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ABSTRACT

In this study a robust iterative technique is developed for solving the one-dimensional human arterial
blood flow problem by adopting Locally Conservative Galerkin method (LCG). Using Newton method
with two different linear solvers (i.e. Gauss elimination and Jacobi methodologies), the non-linear govern-
ing equations are solved. Such strategies result in rapid convergence and fast solution without excessive
memory cost for semi and full implicit LCG discretizations. In the proposed methods, the numerical
strategies require computing a 4 x 4 matrix per element to determine blood flow characteristics. The
novel methods developed are employed to study the blood flow through the major vessels of a complex
human systemic circulation network. The validity and stability of the present methods are investigated
by comparing the results against the available data in the literature.

Key Words: Human Arterial Tree; One-dimensional Model; Locally Conservative Galerkin LCG;

Finite Element Method; Newton-Gauss elimination and Newton-Jacobi.

1. Introduction

Fundamental understanding of the blood flow behaviour is essential for predicting and treating
common diseases in cardiovascular system such as aneurysm and atherosclerosis [1]. In order
to achieve such comprehension in a complex geometry of human circulation, one-dimensional
models have been used in most studies as they have been proven as efficient tools to give insight
into quantities to interest [2, 3]. Among the schemes for solving the governing equations, ex-
plicit methodology in which the characteristic variables are employed to prescribe the boundary
conditions is popular [2, 3]. Although such methods are more intuitive as the wave nature is
considered and computationally efficient, time step restriction is the main drawback. Also, it
leads to less stability especially at branching sites [4]. Alternatively, implicit treatment relaxes
time step restriction but it is difficult to implement, especially in large scale problems due to
large, complex and unsymmetric matrices which may lead to convergence issues. As the bound-
ary conditions have to be prescribed in advance to allow a large time step, standard implicit
schemes may affect the accuracy. Thus a combination of the advantages of steps from estab-
lished explicit and implicit methods may lead to a better method. In the present work two such
approaches , semi- and full- implicit Locally Conservative Galerkin (LCG) [5, 6] methods, are
developed to relax the explicit LCG time step restriction and to enhance the stability. Basi-
cally, LCG method treats each element independently, this produces very small matrix of 4 x
4 per element and thus the solution is rapid. The standard Newton iteration is implemented
here alongside a linear solver which is either Gauss elimination or Jacobi for the simultaneous
solution. Such basic solvers are sufficient to achieve the rapid convergence since the matrices of
LCG method are small unlike standard implicit methods. The results produced are compared
against explicit methods to evaluate performance.



2. Governing Equations and Numerical Formulations

The governing equation (i.e. the conservation of mass and momentum equations) are numerically
solved over 63 segments representing the major arteries in human systemic circulation as shown
in Figure 1, also coronaries and ventricle valve are incorporated (All segments details can be
found in [2, 3]). The compact form for the governing equation can be written as
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Figure 1: Configuration of the arterial tree for the current model [3].
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In above equation, A and u are the primitive variables (i.e. area and velocity respectively).
The pressure p is linked to the cross sectional area through the non-linear relationship, p =
pext + β(

√
A −

√
Ao). The parameters, ρ, µ, pext and Ao are fluid density, fluid viscosity, the

pressure from the surrounding tissues and the area at zero transmural pressure respectively.

And, β accounts for the material properties of the elastic vessel and given as β =
√
πhE

Ao(1−σ) ,
where h is the vessel wall thickness, E is Young’s modulus and σ is the Poisson’s ratio, assumed
to be 0.5 (i.e. the vessel wall is incompressible) (see [2] for more details). The finite elements
discretisation procedures are applied to the governing equation according to [7] by adopting
linear shape functions, which results in fully discrete LCG form as

[M]e{∆ Un} = ∆t
[
[K]{Fn+1}+ [L]{Sn+1}+ {fΓ}n+θ

]
e

(2)

where e refers to an element and all matrices details (i.e. M,K and L) can be found in [2]. The
flux fΓ is used to transfer information between elements. As stated before, we use both versions



of LCG method, i.e. semi- implicit in which fnΓ = Fn at θ = 0 and fully-implicit in which
fn+1
Γ = Fn+1 at θ = 1. In both cases, the flux is rewritten in terms of implicit area and velocity
at n or n+ 1 time level. After that, the primitive variables in Eq.2 are estimated according to
Newton method [8, 9] along with Gaussian elimination or Jacobi for solving the simultaneous
equations.

3. Results and Discussion

As stated before, the governing equations along with the boundary conditions are solved over
the whole arterial tree. The input wave for the model is the pressure wave from left ventricle (see
[2, 3] for more details). The pressure and flow rate are briefly discussed here as shown in Figure
2 at two monitoring positions along the aorta, i.e. ascending aorta (segment 9, denoted by A and
B in the figure). The results are produced using Newton-Gauss elimination and semi- and full-
implicit LCG method (legends Case 1 and Case 2 respectively). The Thoracic aorta II is also
considered in Figure 2 (segment 35, denoted by C and D in the figure) in which Newton-Jacobi
is adopted. We run three cardiac cycles where time step is chosen as ∆t = 0.0002s, larger time
step is possible but due to diffusive nature of Taylor-Galerkin method at larger time steps, this
is not attempted here. For explicit LCG method used for comparison, time step was set in [3]
as ∆t = 2 x 10−5s. The figure clearly demonstrates that new methods proposed are close to the
established explicit method. Between the two methods the semi-implicit method appears to be
least accurate. This may be due to the flux being treated at n time level.
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Figure 2: Comparisons for pressure and flow in various locations in the arterial tree.

In Table 1 the cost performance of the the three sachems are compared. As seen the fully-
implicit method appears to be the fastest method among the methods compared and gives an
accurate solution to the problem. The fully-implicit method also has the advantage of no time
step restriction.

4. Conclusion

Two different time stepping schemes of LCGmethod, i.e. semi- and fully- implicit discretisations,
have been developed for a human circulatory system. The solution is achieved by using the
Newton iteration along with two linear solvers, Gauss elimination and Jacobi method. As LCG
method generates only an element matrix (i.e. 4 x 4 size), this allows us to implement standard
solvers. This enormously simplifies the computation. The comparisons between the proposed



Table 1: Computational speed comparison averaged over three cardiac cycles.

Method Newton-Gauss, Semi-implicit Newton-Gauss, Fully-implicit Explicit

Time (s) 972.50 927.75 1017.00

Method Newton-Jacobi, Semi-implicit Newton-Jacobi, Fully-implicit Explicit

Time (s) 942.00 896.25 1017.00

methods are established explicit method shows that the fully-implicit method is both fast and
accurate. Thus the fully-implicit method proposed in this paper is recommended for future
studies. Further investigation is essential to improve the fully-implicit method to enhance time
step sizes, without compromising the accuracy.
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