on ∂ΩF (3)

σσσ · nnn⊥ = 0 on Γc (4)

The constitutive relation of the material is written:

σσσ(xxx, t) = CCC · εεε (uuu(xxx, t)) (5)

where σσσ is the Cauchy stress tensor, CCC the constitutive matrix and εεε the strain tensor.

3. Numerical framework
The displacement at a generic point xxx, uuu(xxx, t) is approximated by uuuh using continuous and discontinuous
terms as follows [11]:

uuuh (xxx, t) = uuucont (xxx, t) + uuucut (xxx, t) + uuutip (xxx, t) (6)

where uuucont corresponds to the continuous approximation of the displacement, uuucut corresponds to the
discontinuous approximation for addressing the crack and uuutip denotes the discontinuous approximation
corresponding to the crack tip.
For the implementation of approach presented, an in-house code developed in MATLAB is built. The
element type considered in this code is a 4-node quadrilateral element. Each node for a standard element
presents two DOF. The nodes of full cracked elements have two classical DOF and two additional DOF



addressing the strong displacement jump. The construction of the global mass matrix is not a trivial
task. The mass lumping strategy adopted for the enriched part is critical for the stability of the CDM.
Therefore, different mass lumping strategies are adopted depending on the type of enrichment. For
standard elements, the calculation of the stiffness matrix considers four integration points. In the other
hand, for elements containing the tip of the crack or cut by the crack, the integrals for the calculation
of internal forces cannot be derived by standard quadrature methods since the integrand is defined as
discontinuous. Therefore, the standardGauss quadrature does not adequately considered the discontinuity
and a subdivision of the elements into triangles is required. This subdivision of the elements has just
integration purposes, hence, no additional DOF are added to the system.

4. Computational tests
In order to check the performance of the proposed approach, a semi-infinite stationary crack within an
infinite plate is simulated. The plate is loaded in its vertical edge as depicted in Figure 2. The influence
of the external loading on the Stress Intensity Factor (SIF) calculation is addressed. Hence, the load
applied is introduced in three different manners: as a step, a ramp and a sinusoidal wave. The dynamic
SIFs obtained from the code are compared with the analytical solution.

4.1. Analysis of a stationary crack: mode I

A schematic representation of the problem under consideration is depicted in Figure 2 where a tensile
stress is applied perpendicular to the crack. The analytical solution of the SIF in mode I (denoted as
KI ) for a linear elastic material was first proposed by Freund [12]. The analytical solution was obtained
under the assumptions of an infinite plate with a semi-infinite crack. This solution is valid till the tensile
wave stress is reflected in the bottom of the plate and reaches again the crack tip. The dimensions of the
plate are L=10 m, h=2 m and the crack length is a=5 m. The material properties are presented on Table
1 where E is the elasticity modulus, ν the poisson ratio and ρ the density.
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Figure 2: Geometry and loading for a infinite plate with a semi-infinite crack.

Table 1: Mechanical properties

E[GPa] ν ρ[kg/m3]
210 0.3 8000

In Figure 4, the normalized mode I dynamic SIF KI

σo

√
h
is depicted against the normalized time t

tc
being

tc = h
cd
= 3.36 · 10−4s, where cd is the dilatational wave speed. This graph serves to point out the mesh

independence of the solution using two different discretisations with 92x39 and 140x59 elements. These
discretisations were considered in order to have an aspect ratio of approximately one within the mesh.
Note that the time step considered is ∆tXFEM

c = 5µs (a simulation of 200 time steps). The tensile load
applied σ0(t) is defined as σ0(t) = σgn(t), where σ = 500MPa and gn(t) defines the way that the load
is provided. Initially, a step load g1(t) is applied to the plate as follows:



g1(t) =



0 if t ≤ 0

1 otherwise
(7)

Twomore loading scenarioswere considered: a ramp and a sinusoidalwave. The results depicted onFigure
4 while loading with g1(t) show a reasonable agreement between the analytical and the computational
solution for the coarse and fine meshes. Consequently this proves the ability of the proposed code for the
calculation of SIF considering different discretisations.
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Figure 3: Normalized mode I stress intensity factor against normalized time for a stationary semi-infinite crack.
The analytical solution is plotted as well as the computational solution considering two different discretizations:
92 by 39 and 140 by 59 elements .

5. Validation using Digital Image Correlation
Digital Image Correlation (DIC) [13][14] is an optical technique based on digital image processing and
numerical computing. This technique provides the full-field displacements and strains for a surface by
comparing a digital image reference (un-deformed) with a deformed image stage.

Figure 4: (a) Macro-crack observed during experimental tensile testing and (b) Map of maximum shear strain
before failure.



In order to extend our point of view, a 2D experimental analysis of a 10◦ off-axis carbon fibre laminate is
carried out using Digital Image Correlation (DIC). Therefore, the full-field of strains was obtained and
those outcomes were compared with simulations. In Figure 5 (a), it is depicted the crack path for the
10◦ laminate once the specimen breaks. Additionally, in Figure 5 (b), it is presented a map of maximum
shear strain before the macro-crack appears. Notice a peak of maximum shear strain in the zone where
the crack is initiated.

6. Conclusions
A numerical approach for the simulation of stationary cracks in the context of XFEM is presented.
This approach is numerically implemented in an in-house code programmed in MATLAB. By means
of several tests, the performance of the in-house code is tested. The results obtained and its comparison
with the analytical solutions proves the reliability of the approach. Additionally, in order to expand our
point of view, an experimental analysis is carried out using DIC.
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