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ABSTRACT

A three-dimensional multi-scale computational homogenisation framework was developed for the prediction of

nonlinear micro-mechanical response of the fibre-reinforced polymer (FRP) composite. Two dominant dam-

age mechanisms, i.e. matrix damage and fibre-matrix decohesion were considered and modelled using a non-

associative pressure dependent thermodynamically consistent paraboloidal yield criterion and cohesive elements

respectively. A linear-elastic transversely isotropic materials model was used to model yarns within the represen-

tative volume element (RVE), the principal directions for which were calculated using a potential flow analysis

along these yarns. A unified approach was used to impose the RVE boundary conditions, which allows conve-

nient switching between linear displacement, uniform traction and periodic boundary conditions. Furthermore,

the flexibility of hierarchic basis functions and distributed memory parallel programming were fully utilised. The

accuracy and performance of the developed computational framework were demonstrated using an RVE with ran-

domly distributed but periodic and axially aligned unidirectional fibres subjected to transverse tension and shear.

The macro-strain versus homogenised stress responses were validated against the reference results from the liter-

ature. Finally, effects of varying interfacial strength and fracture energy were studied on the homogenised stress

versus macro-strain responses.
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1. Introduction

As compared to conventional materials, fibre-reinforced polymer (FRP) composites offer exceptional

mechanical and chemical properties, making them ideal for a variety of engineering applications, in-

cluding aerospace, marine, automotive industry, civil structures and prosthetics [1]. On the other hand,

their computational modelling is more challenging due to their underlying complicated and heteroge-

neous microstructure and associated nonlinearities with the matrix damage and fibre-matrix decohesion.

Therefore, multi-scale computational homogenisation (CH) provides an accurate modelling framework

to simulate the behaviour of FRP composites and determine the macro-scale homogenised (or effective)

properties, based on the physics of an underlying, microscopically heterogeneous, representative volume

element (RVE). The homogenised properties calculated from the multi-scale CH are subsequently used

in the numerical analysis of the macro-level structure.

This paper presents a generalised three-dimensional multi-scale CH framework for prediction of the

nonlinear micro-mechanical response of FRP composites, including matrix damage and fibre-matrix

decohesion. The pressure dependent thermodynamically consistent paraboloidal yield criterion and co-

hesive elements are used to model matrix damage and fibres-matrix interfacial decohesion respectively

[2, 3], while yarns are considered as linear-elastic and transversely isotropic. The principal directions

for the transversely isotropic material model are calculated using a potential flow along these yarns. A

unified approach is used to impose the RVE boundary conditions, which allows convenient switching be-

tween displacement, traction and periodic boundary conditions [4]. The flexibility of the hierarchic finite

element is fully utilised, which permits the use of arbitrary order of approximation leading to accurate

results for relatively coarse meshes. Furthermore, the computational framework is designed to take ad-

vantage of distributed memory high-performance computing. The developed computational framework

is implemented in our group’s FE software, MoFEM (Mesh-Oriented Finite Element Method).



2. Model components

2.1. Material models

The RVE in the case of FRP composites consists of yarns embedded in an epoxy matrix. Epoxy matrix

is modelled as an elasto-plastic material using a non-associative pressure dependent thermodynamically

consistent paraboloidal yield criterion, the yield surface for which is shown in Figure 1(a) in the principal

stress space and is mathematically written as

f (σ,σc ,σt ) = 6J2 + 2I1 (σc − σt ) − 2σcσt , (1)

where σ is Cauchy stress tensor, I1 = tr(σ) is the first invariant of Cauchy stress tensor, J2 =
1
2
η : η is

the second invariant of deviatoric stress η = σ − 1
3

I1 and σt and σc are yield strengths in tension and

compression respectively. A non-associative flow rule is used, for which the plastic potential function is

written as

g (σ,σc ,σt ) = 6J2 + 2αI1 (σc − σt ) − 2σcσt , α =
1 − 2νp

1 + νp
, (2)

where νp is a material parameter and is known as plastic Poisson’s ratio. Furthermore, the Helmholtz

free energy in the case of linear isotropic hardening is written as

ψ =
1

2
λtr[ε]2 + µε : ε + σt0

α0 +
1

2
Htα

2
0 + σc0

α1 +
1

2
Hcα

2
1, (3)

where λ and µ are the Lame parameters, ε is the strain tensor, σt0
and σc0

are the initial yield strengths

in tension and compression respectively, α0 and α1 are internal kinematic variables and Ht and Hc are

hardening parameters in case of tension and compression respectively.
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Figure 1: Material models for matrix and fibre-matrix decohesion

Fibre-matrix decohesion is modelled using the standard cohesive elements with a straightforward mate-

rial model, i.e. linear traction-separation law (shown in Figure 1(b)), which requires only three material

parameters including cohesive strength f t , fracture energy G f and material parameter β, which assign

different weight to opening and shear displacements. Mathematically the material model for the cohesive

element is written as

t =



E0δ if δ < δ0,

(1 − ω) E0δ if δ0 ≤ δ < δmax,

0 if δ < δmax,

(4)

where E0 is the initial stiffness, δ =

√

δ2
n + β(δ2

s1
+ δ2

s2
) is displacement jump with δn and δs as its

normal and shear components and ω is damage parameter. Furthermore, κ is a history parameter and is

equal to the highest value of displacement jump δ.



