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ABSTRACT

In this paper we apply model order reduction to the criticality problem in reactor physics. Starting from the
eigenvalue problem associated with the multigroup neutron diffusion equation we build a reduced order model
from solutions for different control rod positions using proper orthogonal decomposition. The reduced system of
equations can be solved at a fraction of the cost of the full system, yielding a solution for any given control rod
height. We demonstrate this procedure for a section of a fuel assembly.
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1. Introduction

Using reduced order models (ROMs) [1] when solving parameterised problems is known to be beneficial,
as the problem size can be reduced by several orders of magnitude whilst retaining reasonable solution
accuracy. In this paper, ROM is applied to the eigenvalue problem arising from the study of criticality in
nuclear reactors. The method proposed is based on proper orthogonal decomposition (POD) [2] and the
method of snapshots [3]. There has been a considerable amount of attention in POD from within the fluid
dynamics community, having been successfully applied to a range of applications such as the mixing
of fluid layers [4] and ocean models [5]. However, its application to solving reactor physics problems
is less common. Notable exceptions are [6] which recasts the criticality eigenvalue problem as a time
dependent problem, and [7] which develops a control-oriented model of nuclear reactor spatial kinetics.

The growth of the neutron population in a reactor is one of the most important characteristics of a
nuclear system, knowledge of which determines the state of the reactor encapsulated in the effective
multiplication factor keff. Ideally, for a particular reactor, keff needs to be calculated for any position
of the control rods and any temperature distribution. As these change constantly, solving a demanding
computation for each control rod height and temperature distribution is not practical. Reduced order
modelling is ideally suited to such a problem.

The following section describes the multigroup diffusion equation and the formulation of the criticality
problem. In section 3 the reduced order model is described. Section 4 presents some preliminary results,
and the final section concludes and identifies future work.

2. Governing Equations

Under operating conditions in a reactor, the multigroup neutron diffusion equation can be used to model
the neutron population. The multigroup discretisation splits up the energy into a number of so-called
energy groups determined by a discrete set of values EG < EG−1 < · · · < E1 < E0. Each group
has an associated scalar flux solution, φg , and a set of material parameters. The behaviour of the neu-
trons is described by the macroscopic cross-sections corresponding to fission, scattering and absorption,
denoted Σ fg , Σsg′→g , Σag respectively, where the subscripts g and g′ indicate a particular group. The cross-
sections represent the probabilities that fission, scattering or absorption will occur. The parameter Dg



which controls how the neutrons diffuse through the domain, depends on the cross-sections according
to Dg (x) =

(
3(Σag (x) + Σsg (x))

)−1
. Criticality is a measure of the growth or decay of the neutron pop-

ulation in a system over successive neutron generations in a fission chain reaction. In order to study
criticality, the governing equation is cast in the form of an eigenvalue problem by introducing the ef-
fective multiplication factor, keff. If neutrons removed from the system exactly balance those created,
the system is adjudged critical (keff = 1). If more neutrons are produced than removed then the sys-
tem is super-critical (keff > 1). If fewer neutrons are produced than removed the system is sub-critical
(keff < 1).

For group g, the criticality eigenvalue problem of the multigroup neutron diffusion equation is

−∇ · (Dg (x)∇φg (x)) + Σag (x) φg (x) −
G∑

g′=1
g′,g

Σ
s
g′→g (x) φg′ (x) =

χg

keff

G∑
g′=1

νg′Σ
f
g′ (x) φg′ (x), (1)

where G is the total number of groups, χg is the probability that fission will result in a neutron being
born in group g, νg is the average number of neutrons produced per fission event and keff is the effective
multiplication factor. There are two types of boundary conditions considered here: reflective boundary
conditions where Dg∇φg (x) · n = 0, and void boundary conditions − 1

2 Dg∇φg (x) · n = 1
4φg (x).

Considering the case of two energy groups, we can make assumptions that (i) any neutrons created will
be born into the higher energy group (ie. χ1 = 1 and χ2 = 0), (ii) upscatter from the low energy group
to the fast energy group will not occur (ie. Σs2→1 = 0) . For the full model, a Galerkin finite element
discretisation is applied in space, so the solution is expanded in terms of piecewise polynomial functions
(shape functions), φg (x) = Nj (x)φ̂g, j , the governing equation is weighted by the shape functions and
integrated over the domainΩ. The divergence theorem is applied in order to impose boundary conditions,
resulting in

A φ ≡
[
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] {
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φ2

}
=

1
keff

[
B11 B12
B21 B22
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}
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B φ (2)

where (
Agg

)
i j

=

∫
V

(
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)
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1
2

∫
Svoid

NiNjdS, for g = 1,2 (3)

(A21)i j =

∫
V

−Σs1→2NiNjdV (4)(
Bgg′

)
i j

= χg

∫
V

νg′Σ
f
g′NiNjdV for g,g′ = 1,2 . (5)

The dependence of the shape functions on x is no longer indicated explicitly.

