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ABSTRACT 

Many geo-energy and geo-environmental problems require reliable and accurate predictions of fluid flow 

through fractured/faulted media. Examples of such problems include the extraction of methane from shale, the 

sequestration of carbon dioxide in coal beds and the circulation of water through faulted rock as part of an 

enhanced geothermal system (EGS). Computational modelling is important for the systematic assessment of the 

feasibility, reliability and performance of these technologies. Central to this computational modelling are the 

procedures used to account for the fluid flow through the fractures and its transfer in/out of the surrounding bulk 

material. In the following, a computational approach to modelling fluid flow through fractures is summarised, 

with an example simulation considered to demonstrate the influence of fracture aperture on the flow 

characteristics. 
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1. Introduction  

Based the work of Thomas and He [1], and following many subsequent developments, the 

computational code, COMPASS, has been developed at Cardiff University for the assessment of 

transport phenomena in deformable partially saturated media. COMPASS assumes 𝐶0 continuity in 

the spatial domain via the use of finite elements and makes use of a finite difference scheme to 

discretise the underlying equations in time. While previous work has been undertaken using the code 

to model discretely fractured media [2, 3], this involved meshing both the interior of the fractures and 

the surrounding continuum. This approach is appropriate for problems involving a small number 

(<10) of large faults, but for more complex fracture networks it is impractical owing to the need to use 

a highly refined mesh for each fracture and the consequential high computational cost. Further, it does 

not lead naturally to an extension to consider fracture propagation. 

 

An alternative approach is to consider the fractures as entities of one spatial dimension less than that 

of the overall continuum (i.e. as one-dimensional entities in a two-dimensional continuum and two-

dimensional entities in a three-dimensional continuum), with the flow considered to be uniform across 

the aperture of the fracture. In the following, developments undertaken to implement such an 

approach to discrete fracture flow modelling in a finite element context are summarised. 

 

2. Governing Equations, Fracture and Bulk Flow Coupling and Discretisation 

The equations governing flow through the bulk material are those of continuity and Darcy’s law, 

given respectively (using tensor notation) as: 
 

𝜕(𝜌𝑣𝑖)
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where 𝜌 is the fluid density, 𝑣𝑖 is the fluid velocity (in the global Cartesian coordinates, 𝑥𝑖), 𝑞𝑏𝑢𝑙𝑘 is 



 

the fluid flux per unit volume, 𝑆 is the degree of saturation, 𝑛 is the porosity, 𝑘𝑖𝑗 is the intrinsic 

permeability tensor, 𝜇 is the isotropic (scalar) viscosity and 𝑝 is the fluid pressure. The fully saturated 

case is considered here; 𝑆 = 1. Applying Galerkin’s weighted residual method and introducing a 

finite element basis gives the following discrete form of the bulk transport equations: 
 

�̅�𝑎 = �̅�𝑎𝑏𝑃𝑏                          (3) 
 

where: 
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Here, Ωb is the spatial domain of the bulk material, Γext,b is the external boundary of Ωb, Γf is the 

boundary of a fracture within Ωb, 𝑃𝑖 are the nodal pressures, 𝑁𝑖 are the shape functions, 𝑣𝑛𝑒 is the 

normal component of outflow on Γext,b  and ⟦𝑣𝑛⟧ is the difference in the normal component of 

velocity across the fracture. Similar equations govern the flow through the fractures:  
 

𝜕(𝜌�̃�𝑖)

𝜕�̃�𝑖
+

𝜕𝜌

𝜕𝑡
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�̃�𝑖 = −�̃�𝑖𝑗
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                          (7) 

 

where �̃�𝑖 is the fluid velocity in the local Cartesian coordinates, �̃�𝑖, and �̃�𝑖𝑗 is the local permeability 

tensor. For a problem in two dimensions (𝑖, 𝑗 = 1,2) with the �̃�1 axis tangential to the fracture, the 

restriction to one-dimensional flow through the fracture is succinctly made by setting the �̃�𝑖𝑗 =

𝑏2

12𝜇⁄  for 𝑖 = 𝑗 = 1, where 𝑏 is the fracture aperture (in accordance with lubrication theory) and 

�̃�𝑖𝑗 = 0 otherwise. Again, applying Galerkin’s weighted residual method and introducing a finite 

element basis gives: 
 

