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ABSTRACT 

A vascular self-healing system, which facilitates the storage, delivery, release, dissipation and curing of liquid 

self-healing agents, has been proved in the laboratory to be able to improve the durability of cementitious 

materials. To better understand the healing mechanisms associated with the system, and to optimise its design, a 

numerical model of the vascular system is proposed. In this study, the dissipation of the healing agent in and 

around discrete cracks after being released from the delivering flow network is simulated. This flow process 

comprises the flow of the liquid in the macro-crack space and the flow into the surrounding porous concrete 

matrix. The flow in the discrete crack is modelled by a modified Lucas-Washburn (L-W) equation, where an 

additional flow term Q has been introduced to take account of the mass being absorbed by the surrounding 

matrix. This flow term is determined by a 2D finite element continuum model of the surrounding matrix and is 

based on isothermal unsaturated flow theories. A mass balance equation is added to account for the interflow 

between the macro-crack and the matrix. This is achieved by treating the crack as an internal boundary within 

the matrix and computing the flow across this boundary. The simulation results suggest that imbibition has a 

significant influence on the flow in the macro-cracks and the degree of influence is related to the permeability as 

well as to the degree of saturation of the adjacent fracture process zone. 
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1. Introduction  

Concrete structures are prone to cracking, and these cracks can lead to durability problems and 

increased maintenance costs. As a result, self-healing concrete has attracted much attention in recent 

years and has shown great potential to resolve some of these durability issues. Among the various 

existing self-healing techniques, the biomimetic vascular self-healing system is seen to be one of the 

most promising and versatile systems [1], and it has been applied to real structures at engineering 

scale [2]. It could also be easily combined with other self-healing techniques to form an integrated 

self-healing system [3]. Despite the huge efforts and vast advances in the development of vascular 

self-healing systems, there has been a lack of understanding, analysis, and simulation of the healing 

mechanisms and processes. This is, however, crucial to the further development of such systems. This 

study is to look at the crack filling process of the liquid self-healing agent after being released from 

the flow network in to the crack planes using a coupled numerical model.  

Past experiments and previous literature have suggested that the movement of liquid in concrete 

cracks is primarily driven by capillary pressure [4,5]. This capillary flow in the crack comprises two 

distinct flow processes, i.e. the capillary flow in the macro-crack; and imbibition into the surrounding 

matrix. The flow in the macro-crack has been historically simulated by the modified Lucas Washburn 

(L-W) equation, which accounts for various factors such as dynamic contact angle and stick slip etc. 

[4]. However, the influence of the fluid absorbed (or expelled) from the adjacent porous matrix has 

not previously been included in the equation. For a typical self-healing flow problem, the influence of 

the matrix flow on the ‘discrete’ fluid flow in the macro-crack could be particularly important because 

the matrix around the macro-scale cracks has much higher permeability and porosity due to the 

developed fracture process zone.  
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In this study, the combined effect of these two flow processes is modelled by coupling the modified 

L-W equation with a finite element isothermal flow model of the surrounding matrix. The coupling is 

realised by adding a mass balance equation for the interflow between the discrete crack and the matrix 

through the crack faces. This is achieved by treating the crack as an internal boundary within the 

matrix and computing the flow across this boundary. The individual models for the crack and matrix 

flow, as well as the coupled flow model, were firstly calibrated and then validated using a range of 

experimental data. This paper describes a new way of coupling the 2D FE unsaturated flow model 

with the LW capillary flow equation, so that a better understanding of the movement of liquid healing 

agents in cementitious cracks can be achieved. The modelling scheme of a specific boundary 

condition is presented here, i.e. the liquid is freely available at the crack mouth and is not constrained 

by the delivery system. 

2. The coupled model  

The capillary flow in the discrete crack is described by a modified Lucas-Washburn Equation as 

shown in equation (1):  

 pc0(z)(1 − βs) −
2βmż

b(z)
+ ρgz sin(ϕ) − ∫

v̅(x)

k(x)
μ +

βwb(x)
2

dx
z

0

= 0 
(1) 

where pc0 is the surface tension at the meniscus; b(x) is the crack width for a planar water channel; z 

is the present rise height of the meniscus and ż is the velocity of the meniscus;  μ is the viscosity of 

the flow agent and k(x) is the effective permeability term that accounts for the shape of the flow 

cross-section and may vary along the profile of the flow channel. A model that includes factors to 

account for stick-slip (𝛽𝑠), friction dissipation at meniscus (𝛽𝑚), and wall slip (𝛽𝑤) has been proved to 

achieve better agreement with experiment results [4] than a model based on the standard L-W 

equation. Assuming a general expression for imbibition (flow) 𝑞(𝑥′) along the crack faces. Based on 

the mass conservation law, the relationship between the moving velocity of the meniscus and the 

velocity at any point within the flow section is expressed in equation (2).  

  v̅(𝑧)𝐴(𝑧) = v̅(𝑥)𝐴(𝑥) − ∫ 𝑞(𝑥′)𝑑𝑥′
𝑧

𝑥
                                               (2) 

Substituting equation (2) into equation (1) and rearranging leads to the modified governing equation 

of the crack flow, which is as follows: 
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The resulted additional double integration term 𝑄 accounts for the influence of the total imbibition. It 

may be seen that this height reduction term is an integral function of the flow field at the crack faces, 

which is then solved using an isothermal-hygral finite element model of the imbibition in the porous 

matrix continuum. 