Finally, yarns are modelled as linear-elastic and transversely-isotropic material. The principal directions

for the transversely isotropic material model are determined by solving a potential flow along each yarn

[1].

2.2. Multi-scale computational homgenisaiton

In CH, a heterogeneous RVE is associated with each macroscopic Gauss point, the boundary conditions

for which are implemented using the generalised procedure proposed in [1, 4]. A small strain formulation

is assumed in this paper. For a global step n+1, the discretised system of equations in case of an iteration

i of the Newton-Raphson algorithm is written as
[

Ki
n+1

CT

C 0

] {
△ui

n+1

△λi
n+1

}

=
{
Fi
n+1

}
, (5)

where K and u are the standard FE stiffness matrix and displacement vector respectively and λ is the

unknown vector of Lagrange multipliers required to impose the RVE boundary conditions. Matrix K

consists of contribution of elements from matrix, yarns and yarn-matrix interfaces. Fi
n+1

is a vector of

residuals and is written as

Fi
n+1 =

[
CTλi

n+1 − Fint
n+1

C ui
n+1
− Dεn+1

]
. (6)

Matrices C and D in Equations (5) and (6) are calculated over the boundary Γ of the RVE and are constant

throughout the calculations [1, 4]. At Newton-Raphson iteration i, variable φ = u,λ is calculated using

φi
n+1 = φn +

∑i
m=1 φ

m
n+1. In Equation (6), Fint

n+1
is a vector of internal forces consists of contribution

of elements from matrix, yarns and yarn-matrix interfaces and ε is the macro-strain associated with a

Gauss point. Furthermore, vectors Cui
n+1

and CTλi
n+1 are associated with the RVE boundary conditions

and are written as

Cui
n+1 =

∫

Γ

HNTuh i
n+1dΓ, CTλi

n+1 =

∫

Γ

HNTλh i
n+1dΓ, (7)

where N is the matrix of shape functions and H is a matrix that is specific to the type of boundary

conditions used, each row of which represents an admissible distribution of nodal traction forces on the

RVE boundary and uh and λh are displacements and Lagrange multipliers calculated at a Gauss point,

i.e. φh = uh ,λh = Nφe i
n+1

, where φe is a matrix of displacements or Lagrange multipliers associated

with element e.

3. Numerical example

The correct implementation and performance of the computational framework is demonstrated with a

polymer composite reinforced with unidirectional fibres subjected to transverse tension and shear. A

periodic RVE, consisting of randomly distributed but axially aligned fibres is considered in this case and

is shown in Figure 2(a). The RVE is generated using a statistically proven random distribution algorithm

proposed in [5] and is consisting of fibres with 5µm diameter and volume fraction of 60%. For the

elasto-plastic matrix material Young’s modulus, Poisson’s ratio, plastic Poisson ratio and initial yield

strengths in tension and compression are 3.76 GPa, 0.39, 0.3, 29 MPa and 67 MPa respectively, while

for the linear-elastic and isotropic glass fibres, Young’s modulus and Poisson’s ratio are 74 GPa and 0.2

respectively. For the cohesive elements interface strength and fracture energy are 50 MPa and 2 J/m2

respectively. The RVE is discretised with tetrahedral elements including 8,436 and 12,136 elements

for matrix and fibres respectively and is shown in Figure 2(b), while the fibres-matrix interfaces are

discretised with 1652 zero-thickness cohesive elements. The macro-strain (applied to the RVE by using

the periodic boundary conditions) versus the homogenised stress response for both transverse tension

and shear cases are compared with the numerical results from [2] and are shown in Figure 2(c), which are

in a very good agreement. The final damaged cross-section in the case of transverse-tension is shown in

Figure 2(d), where a clear localisation region can be seen. Furthermore, the effect of varying interfacial

strength and fracture energy for the transverse tension case is also illustrated in Figure 2(c), which

illustrate a more distributed fracture throughout the RVE, e.g. as shown in Figure 2(e).
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Figure 2: Geometry, mesh, damage and stress-strain plot for the numerical example

4. Conclusions

A three-dimensional, nonlinear micro-mechanical multi-scale computational homogenisation frame-

work is developed for the FRP composites. Matrix and yarns-matrix interfaces are modelled using a

paraboloidal yield criterion and cohesive elements respectively, while yarns are considered as linear-

elastic and transversely isotropic. The computational framework is validated for FRP composites with

unidirectional fibres subjected to transverse tension and shear, the RVE for which are generated using a

statistically proven random distribution algorithm. Furthermore, the effect of varying interfacial strength

and fracture energy on the homogenised stress versus macro-strain responses is also illustrated.
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