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ABSTRACT

This paper proposes a novel scheme for the solution of Maxwell equations in the time domain. A discretization
scheme in time is developed to render implicit solution of system of equations possible. The scheme allows for
calculation of the field values at different time slices in an iterative fashion. This facilitates us to tackle problems
whose solutions have harmonic or even more general dependency on time.
The spatial grid is partitioned into finite number of elements with intrinsic shape functions to form the bases of
solution. Furthermore, the finite elements are enriched with plane wave functions. This significantly reduces the
number of nodes required to discretize the geometry, without compromising on the accuracy or allowed tolerance
in the errors, as compared to that of classical FEM. Also, this considerably reduces the computational costs, viz.
memory and processing time. Parametric studies, presented herewith, confirm the robustness and efficiency of the
proposed method.
The numerical scheme can thus be further developed for solution of problems where analytical solutions cannot
be developed, or even when the solution cannot be categorized as time-harmonic in nature.
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1. Transverse Electric Mode of propagation
Let Ω be a unit square defined on a 2D Euclidean space, with its four edges as the boundary Γ. The
boundary value problem be defined as follows

∂2E
∂t2 − c2∇2E = f (t, x, y); on Ω (1a)

∂E
∂v̂
+ hE = g(t, x, y); on Γ (1b)

E0 = U0 (1c)
∂E0

∂t
= V0 (1d)

where E is the magnitude of the transverse electric field in the direction ẑ perpendicular to the Euclidean
plane. The above equation can be approximated using finite element and finite difference schemes for
numerical solution. Let’s discretize the time derivative in the following way (in order to facilitate the
development of time-dependent formulations [1] as seen in analyses for transient response [2] or diffusion
problems [3])

∂2En

∂t2 =
En − 2En−1 + En−2

∆t2 (2)

Where the superscript n stands for the value of the field at the time instance t = n∆t. Substituting in (1a)
gives

∇2En =
En − 2En−1 + En−2

c2∆t2 −
1
c2 f (t, x, y)

⇒ En − (c2
∆t2)∇2En = 2En−1 − En−2 + (∆t2) f (t, x, y) (3)



The equation (3) can be used to obtain a weak form which can be further solved over a finite number of
elements in space as a linear system of equations. Let u be a test function multiplied to (3)

u(En − (c2
∆t2)∇2En) = u

(
2En−1 − En−2 + (∆t2) f (t, x, y)

)
(4)

Integrating the left and right hand sides, over the domainΩwith boundary Γ, and applying the divergence
theorem we get∫
Ω

uEndΩ + (c2
∆t2)

{∫
Ω

∇u · ∇EndΩ −
∫
Γ

u v̂ · ∇EndΓ
}
=

∫
Ω

u
(
2En−1 − En−2 + (∆t2) f (t, x, y)

)
dΩ

(5)
Where v̂ is the normal unit vector to Γ. From (1b) and (5) we get the solvable weak form∫

Ω

uEndΩ + (c2
∆t2)

∫
Ω

∇u · ∇EndΩ + (c2
∆t2)

∫
Γ

u (hEn)dΓ =∫
Ω

u
(
2En−1 − En−2 + (∆t2) f (t, x, y)

)
dΩ + (c2

∆t2)
∫
Γ

u g(tn, x, y))dΓ (6)

This equation (6) can be used to solve for En for the given set of boundary and initial conditions. The
equation can then be iterated over n to obtain subsequent values of the fields for consecutive time steps.

This paper validates the proposed method against a transient wave problem on a 2D plane, where the
solution is such that the magnitude of Electric field E is defined as E = Aeiwf

p
L where p = t − rk

ω . Here
k is the wave number, ω angular frequency, r length of the position vector, e the natural exponent and
i the imaginary number. Then the above constant c becomes the phase velocity defined such as c = ω

k

while the function g(t, x, y) is defined on each domain edge according to the relevant normal direction.
The propagator function f pL (defined in the appendix) provides a means to control the initial condition
of the problem, and can be used to manipulate the envelope of the moving wave, such that the solution
is a wave expanding symmetrically about the origin as it evolves in time.
The problem is initialized with the solution E0 (i.e. at t = 0), and for the boundaries we use appropriate
derivatives.
To solve the weak form (6) using the finite element method we mesh the domain into a set of elements
where the field E over each element is approximated in terms of a set of nodal values Ei and nodal shape
functions Ni such as

E =
n∑
i=1

EiNi (7)

Using the partition of unity [4] property one may further express the nodal values of the potential Ei as
a combination of Q plane waves [5] such that

E =
n∑
i=1

Ni
*.
,
B +

Q∑
q=1

Aq
i ei(kx cosαq+ky sinαq )+/

-
(8)

where αq is the angle of the qth plane wave. This ensures that we have the B term to capture variations
which vary slowly (or don’t vary at all, for example constants), and the plane wave enrichments that could
form the basis for wave type solutions in the computational domain. Now by solving the linear system
resulting from the above discrete representation we get the amplitudes Aq

i of the plane waves which is
the qth plane wave contribution at the node i.

