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ABSTRACT 

This paper presents both the theoretical basis for simulating unstable crack propagation in 3D hyperelastic 
continua within the context of configurational mechanics, and the associated numerical implementation.  The 
approach taken is based on the principle of global maximum energy dissipation for elastic solids, with 
configurational forces determining the direction of crack propagation. The work builds on the developments 
made by the authors for static analysis, incorporating the influence of the kinetic energy. The nonlinear system 
of equations is solved in a monolithic manner using a Newton-Raphson scheme. Initial numerical results are 
presented. 
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1. Introduction  

The numerical simulation of unstable crack propagation in three-dimensional hyperelastic materials is 
studied within the context of linear elastic fracture mechanics (LEFM) and configurational mechanics 
[3]. Although quasi-static and dynamic fracture has been widely investigated in continuum 
mechanics, this remains a challenging topic. Our approach is to develop the physical and 
mathematical description to determine (a) when a crack will propagate, (b) the direction of 
propagation and (c) how far/fast the crack will propagate. Furthermore, we require a numerical setting 
to accurately resolve the evolving displacement discontinuity within the context of the Finite Element 
Method. In this study, we present a mathematical derivation and numerical implementation that can 
achieve these goals, solving for conservation of momentum in both the spatial and material domains. 
The spatial (or physical) domain can be considered as a description of what we physically observe and 
the material domain is the evolving reference domain due to crack evolution. The theory is an 
interpretation of linear elastic fracture mechanics and consistent with Griffith’s fracture criterion. This 
paper represents a generalisation of the authors’ previous work on static crack propagation, [3]. The 
approach taken is based on the principle of global maximum energy dissipation for elastic solids, with 
configurational forces determining the direction of crack propagation. This approach has been 
successfully adopted by a number of other authors in the context of quasi-static analysis, e.g. [3] and 
[2]. At present we restrict ourselves to the consideration of elastic bodies with energy dissipation 
limited to the creation of new crack surfaces. 
 
In the context of the numerical setting, we have adopted the Arbitrary Lagrangian-Eulerian (ALE) 
method, which is a kinematic framework to describe movement of the nodes of the finite element 
mesh independently of the material. Thus, we are able to resolve the propagating crack without 
influence from the original finite element mesh, and maintain mesh quality. The efficient solution of 
3D crack propagation, with a large numbers of degrees of freedom, requires the use of an iterative 
solver for solving the system of algebraic equations. In such cases, controlling element quality enables 
us to optimise matrix conditioning, thereby increasing the computational efficiency of the solver. 
 
The resulting system of equations is highly nonlinear and requires a solution strategy that can trace 
the entire transient response. The application of this work is the predictive modelling of crack 
propagation in nuclear graphite bricks, which are used as the moderator in UK advanced gas-cooled 
nuclear reactors (AGRs). 



 

 
2. Kinematics of Propagating Cracks  

Differentiable mappings relate the reference material domain to both the current spatial and the 
current material domains. These mappings are utilized to independently observe the deformation of 
material in the physical space Ωt  and the evolution of the crack surface in the material space Bt, see 
Figure 1. 

 
Figure 1: Deformation and configurational change of a body with a propagating crack 
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3. Numerical Implementation 

The finite element approximation is applied to both the physical and material space. Three-
dimensional domains are discretised with tetrahedral elements with hierarchical basis functions of 
arbitrary polynomial order, following the work of [1]. The higher-order approximations are only 
applied to displacements in the spatial configuration, whereas a linear approximation is used for 
displacements in the material space. The resulting residuals in the spatial and material domain, that 
represent the two primary, nonlinear equations that need to be solved, are expressed as: 
 rs = λ t( )fs,ext − fs,int ,   rm = fm,res − fm,driv  (2) 

where λ is the load factor that scales the external reference load, fs,ext ; fs,int  is the internal force 

vector,  fm,res  is the material resistance and fm,driv  is the driving force for crack propagation. These 

equations are linearised and solved using a Newton-Raphson procedure. 
 
The spatial internal force vector is expressed as  
 fs,int = BX

T∫ P dV+ ρNT∫ a dV  (3) 

and the material driving force is expressed as 
 fm,driv = BX

T∫ Σ dV− ρ0 F
Ta+ !FTv( )∫ dV =G− ρ0 F

Ta+ !FTv( )∫ dV  (4) 

where P is the first Piola Kirchoff stress tensor,  Σ  is the Eshelby stress, a is the spatial acceleration, 
v = !u = !w−F !W  is the spatial velocity, F is the deformation gradient and G is the configurational 
force. The Eshelby stress is defined as: 
 Σ =WI−FTP  (5) 
where W is the strain energy density. 
 
In the restricted case of quasi-static analysis, the inertia and velocity terms in (3) and (4) vanish and 
the formulation reverts to that presented in [3]. Thus, equations (3) and (4) represent an important 
development in the modelling of dynamic crack propagation, generalising the configurational 
mechanics formulation. It is important to emphasise that, for fast crack propagation, whereby the 
inertia terms in equations (5) and (6) are included, the crack front velocities are calculated to satisfy 



 

equilibrium of the crack front in the material space. Therefore, the crack front velocity is not a 
material or model parameter, as is the case in most models, but a natural result of a consistent 
mathematical derivation, starting from the first law of thermodynamics [3]. 
 
4. Mesh Quality 

The continuous adaptation of the finite element mesh to resolve the propagating crack will result in a 
degeneration of the mesh quality. For large problems, where it is necessary to use iterative solvers, we 
need to control the quality of the elements to ensure good matrix conditioning. The key challenge is to 
enforce constraints to preserve element quality for each Newton-Raphson iteration, without 
influencing the physical response. Thus, we introduce a measure of element quality for tetrahedral 
elements in terms of their shape and use this to drive mesh improvement. Here we include both node 
movement and changes in element topology (face flipping). Thus, equations (4) and (5) are 
augmented by a third residual, , defined as 

 fq = BX
T∫ Q dV  (6) 

where Q is a pseudo “stress” at the element level, as a counterpart to the first Piola Kirchhoff stress. 
Since the conditioning of the finite element stiffness matrix is controlled by the quality of the worst 
elements, we advocate that Q is a function of a log-barrier objective function as a means of evaluating 
the quality of an entire mesh (whilst punishing harshly the worst quality element), and the volume-
length quality measure, [4].  
 
5. Numerical Examples 

To demonstrate the performance of the model for quasi-static loading, a numerical example is 
presented which considers a slice of a graphite brick under quasi-static loading of the keyway. Figure 
3 shows a good comparison between the numerically simulated crack path and the experimentally 
observed crack. Figure 3(d) shows that the results are independent of the mesh size. 
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Figure 3: Graphite brick slice. (a) Experimentally observed crack; (b) numerically predicted crack; (c) model 
geometry and predicted crack; (d) load-displacement response. 

 
6. Conclusions 

In this study, the basis for unstable crack propagation using configurational mechanics has been 
presented. The highly nonlinear system of equations are implemented in and solved using MoFEM, a 
finite element code for multi-physics problems which is developed at the University of Glasgow. 
Performance of the model is demonstrated on three numerical problems. The implementation has 
proved to be stable, robust and computationally efficient. 
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