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ABSTRACT
Current industrial codes (e.g. PAM-CRASH, ANSYS, LS-DYNA) for the simulation of large-scale solid
dynamics are typically based on the use of traditional displacement-based finite element formulations.
However, these formulations present a number of shortcomings, namely, (1) reduced order of conver-
gence for strains and stresses, (2) poor performance in bending and shock dominated scenarios and (3)
appearance of numerical instabilities associated with volumetric locking and pressure fluctuations.

To circumvent these drawbacks, a system of first order hyperbolic conservation laws for large strain
solid dynamics was introduced [1–3]. Essentially, the formulation was established in terms of the linear
momentum and the deformation gradient tensor [3]. This paper builds on recent Total Lagrangian based
work [1] developed by the authors, by introducing a vertex centred Finite Volume Method on a mixed
Updated Lagrangian formalism, with the aim of further enhancing the robustness of the algorithm. In
the case of extremely high nonlinear deformations, the Updated Lagrangian framework provides extra
flexibility into the formulation, thus extending the range of applications to near incompressibility. For
computational efficiency, an adapted artificial compressibility approach is also introduced for truly and
nearly incompressible materials [2].

A series of numerical examples are presented in order to assess the robustness and the applicability
of the proposed framework, benchmarking it against alternative numerical strategies developed by the
authors in recent publications [1–3]. The overall scheme shows excellent behaviour in shock and bending
dominated nearly incompressible scenarios without spurious pressure oscillations, yielding second order
of convergence for both velocities and stresses.
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1. Introduction

Over the last few years, the authors have introduced a new mixed Total Lagrangian conservation-based
methodology, where the linear momentum p and the deformation gradient F are treated as primary
variables of a system of first order conservation laws. Both velocities, deviatoric stresses and volumetric
stresses display the same rate of convergence, which proves ideal in the case of linear finite elements.
This approach has been thoroughly analysed by the authors using a wide variety of spatial second order
discretisation techniques, namely cell centred upwind Finite Volume Method (FVM), vertex centred
Jameson-Schmidt-Turkel (JST) and upwind FVM, two step Taylor Galerkin and Petrov Galerkin Finite
Element Method (FEM). Moreover, the two-field p-F formulation was then augmented by incorporating
a new conservation law for the Jacobian of the deformation J to effectively solve nearly incompressible
deformations. The p-F-J formulation was also extended to account for truly incompressible materials
utilising a tailor-made fractional step Petrov Galerkin approach.

In this paper, the conservation-based p-F-J system through the use of either upwind or JST stabilisation
is revisited, but this time established in terms of Updated Lagrangian formalism. This framework leads to
a simpler expression for Jacobian evolution and, more importantly, further enhances the robustness of the
algorithm. For nearly and truly incompressible materials, an adapted artificial compressibility approach
is also introduced, with the aim of increasing computational efficiency.



2. Governing equations

The motion of a continuum, which occupies a volume Ω0 in the reference configuration and a volume
Ω in the deformed configuration, expressed in Updated Lagrangian formalism is described through the
following p-F-J first order conservation laws:

d
dt

∫
Ω0

p dΩ0 =

∫
∂Ω

t da +

∫
Ω

f dΩ; (1a)

d
dt

∫
Ω0

F dΩ0 =

∫
∂Ω

(
p
ρ0
⊗ H−1

)
n da; (1b)

d
dt

∫
Ω0

J dΩ0 =

∫
∂Ω

p
ρ0
· n da; (1c)

d
dt

∫
Ω0

E dΩ0 =

∫
∂Ω

p
ρ0
· t da +

∫
Ω

1
ρ0

f · p dΩ. (1d)

where p := ρ0v is the linear momentum, ρ0 is the material density, v is the velocity field, σ is the
Cauchy stress tensor, f is the body force per unit current volume, F is the deformation gradient (or fibre
map), H := JF−T is the cofactor of the deformation gradient (or area map), J is the Jacobian of the
deformation (or volume map), E is the total energy per unit undeformed volume and t represents the
nominal traction related through the Cauchy stress tensor σ and the spatial unit outward normal vector n.
Crucially, the fibre map evolution (1b) needs to satisfy an additional set of compatibility conditions (also
known as involutions), namely CURLF = 0. In the context of isothermal process, the energy equation
(1d) is redundant and is decoupled from the p-F-J system (1a-1c). However, equation (1d) can still be
employed when measuring the amount of numerical dissipation introduced into the system.

For closure of the above system (1), appropriate initial and boundary conditions, as well as a constitu-
tive model, are supplemented. For simplicity, a nearly incompressible neo-Hookean material is used by
relating Cauchy stress σ with the geometrical measures {F, J}:

σ = σdev(F) + p(J)I; σdev = µJ−5/3
F

[
b −

1
3

(F : F)I
]

; p = κ(J − 1), (2)

where p is the pressure, JF := det F is the Jacobian evaluated directly from the deformation gradient,
b := FFT is the left Cauchy-Green strain tensor, µ and κ are the shear and bulk moduli.

