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ABSTRACT
In this paper, we introduce a new computational method for the analysis of fluids subjected to high frequency
mechanical forcing. We focus attention on surface acoustic wave droplet microfluidics. In these problems, we
distinguish three time scales 1) the fast (µs) time scale of Rayleigh waves on the solid surface, 2) medium (µs-ms)
time scale of acoustic wave in the fluid droplet, and 3) slow (ms-s) time scale of capillary wave propagation on
the fluid-air surface. Finite element modelling of such problems has been limited in its ability to handle the broad
range of timescales. In particular, direct time integration techniques are computationally expensive because of the
need to resolve the smallest timescale.
Here we solve the Helmholtz equation in the frequency domain, applying hierarchical finite element approximation
based on unstructured meshes [2], where both pressure field and geometry are independently approximated with
arbitrary and heterogeneous polynomial order. We demonstrate convergence of the numerical scheme and illustrate
model performance using the example of a surface acoustic wave actuation of a droplet, which has applications in
microfluidics and microrheology at high frequency.
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1. Introduction
Acoustic problems have a wide range of uses in different physical applications, albeit numerical results
can suffer from poor resolution and be computationally expensive. Here we focus on the development of
a computational tool to aid the design of acoustic diagnostic devices (lab-on-a-chip). To avoid the need
of solving the 4D wave equation, the problem is expanded to polychromatic waves via discrete Fourier
transformation in both the spatial and frequency domain with respect to the input signal, solving the 3D
Helmholtz equation instead. As shown in Figure 1b, it is presumed that the computational domain of
a droplet (shown in purple) is a hemispherical shape with contact angle 90 degree. A surface acoustic
wave (SAW) passes along a substrate that then interacts with the droplet. To determine the boundary
conditions (BCs) on the droplet, the incoming Rayleigh waves are expressed as a closed form analytical
equation based on developments from [3] and [4] (Figure 1a). A Fourier transform is then applied to the
analytical equation to establish the BCs. This allows us to solve for the propagation of the acoustic waves
in the fluid droplet in the frequency domain. This yields the pressure and velocity fields in the fluid which
serves to calculate the radiation acoustic forces. These forces can be applied to solve the problem in the
slow time scale using a direct time integration of Navier Stokes equation for droplet, specifically taking
care of the surface tension. This final part of the problem is strongly nonlinear as a result of the evolving
droplet geometry; thus, the calculations of the acoustic wave in the fluid droplet are repeated for each
time step at the slow time scale.
Initially, the problem of a plane wave impinging on the sound hard surface of a cylinder is considered,
where solution convergence is studied for both geometry and multiple physical fields. Moreover, error
estimators and the numerical efficiency of the hp-adaptivity in the context of the Helmholtz equation is
investigated. The application of hierarchical finite element approximation improves the computational
efficiency and accuracy of the acoustic solver [2]. Subsequently, the problem of SAW actuation of a fluid
droplet is considered. The proposed finite element technology is implemented in the open-source finite
element University of Glasgow in-house parallel computational code, MoFEM (Mesh Oriented Finite
Element Method).



2. Model components

Figure 1: Surface acoustic waves application. (a) SAW actuation of a liquid drop on a LiNbO3 piezoelectric
surface, showing the leaky Rayleigh waves in the drop. (b) Illustration of the different timescales.

2.1. Boundary conditions

Let Ω be a domain in R3 with the smooth boundary and outward unit normal n. The complete form of
Helmholtz equation for the acoustic problem is defined as

∇ · ∇Φ(r) + k2
Φ(r) = f (r) in Ω (1a)(∂Φ(r)

∂n
+ iσΦ

)
= g on Γ (1b)

Φ = ΦS + ΦI (1c)

where Φ is the total acoustic potential, (ΦS and ΦI denote radiation and incident wave respectively) and
the variation of f (r) in (1a) can be regarded as a point source of acoustic wave. (1b) shows the mixed
BC with constant σ and g, which can be used to describe any BCs by modifying the parameters. If
g = 0, the Robin BC can be either Dirichlet or Neumann BC in extreme cases. σ = ρc is called the
dimensionless admittance coefficient. When σ → ∞ the boundary is soft, conversely, when σ → 0, the
boundary becomes rigid [1].

2.2. Application on microfludics

Rayleigh waves are a type of surface wave first proposed by Lord Rayleigh (1887), it is propagating along
a free surface and the amplitude decays exponentially away from the surface. Rayleigh wave consist two
types of surface acoustic waves, their potentials are: longitudinal wave φ and transverse wave (0, ψ, 0).
The closed form solution of Rayleigh waves on solid surface is given by

φ = A0e−q |y |eikx (2a)

The attenuation coefficients in analytical form are:

q2 = k2 − k2 cs
cl
> 0 (3a)

where k = ω
cs

and cs is the phase velocity (speed) of Rayleigh wave (cs = cL for leaky Rayleigh wave),
cl denotes the speed of longitudinal wave on solid surface.

