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ABSTRACT 

Self-healing cementitious materials could greatly improve the durability properties of concrete structures 
relative to those constructed with conventional cementitious composites. However, there is a need to understand 
better the healing processes, to predict accurately experimental behaviour and to determine the impact on 
mechanical properties. Micromechanical modelling, with a two-phase Eshelby inclusion solution, is chosen as a 
suitable framework within which to explore such a response in cementitious materials. A constitutive material 
model is described, consideration is given to a self-healing model framework and how the mechanical strength 
recovery of a micro-cracked material can be simulated with a simplified volumetric micromechanical model.  
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1. Introduction  
Micromechanics is a technique are used to describe engineering material properties based on basic 
continuum mechanic concepts; conservation of mass and balance of momentum and energy. 
Micromechanical models allow the individual material properties, damage and inelastic response to be 
modelled at the same length scale whilst also linking to the macroscale. This paper simulates a two-
phase composite material which has a matrix phase and inclusions. The particular focus is on building 
a framework for simulating healing in a cracked material.  
 
In recent years much research has been undertaken on the subject of self-healing in cementitious 
materials [1], [2]. A number of models have been developed for simulating self-healing behaviour 
[3]–[6]. The majority of the mechanical healing models developed to date are phenomenological in 
nature and have been applied in finite element codes using the smeared crack concept. However, the 
present authors favour more mechanistic approach. In cementitious materials, the development of 
material properties and recovery can be linked to the hydration process, particularly for early age 
crack healing. Hydration processes and damage have been considered in a coupled model [7] where 
the evolution of healing was linked to both the degree of hydration and to the value of the damage 
parameter at time of healing. 
 
A micro-scale model naturally captures the early stages of micro-cracking and the extent of damage in 
the fracture process zone around a macro-crack by considering the behaviour of the composite 
components. A model which can represent micro-cracks is ideally suited for including self-healing 
behaviour by healing these explicit cracks. 
 
2. Essential components of the micro-mechanical model  
A cementitious material with aggregate particles and cement paste is represented using a two phase 
composite with inclusions (Ω) and a matrix (M) phase. A detailed description of the basic 
micromechanical model can be found in [8], [9]and [10]. The essential components of the micro-
mechanical model are shown in the following constitutive equation and are taken forward to establish 
a framework for instructing healing: 



 

 : ( )M  aσ D ε ε   (1) 
 
σ  is the average stress and ε  is the total strain in the composite. MD  is the composite elastic tensor 
whose properties are computed using the classical Eshelby [11] solution and the Mori-Tanaka 
homogenization scheme for non-dilute inclusions [12]. aε  is the total additional strain resulting from 
anisotropic micro-cracking using the approach of Budiansky and O’Connell [13]. A local stress-strain 
relationship for the micromechanical model is defined in equation (2), in which the added strain is 
taken to be the equivalent of a micro-cracked band in the material. 
 
  1L L L s D ε   (2) 
 

Ls  is the equivalent local stress tensor and Lε  is the equivalent local strain tensor, both of which are 
expressed in a reduced vector form that considers only those components that are non-zero. LD  is a 
3x3 matrix containing the non-zero components the local stiffness tensor. The local compliance tensor 
is defined as 1

L L
C D .   is the micro-crack variable for each direction, taking the values between 

0 for uncracked and 1 for the fully micro-cracked state. The elastic local strain can be subtracted from 
the local strain within the micro-crack band ( )Lε  to give the additional strain resulting from the crack 
in one direction. 
 
3. Self-healing model framework 
The local constitutive relationship presents itself as a convenient form for including healing. The 
healing restores the stiffness of a proportion of the damaged component of material. An offset or 
‘solidification’ strain is included to ensure that the healing material solidifies in a stress free state. The 
healed local stress is given in equation (3). 
 
      1 1Lh L Lh h th Lh Lh sh      s D ε D ε ε   (3) 
 
The healing proportion is defined by the parameter h, which takes the values between 0 for no healing 
and 1 for fully healed. A subscript h is added to the terms to show the healing equivalent terms.  Lhs   
is the equivalent local stress tensor after healing,  Lhε  is the local equivalent strain tensor after healing 
and th  is the micro-cracking parameter at the time of healing. LhD  is the local stiffness of the healed 
material and sε  is the ‘solidification’ strain. Since this newly healed material can also undergo micro-
cracking, a term is also included to simulate this further micro-cracking, where h  is the healed 
micro-cracking variable.  
 
4.   Self-healing model volumetric example 

A volumetric isotropic model is used here to give an insight into how the model responds to a 
strain path. The single phase volumetric constitutive relationship is shown in equation (4), which has 
the same basic form as that given in equation (3).  
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MK and MhK  are the bulk modulus of the material before and after healing. All other terms remain as 
previously defined. The material properties used are shown in Table 1. The original and healed micro-
crack initiation and evolution criteria are based on the form adopted by Mihai & Jefferson [8] and are 



 

based on; tv  which is the volumetric strain at first uniaxial micro-cracking and 0v  which is the 
volumetric uniaxial local strain in the effectively fully micro-cracked state. This model is subjected to 
a volumetric strain increment where both micro-cracking parameters are calculated directly.   

Table 1: Material properties for volumetric model response 
 

MK  
2( / )N mm   

MhK  
2( / )N mm  tv   tvh  0v  0v  h 

11429   5714   54.17 10   58.33 10  36.67 10  56.67 10  0.5  
                            
The volumetric strain is incremented until the original material reaches a point on the load-
displacement (stress-strain) softening curve equal to half the peak stress, after which the strain is 
returned to zero. This strain response is shown in Figure 1. The healing here is assumed to take place 
when the sample is unloaded which occurs when there is zero stress and zero strain. For the time 
strain plot shown in Figure 1, this unloading point occurs at a pseudo-time t = 1000(s). At this point 
the s  is zero and the th  is fixed. The new material incorporating the healing is then subjected to 
further strain increments up to and beyond the initial peak strain, until the strain is four times the 
original unloading strain. Figure 2 shows the stress strain response of the volumetric healed model. 
The first loading phase, up to t = 1000(s), can be seen where the stress returns along a linear line to 
zero. The second loading phase shows a bi-linear line returning to the softening curve (in stress-time 
space) of the healed material. This increase in stress directly relates to the healed material. The first 
steep gradient is due to the elastic response of the healed material and the second flatter gradient is the 
sum of stresses in both materials. The peak stress after healing is reached at the same strain at which 
the model was first unloaded, this being t = 1500(s).   

      Figure 1: a) Volumetric strain driver b) Typical volumetric stress strain healing response  
 
 
 
 
 
 
 
 
 
 
 



 

5. Conclusions 
A two phase composite micro-mechanical constitutive model, that includes anisotropic micro-
cracking, provides an excellent basis for the development of a model for cementitious materials that 
includes self-healing behaviour. The relative simplicity of this micromechanical healing model 
combined with the fact that it requires a small number of physically meaningful parameters shows that 
it is suitable for simulating a wide range of two-phase cementitious materials. The volumetric 
example shown is useful to illustrate the mechanisms that occur during the micro-cracking and 
healing processes.  
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