3. ROM
Reduced order modelling aims to solve a computationally costly problem in a cheaper way, by using in-
formation from a series of pre-calculated solutions. For a range of values of a parameter, high resolution
solutions are sought, known as snapshots. A singular value decomposition (SVD) is then applied to the
matrix of snapshots which results in a set of orthogonal basis functions and a set of singular values. The
magnitudes of the singular values indicate the importance of each basis function therefore not all need
be retained in the POD basis if their contribution is deemed sufficiently small relative to a predefined
tolerance. Once the POD basis has been found the discretised governing equation is projected onto the
reduced order space where it is then solved for desired values of the parameter. The parameter varied
in this paper is the control rod height, which takes a set of values from h1 (fully inserted) to hn (fully
withdrawn), yielding n snapshots. The fraction of energy of the original information which is contained
by m POD basis functions is determined by the singular values σk :

energy of the first m modes =

∑m
k=1 σ

2
k∑n

k=1 σ
2
k

. (6)



For each control rod height, the matrices A and B are projected by the m POD basis functions from finite
element (FE) space to the reduced space by the following

APOD
k = RT Ahk

R (7)

where the POD basis functions make up the columns of R and Ahk
is given by equation (2) evaluated

for a control rod height of hk . In order to solve a problem in the reduced order space, for a control rod
height of h̃ ∈ [hi , hi+1], a linear interpolation is performed between APOD

i and APOD
i+1 such that

APOD = ωAPOD
i + (1 − ω)APOD

i+1 where ω =
hi+1 − h̃
hi+1 − hi

. (8)

BPOD is constructed similarly. Now we are able to assemble and solve the reduced order system

APODφPOD = λPODBPODφPOD . (9)

Finally we project the flux solution from the reduced space into the FE space by calculating R φPOD .

4. Results

h

Figure 1: Left, part of a fuel assembly showing the region
where the control rod is located. Right, view from above of
the assembly showing fuel pins and control rod (shaded). (Not
to scale.)

Part of a fuel assembly is modelled
to test the ROM procedure described
in the previous section. The domain is
[−1.845,1.845]× [−1.845,1.845]× [−5,5].
There are 8 fuel pins and one control rod
of radii 0.48, surrounded by a moderator
which in this case is water (see figure 1).

The cross-sections were generated us-
ing the ANSWERS software, WIMS, and
some values are reported in table 1. The
mesh used has 431883 tetrahedral ele-
ments and 76712 nodes. The snapshots
were taken for a control rod at heights of
{−5,−3,−1,1,3,5}. Each energy group had 6 POD basis functions so the reduced order system is of size
12 × 12. For the same heights the reduced order model gives values of keff which agree with those of
the snapshots to within 6 decimal places (see figure 2). For so-called unseen values of the control rod
height, the reduced order model predicts keff to a reasonable accuracy. The computational time to solve
the full order model for one parameter was 379.8 seconds, whereas the reduced order model solves in
less than 0.1 seconds.

Σa1 Σa2 Σs1→1 Σs1→2 Σs2→2 Σ
f
1 Σ

f
2

fuel 300K 6.003E-03 9.583E-02 3.364E-01 1.336E-03 4.048E-01 3.333E-03 4.994E-02
2000K 6.042E-03 9.499E-02 3.370E-01 1.340E-03 4.079E-01 3.333E-03 4.945E-02

moderator 300K 1.447E-04 6.597E-03 3.395E-01 5.957E-02 1.281E+00 0.0 0.0
2000K 1.447E-04 6.584E-03 3.395E-01 5.954E-02 1.279E+00 0.0 0.0

Table 1: Cross-sections for the fuel and moderator at a given temperature are interpolated from the values above.

5. Final remarks

This paper has applied model order reduction to the criticality eigenvalue problem associated with the
multigroup neutron diffusion equation. Snapshots were taken for different values of control rod height.
When comparing the eigenvalue of the snapshots generated by the full model with that of the reduced
order model, the agreement is excellent. For unseen problems, the agreement is reasonable. The full
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Figure 2: Two comparisons, first of keff from the snapshots (full model) with keff from the reduced order model as
the control rod height varies (blue crosses and red circles), and second of keff for full model solutions with keff of
unseen values of the control rod height predicted by ROM (black crosses and cyan squares).

order model has 153424 unknowns whereas the reduced order problem has just 12 and solves in a
fraction of the time.

Future work will involve (i) quantifying the error between the reduced order model solution and the
full model for unseen problems and (ii) introducing temperature to the ROM as a parameter, as the
cross-sections depend on this.
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