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ABSTRACT

The objective of this paper is to propose a time-dependent reliability analysis method to investigate the durabil-
ity of fibre reinforced polymer composites. A stochastic multi-scale finite element method, which is based on
computational homogenization and perturbation technique, is adopted to propagate uncertainties in both micro-
and macro-scale parameters. The influence of water absorption and heat conduction and the induced degradation
of mechanical properties, which is estimated through a hygro-thermo-mechanical model that is integrated into
the stochastic multi-scale finite method, is then studied in the framework of time-variant reliability analysis. It is
shown that the problem reduces to a sequence of time-independent problems that can be solved using the first-order
reliability method. A numerical study is carried out to demonstrate the applicability of the proposed method, and
the evolution in time of the probability of failure is computed.
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1. Introduction

Composite materials may provide benifits in terms of reduction of construction time and carbon emission
for civil engineering sector, given their success in other sectors. However, civil engineering structures and
infrastructures are expected to serve in natural environment for 50 years or more. Accurately quantifying
long term durability behaviour is eagerly needed to fully exploit benefits that composite materials could
bring to construction sector. In an on-going UK EPSRC funded research project - Providing Confidence
in Durable Composites (DURACOMP), pultruded glass fibre reinforced composites, which are typical
construction composite materials, have been tested to characterize their ageing behaviours in hot/wet
condition. The evolution in time of moisture uptake ratio and mechanical properties has been measured
and reported in [1, 2]. To numerical simulate these coupon testing based findings to large scale structures,
a coupled hygro-thermo-mechanical model has developed [3] to investigate the long term durability
of composites in a deterministic context. Arising from various sources such as manufacturing process,
assembly and quality control limits, composite materials exhibit uncertainties in their material properties.
Taking these uncertainties into account in designing composites, such as through the use of reliability
based structural design, is essential to ensure that the structures perform with sufficient safety during
their service and fully realize the advantages offered by composites. In the present study, this coupled
hygro-thermo-mechanical is combined with a probabilistic homogenization approach developed in [4] to
propagate micro-scale uncertainties to the macro-scale in the mechanical problem. This is subsequently
integrated with reliability analysis methods to evaluate the reliability of composite structures.

2. Time-dependent structural reliability analysis

For a stochastic structure system, when stochastic processes or functions of time are explicitly present
in the limit state function (LSF), g(x), time-variant analysis is required to quantify the probability of
failure of the structure. Accordingly, the n-dimensional vector x that collects all random parameters in



the system is split into x1 which is a vector of random variables and x2(t) which is a vector of random
processes. The probability of failure, pf , of the structure within a time interval [tb, te] is defined as

pf (tb, te ) = Pr (∃t ∈ [tb, te], g(x1, x2(t)) ≤ 0) (1)

In this study, the time effect is present in the problem due to the degradation of material properties, the
LSF g thus depends on random variables and functions of time. The computation of pf as defined in
Eq.(1) reduces to

pf , i = Pr (g (x1, x2(t)) ≤ 0) (2)
which is called instantaneous probability. In a degradation problem, the LSF is monotonously decreasing
in time whatever the realizations of the random variables. For each realization of the random vector, the
minimum value of g (x1, x2(t)) over a time interval [tb, te] is attained for t = te . Thus, the time-variant
problem is reduced to a time-invariant analysis to calculate the special case of Eq. (2) at te . First-order
reliability method (FORM) is one of the widely used methods to numerically estimate reliability for time
independent problem. Essentially, it requires to transform random variables x from general probability
space to standard normal space as u, which leads to G(u), and to linearly approximate the LSF through
the first-order Taylor series expansion, which needs to calculate gradient of G. According to the chain
rule of differentiation, the gradient vector of G can be obtained from

∇G =
∂G
∂y
=
∂g

∂ s

∂ s

∂x

∂x

∂y
, (3)

where ∂x
∂y is Jacobian of the probability transformation, ∂g∂s can be analytically obtained since the LSF

g is function of components of s. Thus, the only unknown is ∂s
∂x that will be calculated from stochastic

finite element method.

3. Stochastic multi-scale finite element analysis
3.1. Degradation model for FRP composites in hot/wet condition

Based on experimental data reported in [1], Zahur et al. [3] proposed a generalized model to charac-
terize the degradation of constitutive matrix of matrix material under hygrothermal condition, which is
expressed as

dCm
dt
= −cη log

(
1 − T/Tg

)
C0m or

d
dt

(1 − ω) = −cη log
(
1 − T/Tg

)
(1 − ω) (4)

where C0m is for undegraded material; c is the moisture concentration; η is a model parameter that is
obtained from experiment data; T is the temperature; Tg is the glassy transition temperature; and t is
the exposure time. Thus, this degradation model is actually to get instantaneous temperature T (t) and
moisture concentration c(t), and they are obtained from transient moisture diffusion and heat conduction
analyses.

