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ABSTRACT 

Particles are assumed smooth in classical discrete element modelling, but real particles have random rough 
surfaces which may influence their mechanical properties. It is necessary therefore to quantitatively improve the 
conventional discrete element model by taking the surface roughness into consideration. In this work, a new 
normal contact law is established for particles that have random rough surfaces. The contact law, based on the 
classic Greenwood and Williamson (GW) model, is derived by both theoretical derivation and numerical 
calculations. Instead of a complicated integral expression involved in the GW model, the resulting empirical 
formula of the law retains the closed form and simplicity of the Hertz model, with only one added parameter, 

, the standard derivation of a surface roughness, and therefore can be readily incorporated into the current 
discrete element modelling framework. 
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1. Introduction  The discrete element method (DEM) is a computational technique originally developed by Cundall 
and Strack [3] which is well suited to simulate the response of assembly systems of particles [9]. 
DEM has been widely accepted as an effective method to model engineering problems in granular and 
discontinuous materials, especially in granular flows, power mechanics and rock mechanics. The 
basic particles in DEM are regular geometric entities such as disk, sphere, ellipse and ellipsoid with 
smooth surface. However real particles contain geometric irregularities at both macroscopic and 
microscopic levels. The macroscopic irregularities of particles may be modelled by more complicated 
geometric shapes, while surface irregularities at the microscopic level, also called the surface 
roughness, are more difficult to be considered, although they may have strong influence on the 
phenomena of contact, friction, wear and lubrication [1]. Up to now, very few attempts have been 
reported to provide random interaction laws that can be readily applied in DEM to estimate the 
contact forces between rough particles. It is therefore necessary to quantitatively improve the classical 
DEM by taking the surface roughness into consideration. The main objective of this paper is to 
establish a new random interaction law which can be applied in DEM for particles having random 
rough surfaces. 
There are several approaches that have been developed to understand the contact mechanism between 
rough surfaces, and can be classified into two categories: statistical and deterministic. The earliest and 
most recognized statistical treatment of rough surfaces is the work of Greenwood and Williamson [6]. 
This method can be viewed as a single scale method since statistical parameters used to represent 
rough surfaces are scale-dependent. Another statistical approach, where a fractal curve/surface is 
adopted to describe a rough surfaces together with a contact mechanism to resolve the contact, is  
introduced by Majumdar and bhushan [8]. This fractal based approach can be regarded as multiple 
scaled because of the inherent multi-scale invariant characteristics of most fractal curves/surfaces. On 
the other hand, the deterministic methods attempt to model rough surfaces precisely and the resulting 
contact problem is typically solved by the finite element method. Furthermore, the fast Fourier 
transformation is often used to treat the rough surface [10]. For the contact between two rough curved 
bodies, the first analytical study was conducted by Greenwood and Tripp [5] who employed the GW 



 

asperity contact model together with the bulk surface deformation for circular point contact. More 
recent researches have extended the GW approach to the elasto-plastic deformation regime [2, 4, 7].  
 
2. Numerical algorithms for the GW model In the GW model, a rough flat surface is assumed to be an assembly of asperities whose properties are 
obtained from a given statistical height distribution of the surface and the Hertz contact law is then 
applied to these asperities which are also assumed to have the same radius of curvature. When this 
theory is applied to the contact problem of two rough spheres [6], the only difference from the rough 
flat contact problem is the geometrical aspect. Because of the spherical profile, the separation between 
two spheres will be a function of  , the distance from the centre of the contact area. The contact 
problem between two rough spheres is equivalent to the contact between a smooth sphere of radius  
and a nominally rigid flat rough surface having a Gaussian distribution of asperities heights , where 

 and  can be derived by the radii and roughness of the two spheres as 
 = +  (1) 
 = +  (2) 

Then the contact pressure distribution is given by 
 ( ) = ∗ ( − − ( )) /

√
( )

( )  (3) 
where w(r) is the deformation of the sphere and can be obtained from the solution for the axi-
symmetric deformation of an elastic half-space as follows 

 ( ) = ∗ ( ) ( )  (4) 
 (0) = ∗ ( )  (5) 

in which ( ) is the first kind complete elliptic integral of = 2( ) /( + ), and  is the radius of 
the contact area for the smooth surfaces under the same load. Then the total contact force can be 
obtained by the integration of the pressure distribution over the contact area.  
Clearly, the ( ) distribution in the GW model involves a complicated integral with ,  and  as the 
statistical characteristic parameters of surface roughness. In order to obtain ( ) , the nonlinear 
equations (3) and (4) have to be solved simultaneously, with the later also including a non-integrable 
part. A numerical method based on the Newton-Raphson iterations is applied to solve this problem. 
First, introduce + 1  discrete points along the contact radius. Then equation (3) must be satisfied at 
each point : 

