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ABSTRACT

Timber is a highly complex naturally occurring material, with properties adapted to its local environment. These
properties, on its many length scales, determine its strength and stiffness and also how it interacts with moisture
in the environment, causing dimensional instability both during drying and the lifetime of any building. Of
particular importance is how the cell wall polymers interact with moisture in the environment and how this effects
the properties, due to their strong dependence on intra-molecular hydrogen bonds. To model the dimensional
behaviour of a wood cell under varying moisture conditions, the cell wall polymer matrix is modelled using
a formulation of coupled deformation and moisture transport. These governing equations of mass and linear
momentum conservation are strongly coupled and nonlinear and solved using the Finite Element Method. The
associated constitutive equations are complex. The free energy is described through the deformation of the polymer
matrix and the mixing with solvent (in this case, water). It is assumed that the polymer chains and water molecules
are incompressible so that a change in volume of the polymer matrix corresponds to a change in the number of
solvent molecules. The viscoelastic behaviour is resolved using a Zener spring-dashpot model, capturing both creep
and relaxation phenomena, and the moisture transport is resolved using Fick’s 2nd Law. The effects of wetting
upon the stiffness and relaxation characteristics of the polymer matrix is taken into account through the chemical
kinetics of hydrogen bond dissociation. Proper linearisation is achieved with automatic differentiation, using the
library ADOL-C integrated with the group’s FE code MOFEM.
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1. Introduction

Timber is a highly complex multi-scale material, with properties of its many length scales. It is naturally
occurring,with properties adapted to its local environment during growth,making timber an unpredictable
material to work with. One particular problem is its dimensional instability when exposed to different
environmental conditions, potentially causing issues during construction and the lifetime of a building.
To enable prediction of dimensional changes in timber due to moisture sorption, the cell wall polymer
matrix is modelled hygro-mechanically and the individual polymers are described chemically through
the kinetics of hydrogen bond dissociation.

2. Timber Cell Wall

The wood cell wall is a multilayer composite structure, containing a primary cell wall and a 3 layer
secondary cell wall. In the secondary cell wall, crystalline cellulose chains are arranged in a helical spiral.
The chains are embedded within a polymer matrix consisting of amorphous cellulose, hemicelluloses and
lignins. These polymers interact stronglywithwater, which binds to the hydroxyl groups containedwithin.
This uptake of bound water within the cell wall replaces strong, intramolecular hydrogen bonds, leading
to a corresponding loss of stiffness. Using an approach presented by Nissan [1], the Young’s modulus
of cellulose, at low moisture contents, can be related to the change in the number of intramolecular
hydrogen bonds assuming each water molecule breaks one hydrogen bond. Considering the molecular
weight of cellulose and water this yields:

ln(N/N0) = −1/3(w/W ) (1)



where N , denotes the number of effective hydrogen bonds at moisture content w, N0 is the initial number
of effective hydrogen bonds in the dry state, and W is the moisture content at which all hydroxyl groups
carry one water molecule, which is close to 1/3 for cellulose. The number of hydrogen bonds can be
related to the Young’s modulus, E, as follows:

N = (E/k)1/3 (2)

where the proportianality coefficient, k, describes the average force constant between the hydrogen bonds.
By combining the equations we can formulate the change in Young’s modulus, E/E0, for low moisture
contents,

ln(E/E0) = −w (3)

where E0 is the initial Young’s modulus in the dry state. As the shear modulus is also dependent on the
number of effective hydrogen bonds, the relationship can be adapted to incorportate shear modulus, G.
The water content of each available sorption site can be described through the ratio of the number of
moles of water and cellulose, and thus the mixture can be descibed in terms of its chemical potential, µ.
By enforcing chemical equilibriumwith the external environment, the conditions are present for diffusion
to occur.

3. Model

Taking a similar approach to models on poroelastic gels [2], the cell wall polymer behaviour is modelled
using a formulation of coupled deformation and moisture transport, described through linear momentum
conservation Eq.(4) and the conservation of mass Eq.(5).

div(σ) = b (4)

∂εkk
∂t
= −

κ

ηΩ
µ,kk (5)

The volume change, εkk = Ω(C −C0), where C is the concentration, assumes that the change of volume
in the polymer network is due to the change in the number of bound water molecules. The volume of
each water molecule, Ω, is constant, κ is the permeability and η is the viscosity of the polymer network.
The moisture flux is given as Jk = µ,k .

