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ABSTRACT

We postulate a new gradient elasticity formulation with three higher-order terms and, thus, three independent
length scale constants. The formulation has one higher-order stiffness term and two higher-order inertia terms. It
is shown that this formulation is better able to capture the wave disperion characteristics as seen in nano-scale
experiments or layered composites. We derive a C0 finite element implementation based on a newly developed
operator split, which allows the governing fourth-order partial differential equations to be rewritten in a set of fully
coupled second-order partial differential equations. The fundamental unknowns of these coupled equations are the
micro-scale and macro-scale displacement; thus, this is intrisically a fully coupled multi-scale formulation. With
the reduction of the order of the equations, finite element implementation becomes straightforward.

Key Words: gradient elasticity; wave propagation; length scale; wave dispersion; multi-scale

1. Introduction
Wave propagation through heterogeneous media is characterised by the occurrence of dispersion, meaning
that the different harmonic wave components travel with different velocities. If this is to be captured with
computer simulations, classical elasticity theory is only effective if every individual micro-structural
constituent is modelled separately — but such an approach is usually deemed prohibitive in terms of
associated computer costs. As an alternative, gradient elasticity theory can be used. Compared to classical
elasticity theory, additional spatial derivatives of relevant state variables (such as stresses, strains and/or
accelerations) are included in the field equations. These additional terms are accompanied by material
length scales that represent the micro-structure of the material. An overview of various gradient elasticity
formulations is given in [1].

A popular gradient elasticity theory was formulated by Aifantis in the 1990s and can be written, using
index notation, as

Ci jkl

(
uk, jl − ℓ2uk, jlmm

)
+ bi = 0 (1)

where ui are the displacements and bi are the body forces. Furthermore, Ci jkl contains the usual elastic
constants and ℓ is a micro-structural length parameter. The Aifantis model has been shown to be effective
in removing singularities from stress and strain fields such as occur at the tips of sharp cracks or
dislocation cores. However, its use in dynamics is not recommended due to the appearance of unbounded
phase velocities [1]. Instead, in [3] it was argued that in a dynamics context gradient enrichment should
be applied simultaneously to the stiffness terms and the inertia terms. Thus, a model is obtained according
to

ρ
(
üi − αℓ2üi,mm

)
= Ci jkl

(
uk, jl − γℓ2uk, jlmm

)
+ bi (2)

where ρ is the mass density of the material. Dimensionless constants α and γ have been added so that
different weights can be assigned to the two higher-order terms. It was shown that the latter model
provides a reasonable approximation of the dispersive behaviour of discrete lattice model [3], however
further improvement is possible as will be explored below.



2. A gradient elasticity model with two acceleration gradient terms

An effective and simple improvement of the dispersive behaviour of gradient elasticity models can be
achieved by adding one more acceleration gradient term. We postulate

ρ
(
üi − αℓ2üi,mm + βℓ

4üi,mmnn

)
= Ci jkl

(
uk, jl − γℓ2uk, jlmm

)
+ bi (3)

where β is yet another dimensionless weighting constant.

To assess the behaviour of the above models in dynamics, a dispersion analysis is carried out by
substituting a trial solution u(x, t) = U exp (i (k x + ωt)) into the one-dimensional equation of motion.
Here, k and ω are the wave number and angular frequency, respectively, whereas U is the amplitude.
After some straightforward algebra, we obtain the following dimensionless expression:(

ωℓ

ce

)2
=
χ2

(
1 + γ χ2

)
1 + α χ2 + β χ4 (4)

where ce ≡
√

E/ρ is the one-dimensional wave velocity of classical elasticity and χ ≡ kℓ is the wave
number normalised with respect to the material length scale.

In Figure 1 we have plotted the dispersion curves for a range of parameter values. Firstly, the case α , 0
with β = γ = 0 corresponds to a model with only one higher-order inertia term and leads to a horizontal
asymptote for the dimensionless frequency. Next, the case α , 0 and γ , 0 but β = 0 leads to a
model with one higher-order stiffness term and one higher-order inertia term; in case α , γ the model
is dispersive with a slant asymptote. Taking β , 0 alongside α , 0 and γ , 0 leads again a horizontal
asymptote, but there may also be an inflection point in case β > αγ. Figure 1 includes the case where
β < αγ which leads to a monotonically increasing curve, as well as the case β > αγ which predicts a
curve that is concave for lower wave numbers and convex for larger wave numbers — the latter is in line
with certain experimental results [4].
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Figure 1: Dispersion curves — normalised frequency against normalised wave number for α = 5, β = 0 and γ = 0
(dotted); α = 5, β = 0 and γ = 1 (dashed); α = 5, β = 2 and γ = 1 (dash-dotted); α = 5, β = 20 and γ = 1 (solid)



3. Symmetric multi-scale formulation

The equations of motion given in expression (3) contain fourth-order spatial derivatives. This can be
problematic for subsequent finite element implementations, which are usually based on C0-continuous
interpolations. Whilst it is certainly possible to formulate C1 finite elements for gradient elasticity [5],
here we will follow another approach. An operator split has been developed by which the fourth-order
spatial derivatives are rewritten in terms of second-order spatial derivatives; this leads to auxiliary
equations which, as we will show, can be symmetrised.