2. Analyses

A comparison of relative errors is conducted to study the behaviour of accuracy in solution obtained
from the suggested PUFEM and classical FEM (figure 1). We test the accuracy of our method with the L1

norm, computed as the relative error percentage given by L1 =
abs(Ẽ−E )

abs(E ) ×100, where Ẽ, E are numerical
and analytical solutions of the problem at hand.



The problems parameters are wave number k = 8π, angular frequency ω = 1, and amplitude A = 1.
The computational domain is a 2D unit square, with its bottom-left vertex shifted from the origin by
a distance of c × 100∆t in each direction. This facilitates the wave, originating at the origin, to enter
the computational domain by a 100 iterations in time, for the given step-size ∆t. Note, the parameters
assumed here are strictly numerical.

Table 1: : Parameters for PUFEM vs. FEM

Type ∆t λ DOF Q τ

PUFEM 10−2 1/4 300 12 4.3
FEM 10−2 1/4 3600 n/a 15

Table 1 shows the values of parameters studied. τ is the total number of degrees of freedom per
wavelength, computed as τ = λm

√
Q for PUFEM, and for FEM was calculated as τ = λm, where m is

the number of nodes per direction on the computational grid. The total number of degrees of freedom
(DOF) for PUFEM was computed as m2Q and for FEM it’s simply m2.
Figure 1 below shows the plots of errors obtained from the analyses. The FEM stands at 50% error at
the end of 5000 time steps (for a total time of 50 with ∆t = 10−2), as compared to the proposed PUFEM
which showed less than 10% error with about one fourth the τ used in case of FEM.
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Figure 1: Semilog plot of L1 norms in percentage to compare results from PUFEM and FEM for k = 8π. The wave
covers the whole of computational domain by time t ≈ 36.
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Figure 2: 2D Plots of the recovered wave (k = 8π), obtained using the proposed PUFEM. The computational
domain was meshed into 4 × 4 elements. The number of plane wave enrichments used Q(τ) = 12(4.3), and
∆t = 10−3. The final L1 norm percentage at the end of the simulation was 3.6%

Even though we know that, in theory, a smaller ∆t would lead to better results, however, it becomes



increasingly impractical to use smaller ∆t with FEM owing to the sheer computational costs to solve
bigger systems. To provide an idea (and by no means a rigourous comparison), the FEM results presented
here took multiple weeks to compute, compared to their PUFEM counter parts which finished all the
computations over a few hours.
Figure 2 shows 2D plots for numerical solution obtained with PUFEM when we used the same τ = 4.3
but with a smaller ∆t = 10−3, and the final error was about 4%.

3. Conclusions

An enriched Finite Element Method, utilising the property of partition of unity to enrich the nodal values
in the classical FEM, is formulated for solution of Maxwell equations in the time domain. The proposed
PUFEM is validated against a progressive wave problem as demonstrated in section 2, wherein the
method is tested against analytical solution for the proposed problem, with the L1 norm. A comparison
of the suggested method with classical FEM is carried, and it is observed that the former outperforms
the latter on the grounds of lesser computational cost (including the total simulation time) and accuracy.
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Appendix A. Definition for the propagator function

The function definition for fL for parameters a and b is given as

fL (x) =
1

1 + a

{
erf

( x
b

)
x + ax +

b
√
π

e−
x2
b2

}
(A.1)

The parameters a and b can be set to control the smoothness of the slope of the function near the origin.
The derivative of this function is given by

d
dx
{ fL (x)} =

erf
(
x
b

)
+ a

1 + a
(A.2)

That is, the derivative of the function is a shifted and normalised error funciton. The following notation
is used for the function

fL (p) =
1

1 + a

{
erf

( p
b

)
p + ap +

b
√
π

e−
p2

b2

}
= f pL (A.3)