The model is constitutively described using a Zener spring-dashpot configuration, shown in Figure 1.
This arrangement allows both creep and relaxation phenomena to be captured. The model is formulated
in terms of its external state variables (ε, σ) and (C, µ), representing the mechanical and chemical
behaviour respectively, and the internal state variable, ε̂, which represents the internal rearrangement of
intramolecular hydrogen bonds under stress.

Figure 1: : Model representing a rheological Zener spring-dashpot arrangement. The spring α represents the
instantaneous elasticity of the polymer network. The spring and dashpot in series arrangement, β, represents the
viscoelastic relaxation.



The stress, σ, within the system Eq.(7) can be specified as the the sum of the stress within spring α,
spring β and the hydrostatic pressure due to the concentration of solvent molecules, σ̂β , Eq.(6).

σ̂β =
∆µ

Ω
I (6)

σ = σα + σβ − σ̂β (7)

The stresses within the individual springs, α and β, are specified in Eq.(8) and (9), where Gα and Gβ

are the shear moduli of each spring respectively and να and νβ are the Poisson’s ratios.

σαi j = 2Gα

[
εi j +

να

1 − 2να
εkk δi j

]
(8)

σ
β
i j = 2Gβ

[
(εi j − ε̂i j ) +

νβ

1 − 2νβ
(εkk − ε̂kk ) δi j

]
(9)

When stress is applied to the system, the viscousmotion of the dashpot determines the rate at which spring
β relaxes, Eq.(10). The viscous behaviour is determined by the rate of breakdown of intromolecular
hydrogen bonds within the network, Ĝβ , and Poisson’s ratio ν̂β , which controls the time dependent
deformation.
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(10)

4. Finite Element Implementation
The model is formulated in 3D using the Finite Element Method usingMOFEM. The mesh consists of 10
node tetrahedral elements with a higher order of approximation applied to the displacement field to allow
for the different orders of the two governing equations (Eq. (4) and (5)), ensuring stability. The tangent
matrices are calculated using automatic differentiation (ADOL-C) to achieve proper linearisation.
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Equations (11) - (13) represent the internal force, the flux and the residual strain respectively, where N
is a matrix of shape functions , f (σ) is a function for a linear viscous material, and the volume is given
by V . They are assembled in the system as follows:



Kxx Kxµ Kxε̂

Kµx Kµµ Kµε̂

Kε̂x Kε̂µ Kε̂ε̂





qx
qµ
qε̂


=



fxexternal − fxinternal

fµv + fµJ

rε̂



The polymer network is described in terms of a rectangle, enforcing symmetry on the y axis, shown in
figure 2. The Boundary condition µ, representing the external moisture conditions, is applied on all faces
and held constant, with the exception of the symmetrical face where the flux is set to zero. A tensile force
is applied in the y-direction and released once equilibrium has been reached.



Figure 2: : Rectangular bar mesh consisting of 10 node tetrahedral elements, representing a 1/4 sample with
symmetry on the x,y and z axis.

5. Numerical Example
A specimen, Figure 2, is loaded in tension. The load is held for 35 minutes and then released. The creep
results shown in Figure 3 (right) demonstrate the coupling between the mechanical and hygral behaviour.
The graph shows the displacement of the top face vs the chemical potential at the mid point of the
specimen. Initially the applied force causes an elastic displacement, elongating the sample and causing
a dip in the chemical load in the middle of the sample. The evolution of the chemical load through
the sample is shown in Figure 3 (left). Over a longer length of time the sample then undergoes creep,
increasing the displacement until it reaches equilibrium. At this point all the stress is taken by spring α.
The load is then released, causing an increase in chemical load which reduces over time as the sample
returns to its reference configuration.

Figure 3: : Left: Evolution of the chemical load through the sample along the y-axis at given time steps, t(min),
where the solid lines occur during the loading phase and the dashed lines occur post loading. Right: Demonstration
of the coupling between the chemical load and the displacement due to an external force applied to the sample

6. Conclusions
The proposed model is currently formulated in small strains and as such can only be applied to small
changes in deformation and cannot yet fully describe the mechano-soprtive behaviour in environmental
conditions that exceed 50% relative humidity. All viscoelastic changes are fully reversible, and after a
short time the sample with return its reference configuration if the conditions return to those at time
zero. In the future the model will be formulated in large strains and take into account a larger degree of
polymer softening at higher moisture contents.
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