First, the right-hand-side of Eq. (3) is rewritten according to

ρ
(
üM
i − αℓ2üM

i,mm + βℓ
4üM

i,mmnn

)
= Ci jklum

k, jl + bi (5a)

uM
k − γℓ

2uM
k,mm = um

k (5b)

Superscripts M and m have been used to indicate macro-scale and micro-scale displacements, respec-
tively; this nomenclature is motivated in [2]. Substituting Eq. (5b) back into Eq. (5a) would of course
lead to Eq. (3), but instead we will take the double time derivative of Eq. (5b):

üM
k − γℓ

2üM
k,mm = üm

k (6)

This acceleration format can then be used to rewrite various terms in Eq. (5a), namely

αℓ2üM
i,mm =

α

γ

(
üM
i − üm

i

)
(7)

and, in multiple stages,

βℓ4üM
i,mmnn =

βℓ2

γ

(
üM
i,mm − üm

i,mm

)
=
β

γ2

(
üM
i − üm

i

)
− βℓ

2

γ
üm
i,mm (8)

Substituting Eqns. (7) and (8) into Eq. (5a) and multiplying Eq. (6) with ρ
(
α/γ − β/γ2 − 1

)
leads to

ρ

(
αγ − β
γ2 üm

i −
βℓ2

γ
üm
i,mm −

αγ − β − γ2

γ2 üM
i

)
= Ci jklum

k, jl + bi (9a)

ρ
*.,−
αγ − β − γ2

γ2 üm
i +
αγ − β − γ2

γ2 üM
i −

(
αγ − β − γ2

)
ℓ2

γ
üM
i,mm

+/- = 0 (9b)

4. Spatial and temporal discretisation

The advantages of Eqns. (9) are that they contain at most second-order spatial derivatives (so that C0

finite element interpolations can be used) and that they are symmetric: the coefficient of üM
i in Eq. (9a)

is equal to the coefficient of üm
i in Eq. (9b). The latter means that symmetric system matrices can be

formulated, which facilitates computer storage.

On the other hand, with the various mathematical manipulations explained above, it is no longer possible
to retrieve Eq. (3) because the displacement format of Eq. (5b) has been replaced by the acceleration
format of Eq. (6). However, this also means that the inf-sup condition does not apply to Eqns. (9) since
the equations are no longer “reducible”. This implies that there are no constraints on the shape functions
used for the two displacement fields.

Using the same shape functions N for uM
i as well as um

i leads to a system of semi-discretised equations as


αγ−β
γ2 M + βℓ2D −αγ−β−γ2

γ2 M

−αγ−β−γ2

γ2 MT αγ−β−γ2

γ2 M + (αγ−β−γ2)ℓ2

γ D


[

d̈m

d̈M

]
+

[
K 0
0 0

] [
dm

dM

]
=

[
f
0

]
(10)



with the usual definitions of the mass matrix M and stiffness matrix K, i.e.

M =
∫
Ω

NT ρN dV (11)

and
K =

∫
Ω

BTCB dV (12)

where B is the usual strain-displacement matrix containing shape function derivatives and C is the
matrix equivalent of the tensor Ci jkl. Furthermore, matrix D has the structure of a diffusivity matrix and
is defined by

D =
∫
Ω

3∑
i=1

∂NT

∂xi
ρ
∂N
∂xi

dV (13)

Finally, the force vector f contains the effects of all externally applied forces.

Inspection of Eq. (10) shows that lumping of the mass matrix leads to cancellation of all gradient effects.
As a consequence, lumping is not an option and there is therefore little value in using an explicit time
integrator that is only conditionally stable. Instead, the use of an implicit time integrator is recommended.

5. Conclusions

In this short paper we have reported the formulation of an enhanced gradient elasticity model with one
higher-order stiffness term and two higher-order inertia terms. The model is capable of capturing a range of
dispersion characteristics. Despite the presence of two terms that contain fourth-order spatial derivatives,
it is possible to reformulate the model such that no higher than second-order spatial derivatives are
included. This turns out to be a multi-scale formulation whereby micro and macro-scale displacements
are the primary unknowns.

We have also carried out a number of parameter identification studies to relate the new constitutive
parameters to the properties of a discrete lattice and those of a laminate. Furthermore, variationally
consistent boundary conditions have been derived, and numerical results for a number of initial-boundary
value problems have been obtained. These results will be presented in a forthcoming journal publication.
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