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ABSTRACT

The present paper aims to quantify the error due to homogenisation of highly heterogeneous diffusion fields
in the solution of linear elliptic PDEs which are common in the modelling of packed particulate composites.
This work takes as starting point the pioneering work Oden and Zohdi (1997) and extends it to bound the error
in the expectation and second moment of quantities of interest without solving the intractable stochastic fine-
scale problem. All the computations involved are deterministic, macroscopic and indepedent of the scale ratio. In
the present work, the guaranteed error bounds are re-derived using the Prager-Synge hypercircle theorem. This
enabled us to optimise and fully characterise the effectivity of the presented estimates. We also interpret our results
in terms of the Reuss and Voigt approaches for the homogenisation of composites. Finally, an efficient procedure
is presented to tighten the estimates through the local approximation of the fine-scale model.
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1. Overview

Composites play an increasing role in modern mechanical systems. This raises tremendous challenges
for computational mechanics. Indeed, the direct modelling of such systems results in intractable prob-
lems due to the fast spatial variations of material properties. The analysis of realistic composite systems
requires an additional modelling step, whereby the microscopic constituents are substituted by a sin-
gle material in such a way that this resulting model captures the global behaviour of the system. This
process is known as homogenisation (see for example [1, 2]). However, most composite systems used
in engineering exhibit a weak scale separation. Worse still, the most interesting features of mechanical
problems are located in regions where the scale separation is lost altogether, typically in regions of steep
gradients (e.g. stress concentration in solid mechanics, localised limit-states such as damage, sharp ge-
ometrical irregularities, etc.). In such cases, the results provided by homogenised schemes may differ
significantly from the results that would be obtained by solving the fine-scale problem directly. In this
work, we aim to quantify this discrepancy.

Our work builds on the pioneering work [3]. In that paper, the authors introduced two problems, a
fine-scale intractable problem (“true” model); and a homogenised tractable problem (surrogate model).
Then, solving only the tractable, surrogate model and using ad hoc a posteriori error estimates, the
authors were able to compare the solution of both problems. However, this modelling error bounding
technique suffers from certain limitations, the most important of which is the fact that the bounds require
the computation of terms involving the fine-scale description of the material properties. In practice, this
means that the fine-scale heterogeneities need to be meshed, which becomes quickly intractable as the
scale ratio increases. Secondly, the error is not strictly bounded, and a sufficiently fine macroscopic
mesh needs to be used for the bounding properties to hold in practical applications. Finally, the various
parameters that affect the quality of the error bounds, not the least of which is the type of homogenised
model that is used to obtain an approximate solution to the fine-scale problem, are difficult to characterise
and fully optimise.



In the present paper, we addressed the key limitations of this methods. Our fundamental suggestion is
to allow for the position of the heterogeneities to be governed by a random process in the fine-scale
problem. In this setting, we aim to estimate (a) the expectation of “energy-norm" and of “goal-oriented"
measures of the error (i.e. statistical average) and (b) the moments of these measures (i.e. statistical
dispersion, see fig. 1).
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Figure 1: The quantity of interest of the “true model”, q(u), is a probability density function, while it is a scalar in
the surrogate model, q(ū). We aim to compare the expectation of both quantities.

In addition to being a realistic modelling setting for heterogeneous media, the direct consequence of this
choice is that the computation of the error bounds only involves an integral of a function that, under
weakly restrictive assumptions, varies slowly in space. This allows the application of upscaling error
bounding without any restriction in terms of scale ratio.

Our second contribution is the development of a general error bounding framework in which the effi-
ciency of the error estimates can be fully characterised and controlled. In order to achieve this difficult
task, we propose to base our bounding approach on the Prager-Synge hypercircle theorem[4]. The re-
sulting error bounds are strictly guaranteed and the “true” model is approximated by a pair of surrogates
generated from different homogenisation schemes associated with complementary discretisation tech-
niques (namely the compatible and the admissible FEM), instead of single field as proposed in [3]. This
pair exhibits very strong similarities to those used to derive the classical Reuss-Voigt bounds for effective
medium properties. Such an interesting property will give us a very strong background to characterise,
both intuitively and mathematically, and to fully optimise the efficiency of the error estimates (i.e. min-
imise the remaining uncertainty on predicted quantities). One of the possible forms for the error bound
is

R(φ̄h ) − ηηφ ≤ q(u) − q(ūh ) ≤ R(φ̄h ) + ηηφ (1)

where R is the residue, ¯phih is an homogenised approximation to the solution of the dual problem, and
η and ηφ are upper bounds for the error in energy norm for the primal and dual problem.

Once this new framework has been established, we proceeded as in [5] and show that more accurate and
guaranteed estimates can be obtained through locally replacing the homogenised surrogates by the “true”



microscopic model. We call adaptive modelling this dynamic, hybrid approximation with elements of the
“true” and surrogate model working together towards the accurate bounding of engineering quantities of
interest. New local error indicators will also be presented to guide this adaptive modelling process.

2. Numerical example

The methodology is applied to the cylinder head of an engine(fig. 2). At the bottom of the cylinder a
temperature of 460K is prescribed. At the fins and the upper face it is assumed that a flux of 200W ·m−2

exits the body, while it is assumed that there is no heat exchange in the hole and lateral surfaces. The
body is made of matrix enriched with particles. The thermal conductivity of the matrix is 460W/(m ·K ),
while the conductivity of the inclusions is 230W/(m · K ). The inclusions add up to 20% of the volume
of the domain. We assume that the probability of being inside an inclusion is the same on every point of
the domain and it coincides with the volume fraction. Hence, the expectation of the conductivity E[k], is
equal to νkp + (1− ν)km and the expectation of its inverse E[k−1] is equal to ν/kp + (1− ν)/km on every
point of the domain. An accurate description of those two functions E[k] and E[k−1] is fundamental
for the computation of the error bounds. The quantity of interest is the average temperature on the
upper face. The domain was discretised with roughly 1.5 million linear tetrahedrons. The application
of the Prager-Synge hypercircle theorem requires two approximate homogenised solutions, namely a
kinematically admissible solution (KA) and a statically admissible solution. The KA approximations
were obtained using rule of mixture, while the SA approximations were obtained using inverse rule of
mixture. The resulting temperature field can be seen in fig. 2 while the bounds can be found in table 1.
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Figure 2: Temperature field of the cylinder head



q(ūh ) ζl ≤ q(u) − q(ūh ) ≤ ζu ζl + q(ūh ) ≤ q(u) ≤ ζu + q(ūh )
445.8 -1.503 Intractable 0.002728 444.3 Intractable 445.8

Table 1: ζl and ζu represent both lower and upper bounds respectively for q(u) − q(ū), while ζl + q(ūh ) and
ζu + q(ūh ) are lower and upper bounds for the quantity of interest itself. The direct computation of q(u), the exact
quantity of interest, is intractable.
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