𝐹𝑎 = 𝐾𝑎𝑏𝑃𝑏                         (8) 
 

where: 
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Here, Ωf is the spatial domain of the fracture (an area in two-dimensions, a volume in three-

dimensions). Owing the restriction placed on the form of �̃�𝑖𝑗, the integrals over the spatial domain of 

the fracture, Ωf, reduce to integration over Γf, so that for a two-dimensional problem: 
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Elimination of the term: ∫ 𝜌⟦𝑣𝑛⟧𝑁𝑎Γf
𝑑Γ, allows the bulk and fracture flows to be readily coupled 

together. For brevity in the above, flow through the fractures at their intersection with Γext,b has been 

neglected. 

 

3. Mesh Generation 

The approach considered here does not involve enrichment of the finite element basis to allow 

fractures to bisect elements (as is the case in X-FEM, for example). Instead, the fractures are required 



 

to align to element boundaries. It is often reported that generating meshes to align to internal fracture 

boundaries is problematic (e.g. [4]). As such, we elaborate briefly on our approach to mesh 

generation. Figure 1a displays an initial two-dimensional domain, the boundary of which is succinctly 

defined by the function 𝑓𝛼 = 0, where 𝑓𝛼 = 𝑚𝑎𝑥(𝑓1 … 𝑓𝑁) and 𝑓1 = 0, … 𝑓𝑁 = 0 are functions 

defining the lines (in two dimensions) or planes (in three dimensions) that form the boundaries of the 

domain. The introduction of a fracture (Figure 1b), defined by the function 𝑓𝐼 = 0, subdivides the 

initial domain into two subdomains. These two subdomains are succinctly defined by augmenting the 

definition of 𝑓𝛼 to 𝑚𝑎𝑥(𝑓1 … 𝑓𝑁, 𝑓𝐼) = 0 and introducing the second function: 

𝑓𝛽 = 𝑚𝑎𝑥(𝑓1 … 𝑓𝑁, −𝑓𝐼) = 0. Repeating this approach for all fractures gives 𝑀 functions of the form 

𝑓𝛼 = 0, 𝑓𝛽 = 0 … 𝑓𝑀 = 0, each defining one subdomain formed from the intersections of all the 

fractures cutting the domain. With the subdomains defined in this manner, it is a straightforward task 

to deduce the data needed to pass to third-party mesh generation software to obtain the mesh itself. 

For example, the software GiD [5] has been used here to obtain the mesh shown in Figure 1c. This 

approach can also readily be used in three-dimensions. 
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Figure 1: Mesh generation strategy 

  

4. Simulation Results 

The finite element formulation described in the previous sections has been implemented in a 

numerical code. Sample simulation results using this code are shown in Figure 2. The sample problem 

consists of a two-dimensional (plane strain) square domain of 1km side length. The mesh shown in 

Figure 1c was used for this simulation, together with the fracture network indicated by the dashed 

lines on this figure. The intrinsic permeability of the bulk material is 10−7m
2
 and the viscosity of the 

fluid is 10−3Pa s with four values for the fracture aperture considered (0.5mm, 1mm, 2mm and 5mm). 

Fluid is injected at a rate of 0.001m2 s⁄  at the origin with outflow permitted at the point labelled, A. 

Velocity vectors obtained after 1 hour of flow through the domain are shown in the figure (the 

velocity scale of the plots is m s⁄ ). Comparison between the figures reveals that for the 0.5mm case 

(Figure 2a) the flow occurs principally through the bulk, with very minimal preferential flow through 

the fracture network. For the 1mm case (Figure 2b), the flow through the fracture is more pronounced, 

while flow through the fractures dominates for the 2mm case (Figure 2c). For the 5mm case (Figure 

2d), the flow is almost exclusively through the fracture network with negligible flow through the bulk 

material. This sample simulation therefore provides an indication of the relative importance of 

fracture aperture on the flow characteristics of a given fractured rock mass. 

 

5. Conclusions and further work 

A finite element formulation for flow through a fractured body is described, accounting for the fluid 

exchange with the bulk material. Extensions are currently underway to account for the multi-

component unsaturated case, and to analyse convective flows. These extensions build upon the 

modelling framework outlined here. 



 

 

 
 

Figure 2: Velocity vectors for various fracture apertures 
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