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ABSTRACT
The numerical modelling of fibres undergoing finite deformations requires the implementation of a constitutive
law and the solution of the governing PDE requires an accurate linearisation of the nonlinear response. In order to
ensure a computationally efficient implementation and to simplify the implementation, automatic differentiation has
been utilised.

Key Words: finite element method; automatic differentiation; hyperelasticity; fibres

1. Introduction

Fibres are present in many materials and serve to enhance the material performance in particular directions.
In natural materials, this directional dependency is a result of optimisation whereby the increased strength
and stiffness is only where it is needed. Synthetic materials such as fibre reinforced polymers (FRP)
have been designed to deliberately exploit this benefit. This paper focuses on fibres in soft tissue but
also has broader applicability. The implementation of a nonlinear material response in the finite element
method requires linearisation of the constitutive relationship . This paper will describe this process for a
hyperelastic fibre model subject to finite deformations using automatic differentiation.

2. Tangent Stiffness Matrix

The nonlinear system of equations are expressed simply as:

r(x) = fext(x) − fint(x) = 0 (1)

This is solved using a Newton-Raphson scheme. Equation 1 is expressed as a truncated Taylor series
expansion, whereby the residual r at the next iteration is expressed as:

ri+1 = ri +
∂ri
∂x

dx (2)

where

∂ri
∂x
= −

∂fint(x)
∂x

= −Kt = −

∫
V

BT ∂P

∂F
B dV (3)

The derivative
∂P

∂F
is the elasticity tensor C, the computation of which is non-trivial. In this paper we

demonstrate how to compute it using automatic differentiation.

3. Constitutive Models

Soft tissues are composed of an extracelluar matrix (ECM) with collagen fibres. The ECM is represented
as a neo-Hookean material [1] and the fibres from the Eberlein model [2], both being hyperelastic materials.
The two material models are combined in Equation 4. Equation 5 and Equation 7 are the strain energy
functions (Ψ) for the neo-Hookean and fibre materials respectively and their corresponding Second-Piola
Kirchoff stress (S) are in Equation 6 and Equation 9.



Ψ = Ψn + Ψf (4)

Ψn =
µ

2
(IC − 3) − µ ln J +

λ

2
(ln J)2 (5)

where F is the gradient of deformation, J is the volumetric change, C is the right Cauchy-Green
deformation tensor, J = det(F), IC = trC, and λ and µ are the Lamé coeficients.

Sn = µ(I − C−1) + λ(ln J)C−1 (6)

Ψf =

2∑
α=1

k1
2k2
{[exp[k2( Ī∗α − 1)2] − 1]} (7)

Ī∗α = C̄ : Aα, α = 1, 2, C̄ = J−2/3C, Aα = aα ⊗ aα, P = I −
1
3
C−1 ⊗ C (8)

S f = J−2/3P : Ŝ f (9)

Ŝ f =

2∑
α=1

2k1{exp[k2( Ī∗α − 1)2]( Ī∗α − 1)Aα } (10)

4. Elasticity Tensor

The constitutive equations are expressed in terms of the Second-Piola Kirchoff stress S; this can be pushed
forward to obtain the First-Piola Kirchoff stress P = FS. Thus, the elasticity tensor can be calculated from
∂P

∂F
. To illustrate that this derivative is not trivial to obtain, the elasticity tensor for the fibre model is

shown here: Equation 11 to Equation 13 [2].

C f = 2
∂SF

∂C
= P : Ĉ f : PT +

2
3
tr(J−2/3Ŝ f )P̃ −

2
3

(C−1 ⊗ Ŝ f + Ŝ f ⊗ C−1), (11)

Ĉ f = 2J−4/3
∂Ŝ f

∂Ĉ
=

2∑
α=1

δαA ⊗ A, (12)

δα = 4J−4/3k1[2k2( Ī∗α − 1)2 + 1] exp[k2( Ī∗α − 1)2], α = 1, 2 (13)

Alternatively, automatic differentiation can be used to calculate the elasticity tensor, thereby removing the
need for it to be undertaken explicitly. In automatic differentiation the derivatives of a function can be
evaluated numerically through the recursive application of the chain rule, exploiting the ability to express
the function as basic arithmetic operators and functions.



5. Automatic Differentiation by OverLoading in C++ (ADOL-C)

ADOL-C is a open-source C++ library that applies the principles of automatic differentiation [3]. The
independent variables subject to differentiation are defined using a special type adouble and all variables
which depend on the independent variable must also be defined using this type. Constants are considered
passive and can be defined using standard types such as double. The function description needs to be
recorded to a tape for the differentiation process and so requires active sections to be set by trace_on
and trace_off. To illustrate the process a piece of pseudo code is shown in Algorithm 1 that calculates
the elasticity tensor for the Eberlein fibre model.

Algorithm 1 ADOL-C Fibres Constitutive Model
1: double k1, k2 . passive variables
2: adouble F, C̄, J, Aα,Vf 1,Vf 2 . active variables
3:
4: double x = values
5: double Vf 1i,Vf 2i = values . local fibres direction
6:
7: Tape(ON)
8: F <<= x . independent variables
9: Vf 1 <<= Vf 1i . independent variables
10: Vf 2 <<= Vf 2i . independent variables
11:
12: calculate: C, J, C̄, Aα, Īα
13: S = fibresFunction(C, J, C̄, Aα, Īα)
14:
15: P = FS
16: Tape(OFF)
17:

18: Jacobian(P, F,[x,Vf 1i,Vf 2i]) .
∂P

∂F

6. FE Implementation Example

ADOL-C is integrated into our open source finite element software package MoFEM [4]. To demonstrate
ADOL-C working it was used in the calculation of the elasticity tensor for the combined Eberlein Fibre
and neo-Hookean material models; the fibre directions applied were not constant and so were considered
active variables by ADOL-C. The physical problem was an uni-axially loaded cylinder with fibres wrapped
around the circumference and the length as shown in Figure 1a. To demonstrate the influence of the fibres
the analysis was repeated with no fibres, also shown in Figure 1b.



(a) Mesh and Fibres
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Figure 1: Uni-axial Load

7. Conclusion

Calculating the elasticity tensor to form the tangent stiffness matrix from the constitutive equations, can
be a very involved process. The use of automatic differentiation can remove this step and thereby speeds
up the implementation of constitutive models and removes errors.
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