3. Finite volume spatial discretisation

From the spatial discretisation viewpoint, the above set of hyperbolic conservation laws (1) is semi-
discretised using the vertex centred finite volume method widely accepted in fluid dynamics applications.
The introduction of appropriate numerical viscosity is of paramount importance due to the hyperbolic
nature of the system. In the following section, two variants of the numerical dissipative mechanisms are
discussed, namely a nodally conservative JST stabilisation (see Section 3.1) and an Upwind Riemann
solver stabilisation (see Section 3.2).

3.1. Jameson-Schmidt-Turkel (JST) nodally conservative stabilisation

Following Reference [3], one of the most effective options is to incorporate a nodally conservative nu-
merical viscosity (e.g. second order and fourth order stabilisations) into the system without amending
the flux computations. The fourth order term D4 (biharmonic) provides stabilisation against odd-even
decoupling phenomena, whilst the second order term D2 (harmonic) is activated with steep gradients,
capturing any discontinuity in the solution. For simplicity, we restrict ourselves to problems where no
physical shocks occur. For this reason, there is no need to consider harmonic stabilisations in our system:
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0

d pa
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1
2
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∑
γ∈ΓB

a

tγa
aγ

3
+D4(pa); (3a)
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0

dFa
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1
2ρ0
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a

1
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3
; (3b)
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dJa
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b∈Λa

1
ρ0

p · cab +
∑
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aγ

3
+D4(Ja), (3c)



where Cab and cab are the initial and current area vectors and D4(βa) represents the fourth order JST
dissipation defined as:

D4(βa) = −k(4)
∑
b∈Λa

Ψab(cp)θab(L(βb) − L(βa)); L(βa) =
∑
b∈Λa

θab(βb − βa); βa = {pa, Ja}. (4)

Here, k(4) is a user-defined parameter, Ψab(cp) is the spectral radius depending only on the volumetric
wave cp and θab is a geometrical weight used to preserve second order accuracy in unstructured meshes.
For the satisfaction of involutions, it is crucial to ensure that no dissipation is introduced in the fibre map
evolution (3b) by approximating the corresponding fluxes via central difference method [3].

3.2. Upwind stabilisation: Acoustic Riemann solver

In contrast to the JST stabilisations described above, a more refined approach by adding appropriate
conservative numerical viscosity through fluxes is introduced [1]. Naturally, discontinuity of the con-
servation variables across control volume interfaces leads to a Riemann problem. A suitable numerical
interface (acoustic) flux can be obtained by making use of the Rankine-Hugoniot jump conditions, of
standard use within the field of fluid dynamics:
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where

tC =
1
2

(
σ− + σ+) n +

1
2

[
1
cp

(n⊗ n)(σ+ − σ−)n +
1
cs

(I − n⊗ n)(σ+ − σ−)n
]

; (6a)

pC =
1
2

(p+ + p−) +
1

2cp
(σ+ − σ−)n; σ−,+ = σ−,+dev + κ(J−,+ − 1)I. (6b)

Notice that this type of upwinding stabilisations (which depends on both volumetric wave cp and shear
wave cs) is derived with the consideration of wave directional character, being more accurate in compar-
ison to JST stabilisation [1].

Finally, the set of stabilised semidiscrete equations (see (3) and (5)) can then be explicitly integrated from
time step tn to tn+1. In this case, the explicit one-step two-stage Total Variation Diminishing Runge Kutta
(TVD-RK) time integrator [2] is preferred due to its excellent TVD properties. The geometry is also
advanced in time using the exact same time integrator in a monolithic manner. As described in [1, 3], the
scheme is suitably modified to guarantee the conservation of angular momentum. In the case of nearly
and truly incompressible materials, the volumetric wave speed cp can reach very high values leading to
prohibitively small time steps. This can have a very negative effect in the computational efficiency of
the algorithm. Taking inspiration from Reference [2], a tailor-made artificial compressibility algorithm
is also introduced for the three-field p-F-J mixed formulation.

4. Numerical examples

A column with a unit square cross section is subject to different loading conditions; a prescribed sinu-
soidal angular velocity (see Figure 1) and a linearly varying velocity along its height (see Figures 2 and
3). The examples show the applicability and robustness of the scheme in truly and nearly incompressible
bending dominated scenarios.



(a) Explicit Updated Lagrangian p-F-J Upwind algorithm

(b) Explicit Total Lagrangian p-F-J Upwind algorithm

Figure 1: Illustrate the robustness of Updated Lagrangian formalism over Total Lagrangian formalism.

(a) Explicit Updated Lagrangian p-F-J Upwind (b) Explicit Updated Lagrangian p-F-J JST

Figure 2: Demonstrate the accuracy of the stabilisations: Upwind is less dissipative than JST.

Figure 3: Robustness of p-F-J Upwind artificial compressibility in truly incompressible material.

5. Conclusion
This paper introduces a second order Updated Lagrangian vertex centred finite volume algorithm in the
numerical simulation of large strain solid dynamics. A mixed formulation written in the form of a system
of first order hyperbolic equations is employed. The linear momentum p, the deformation gradient F
and the Jacobian J are regarded as primary conservation variables. The overall scheme shows excellent
behaviour in truly and nearly incompressible bending dominated scenarios without spurious pressure
oscillations, yielding second order of convergence for velocities and stresses.
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