3.2. Computational homogenization for multi-physics problems

Owing to the multi-scale architecture of composite materials, homogenization method should be used
to estimate the effective properties of composites. In the present paper, the multi-scale computational
homogenization method was used to estimate the effective elastic and physical properties. Thermal and
diffusion homogenization were conducted to get the effective conductivity and diffusivity, respectively.
These were then supplied to transient heat conduction and moisture diffusion analyses to calculate the
instantaneous temperature and moisture concentration for Eq. (4). Finally, the degraded elastic properties
of constituentmaterialswere input to themechanical homogenization to get the effective elastic properties.
In the finite element context, the mechanical homogenization is expressed as

[
Kµ PT

P 0

] {
u
λ

}
=

{
0
Dε̄

}
or

[
K̂
]
{û} =

{
F̂
}
. (5)

where λ is the Lagrangian vector, ε̄ is the prescribed or given strain, and P and D are constraint matrix
and global coordinate matrix.



3.3. Uncertainty propagation with the use of perturbation technique

Considering material properties as random variables, the stiffness matrix
[
K̂
]
and the nodal displacement

vector {û} in Eq. (5) are thus stochastic functions. According to the perturbation technique, stochastic
function can be approximated by Taylor series expansion. In the present study, only the first order
expansion is needed as the first order derivatives of structural responses are required in Eq. (3). By
expanding stochastic functions in the form of

φ(b) = φ(b̄) + ε
n∑
i=1

[
Dbiφ(b̄)

]
δbi, (6)

substituting them into Eq.(5) and equating terms of equal orders of ε , we arrive at the following zeroth-
and first-order equations:

[
K̂
]
{û} =

{
F̂
}

(7)
n∑

p=1

{[
K̂
] {

Dbp û
}
+
[
Dbp K̂

]
{û}

}
= 0 (8)

In Eq. (5), the block related to stiffness matrix,
[
Kµ

]
, of the microstructure is function of material

properties. It and its first-order partial derivative can be expressed as

Kµ =

∫
Ωs

µ

BTCµBdV, and
[
DbpKµ

]
=

∫
Ωs

µ

BT
[
DbpCµ

]
BdV, (9)

where B is the strain-displacement matrix, Cµ is the constitutive matrix of constituent material, and[
DbpCµ

]
is its first-order partial derivative. Computing Eqs.(7) and (8) successively, the compact

displacement vector {û} and its first order partial derivative
{
Dbp û

}
can be obtained. These were then

used to calculated the effective constitutive matrix and its derivatives according to C̄ = σ̄
ε̄ (see [4]

for details of the derivation). Once the effective constitutive matrix for the composite is obtained, the
stochastic structural responses at macro level can be calculated by introducing a perturbation-based
stochastic finite element method, and these are input to Eq. (3).

4. Numerical example

A fibre reinforced polymer composite plate is considered in this section to illustrate the time-dependent
reliability analysis scheme. The geometry of the plate is shown in Fig 1a. For the macro-level thermal
problem, a temperature of 80°C is applied to the top and bottom surfaces, and constant heat flux is applied
to the left and right surfaces. Similarly, for the moisture transport problem, a constant concentration of 1,
which represents 100% relative humility, is applied to the top and bottom surfaces, and constant moisture
flux is applied to the left and right surfaces. For the macro-mechanical analysis, a uniform pressure of
1000 MPa is applied along the upper and lower surfaces in the vertical direction to simulate uniaxial
tension state. Considering the symmetry of the geometry and boundary conditions for heat transfer,
moisture transport and mechanical analysis, only 1/8 of the structure, highlighted in Fig. 1a, needs to be
modelled. The plate is made of glass/epoxy plain weave textile composite (see microstructure in Fig. 1b)
with elastic and physical properties indicated in [3].

The multi-scale analysis for heat conduction and moisture transport problems were conducted first to
get the effective heat conductivity and moisture diffusivity required for performing macro level heat
conduction and moisture diffusion analyses. The calculations were conducted in a time interval of 10
days, and a period of 500 days was considered. Thus, a total of 51 times of multi-scale multi-physics
calculation were conducted. Using these 51 instantaneous temperature and moisture concentration fields,
a series of degradation parameter field was computed by Eq. (4). Then the mechanical computational
homogenization was applied to estimate the effective mechanical properties. According to preliminary



study at initial stage, applied load, longitudinal ply strength and longitudinal Young’s modulus are the
most important parameters in reliability analysis of the considered structures. These three parameters
were considered as random variables in the time-dependent reliability calculation, and Tsai-Wu failure
theory was used to establish the LSF. Finally, the evolution in time of the reliability index is plotted in
Fig. 2. It can be seen that the reliability index decreases about 11% after 500 days degradation.

(a) Plate

(b) Microstructure

Figure 1: FRP plate and its mi-
crostructure
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Figure 2: Evolution in time of the reliability index

5. Conclusions
On-going research and early results on the durability of fibre reinforced polymer composite structures,
which is investigated by time-dependent reliability analysis, are presented in this paper. The time depen-
dent reliability calculation is realized by integrating a multi-scale finite element reliability method with
a hygro-thermo-mechanical model. A numerical study is carried out to demonstrate the applicability of
the proposed scheme through the calculation of the evolution in time of the probability of failure.
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