 = ( ) (6) 
where 

 = ∗  (7) 
 ( ) = ( − − ) /

√
( )  (8) 

or in a different form 
 ( , , … , ) = − ( ) = 0 (9) 

which leads to a nonlinear system of equations for all the points: 
 (p) = p − g = 0 (10) 

To solve this system of equations in terms of , function  is expanded by the Taylor series in 
neighbourhood of  as  

 (p + δp) = (p) + ∙ δp + O(δp ) (11) 
where  is Jacobian matrix, which represents the gradient of the vector . The value of  is obtained by 
a finite difference approximation. The increment δp is obtained by 

 δp = − (p) (12) 
The solution   is achieved by the iterative process starting from a trial solution. Then the total contact 
force can be obtained by integrating the pressure ( )  over the entire contact area. The ~  



 

relationships of two surfaces with different levels of roughness are shown in Fig. 1, in which the range 
of σ (normalised) is 0.0001~0.01 and δ (normalised) is 0~0.1. All the other parameters are set to 
be 1. The P~δ relationships of the Hertz law and the GW-model (σ = 1.0e − 4) are shown in Fig. 2.   

 
 
Figure 1: ~ ~  relationships based on the                                  Figure 2: ~  relationships of smooth 

numerical calculation                                            surface and rough surface ( = 1.0 − 4) 
 

3. Predictive formulas of the ~  curve In order to obtain the random normal interaction law that can be used in DEM, an explicit relationship 
between the total force  and the overlap  needs to be defined from the numerical results via curve-
fitting. It is of practical importance that the resulting relationship should have a simple closed form 
with the minimum number of added parameters. Equation (3) indicates that there are two added 
parameters, σ and , and that  is proportional to  (note that the numerical results obtained are 
for = 1).   
It is obvious that the ~  relationship should degenerate to the Hertz law when = 0. However, to 
treat  as an independent parameter from  will violate this requirement as different values of  
would lead to different ~  curves at = 0.  To resolve this issue,  is calibrated in the following 
way. When  is sufficiently small, the rough surface should be regarded as a smooth surface and thus 
should have the same ~  relationship as the Hertz law. However, Fig. 2 depicts a clear difference 
between  and  (with = 1, and assuming that = 1.0 − 4 is sufficiently small). 
Our numerical calculation shows that the condition ( = 0) =  can be enforced if   
takes the following value: 

 = = 0.62  (13) 
Then σ now becomes the solely added parameter in the ~  relationship, making the new interaction 
law much simpler.  The correctness of this formula can be verified through the analysis of equation 
(3) at the special case  = 0, based on the fact that the Gaussian distribution reduces to the Dirac 
Delta Function when → 0: 

 ( ) = lim→ √
/  (14) 

An important property of the delta function is that for a given function ( )  
 ( ) ( − ) = ( ) (15) 

Thus when → 0, the pressure distribution ( ) in equation (3) reduces to 
 ( ) = ∗ ( − − ( )) /  (16) 



 

An explicit expression for ( ) is not possible because of the inter-dependence between ( ) and  ( ) which is the deformation of the smooth sphere. However, we artificially set ( ) = 0, which 
leads to an explicit but approximate expression for  ( ) 

 ( ) = ∗ ( − ) /  (17) 
The total contact force can be obtained by the integration of the pressure distribution over the contact 
area as  

 = 2 ( ) = 2.76 ∗  (18) 
The nominally flat rough surface can be considered as smooth surface when σ→0. The contact force 
between the sphere and the smooth surface can be calculated by the Hertz law 

 = ∗  (19) 
The condition =  gives rise to 

 = 0.48  (20) 
which is the same as formula (13) except for a smaller coefficient. This discrepancy can be explained:      
the assumption ( )=0 increases the overlap between the sphere and the asperities, thereby leading to 
a larger ( ), and thus a larger , and therefore a smaller coefficient.  
 
Based on the above analysis and applying curve-fitting, the predictive formula for calculating the 
normal contact force between two rough spheres is derived as (with the = 0.98) 

 = ∗ − 39.13 . + 1.5 .  (21) 
Cleary, when = 0, the formula recovers the Hertz law as required. Also, the total force is no longer 
zero when = 0 for > 0 because some asperities of the two rough spheres may be in contact even 
there is no overlap between the two mean surfaces.  
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