As illustrated in Figure 1(a) when SAW pass beneath droplet, it leaks energy into droplet, this phenomena
is called the leaky SAW. In addition, longitudinal waves propagate into the droplet, with a complex
wavenumber kL = k + iki and speed cL , form Rayleigh angle ΘR = arcsin( clcs ) with horizontal axis. In
[4], the leaky SAW number ki = 2768 for Y-X LiNbO3 is provided.



2.3. Polychromatic wave
The detailed procedures devised to treat the case of polychromatic waves are shown in Figure 2.

Find u ∈ H1(Ω), such that
a(ukn, vkn ) = f(vkn ) ∀vkn ∈ H1(Ω)

where a(·, ·) is the symmetric bilinear form based on H1(Ω) × H1(Ω) (ukn is the finite element solution
of ΦS (kn ) ) expressed as

a(ukn, vkn ) =
∫
Ω

∇ukn∇vkn dΩ − k2
∫
Ω

uknvkn dΩ (4a)

+ σ1

∫
Γ2

uknvkn dS + σ2

∫
Γ1

ukn vkn dS (4b)

f(vkn ) =
∫
Ω

f vkn dΩ + (ΦI (kn ) +
∂ΦI (kn )

∂r
)
∫
Γ1

vkn dS (4c)

where σ1 and σ2 are admittance coefficients corresponding to surfaces Γ1, Γ2. The system of linear
equations required to be solved

KnUn = Fn (5)

Figure 2: Diagram of polychromatic wave problem
solved by Helmholtz equation

this equation is solved for n frequency where n
frequencies is considered here. Once the results
are computed, we then apply the inverse Fourier
Transform to transfer the acoustic potential back
to the time domain. With that at hand, we can
calculate radial stress where it drives fluid into
motion at the slow time scale. The radial stress is
calculated from acoustic potential by averaging
velocities [5].

3. Computational procedure and results

a

In the pre-processor, a parameterised geome-
try with uniform mesh containing tetrahedras is
made in Cubit. Problem is solved using MUl-
tifrontal Massively Parallel sparse direct Solver
(Mumps). In this work, hierarchical Legendre
type shape functions are used. The l2 norm of
solution error is calculated for different approximations and various frequencies, plots of convergence
analysis were compared.

Figure 3(a) shows the absolute acoustic potential of computational domain around the hard cylinder.
Figure 3(b) and (c) present the convergence of the relative error. In 3(b) the polynomial order p is fixed
to 2, the mesh size h is gradually decreased. In 3(c) we increase approximation order from 1 to 7 but
keep the mesh density constant.

In Figure 3(d) and (e), we have absolute acoustic pressure and radial stress for micro-droplet with 440966
number of degrees of freedoms (DOFs) and 4th order polynomials, and in Figure 3(f) the values of stress
components on nodes along x-axis are plotted.

As we can notice from the plots (b), (c) of Figure 3, the convergence speed of p enrichment is nearly
two times faster than h refinement. Notably, the convergence speed of relative error in plot (c) started to
decrease up to certain percentages (k=3, 5, 10. 0.44%, 0.32%, 0.26% respectively), this reveals the fact



(a) Solution for hard cylinder with
coarse mesh, p = 2

(b) Relative error of h convergence
analysis in l2 norm for impinging
cylinder (a=0.5 r=4)

(c) Relative error of p convergence
analysis in l2 norm for impinging
cylinder (a=0.5 r=4)

(d) SAW actuation of droplet with
diameter&SAW width 0.002 m, RF
power 14dBm, 5.3 MHz frequency, t =
1.2830e-07 s out of 1.8868e-07 s

(e) Cross-sectional of x-y plane radial
stress σxx in droplet

(f) Plot data over x-axis of radial stress
in droplet

Figure 3: Numerical results

that the remaining error could be due to non-reflection BC . This errors can be minimised by increasing
the domain of computation or implementing exact BCs.

In Figure 3-(d)&(e) the distribution of acoustic pressure and radial stress of droplet is presented [3], the
energy of LSAW is attenuated with height and distance travelled. the radial stress derived from pressure
can be further employed as the input source stress into separated microfluidic equations in future research.

4. Conclusions
A computational framework for polychromatic waves based on the time dependant Helmholtz equation is
described for microfluids applications. In this paper we show that improving solution quality by increasing
approximation order is more efficient than making mesh denser. Moreover we calculated radial stresses
in droplet subjected to Leaky SAW.
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