The governing equation for this microscopic flow is based on the mass balance equation of the water 

content in the domain [6, 7], as shown in equation 1. 

𝜌𝑣̅̅ ̅̇ + 𝜌�̇̅� + 𝛻𝒒𝒗 + 𝛻𝒒𝒍 + 𝜌𝑣𝑙̅̅ ̅̇̅ + 𝜌𝑙𝑣̅̅ ̅̇̅ = 0                                      (5) 

where ρv̅̅ ̅̇ and ρl̇̅ are the time differentiation of vapour mass and water mass in the domain;𝛻𝐪𝐯 and 

𝛻𝐪𝐥 are the mass flux of vapour and water out of the domain; because the mass balance equation of 

water content includes both liquid and vapour water, the phase change between the liquid water and 



 

water vapour 𝜌𝑣𝑙̅̅ ̅̇̅  and 𝜌𝑙𝑣̅̅ ̅̇̅  may be cancelled. The movement of the water content is driven separately 

by the capillary pressure gradient and vapour concentration gradient. Darcy’s law and Fick’s law are 

used to determine the flow term due to capillary pressure and vapour diffusion respectively. Different 

flow properties have been applied to elements at different locations to account for the larger 

permeability in micro-cracked zones and surface zones. Capillary pressure  𝑝𝑐 is the primary variable 

for the model and the van Genuchten equation is used to establish the relationship between saturation 

degree and capillary pressure. The relative permeability and vapour diffusion coefficient are functions 

of the water content; therefore the problem is nonlinear. Newton-Raphson iteration is adopted for 

solving the resulting nonlinear equations and the element averaged capillary pressure and the flow 

properties are updated within each iteration for a new cycle of calculation until the  𝑝𝑐 converges for 

this time step. 

A Dirichlet type of boundary condition is applied in the problem, prescribing a constant capillary 

pressure value which is equivalent to a constant saturated surface in contact of water. The oscillation 

of results near the sharp front has been eliminated by using mass lumped scheme for the formulation 

of mass matrix. The flux though the saturated nodes could then be calculated by substituting the 

known capillary pressure field into the left hand side of the finite element formulation. These resulting 

flux values are the equivalent nodal flux per unit width in gs−1m−1, which are then transformed into 

the equivalent distributed flux over the wetted surface in  gs−1m−2 through the following operation: 

The flow rate profile over the saturated boundary is then obtained by susing equation (7): 

where n is the total number of saturated nodes on one side the crack profile, fj is the flux value at the 

jth  saturated node, and hj  is the elevation of the jth  saturated node. Equation (7) enables the 

construction of a continuous function for the flow rate profile over the wetted surface under the 

meniscus. This function is then used directly for the calculation of Q in equation (4) for the current 

time step. 

3. Results and experimental validation  

The finite element model for the imbibition in porous concrete matrix is validated by a series of 

experiments where both the mass of water being absorbed by the concrete as well the internal relative 

humidity level are monitored. The validated parameters are then used in the coupled flow model. 

 

 

 

 

 

 

 

 

 

 

Figure 1 presents the simulation results of the capillary flow in a uniform 0.05mm crack with different 

moisture conditions in the adjacent matrix over a time period of 30s. While the initial uptake shows 

 𝐟 = 𝐅 ∙ N−1 (6) 

 
q(x) = {

fj + (x − hj)
fj+1−fj

he
;   x ∈ (hj, hj+1)

fn + (x − hj)
fzi−1

−fn

he
;    x ∈ (hn, zi−1)

     j=1,2,…,n-1 

 

(7) 
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Figure 1: Comparison of the capillary flow in a 0.05mm crack with different moisture condition in 

surrounding concrete matrix, with (a) Capillary rise height and (b) Total mass of water absorbed through 

crack faces. 

 



 

no dramatic difference, the drier concrete with Sw=0.3 absorbs much more water and reduces the 

development of the capillary rise. The case with Sw=0.9 absorbs much less water and therefore has 

less influence on the capillary rise. It is also observed that the magnitude of the influence of the 

imbibition is also related to the crack width. The flow in wider cracks is less affected by the 

imbibition flow compared with narrower cracks.  

 

 

 

 

 

 

 

 

 

 

 

 

Experiments were carried out where the capillary rise in a discrete crack was recorded by a high speed 

camera. Figure 2 (a) shows that the coupled model is able to capture the capillary rise difference 

caused by the different permeabilities of different concrete mixes. Compared with the traditional L-W 

equation where no imbibition is considered, the couple model has shown more accurate simulation of 

the flow in the macro-crack. Figure 2(b) illustrates the development of the moisture conditions in the 

surrounding matrix, which has great implications on the design of vascular system to facilitate 

different self-healing techniques.  
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Figure 2: (a) Comparison between experiments and simulation for different concrete mix with 0.05mm 

crack width.  (b) Contour plot of the moisture condition in one side of the concrete matrix during the 

capillary rise process 
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