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ABSTRACT

This paper presents a topology optimisation approach that combines an adjoint-based sensitivity analysis [1] with
level set methods (LSM) [2] for front propagation, and the discontinuous Galerkin (DG) symmetric interior penalty
(SIP) method [3]. The problems considered in this paper will be limited to the minimum compliance design of
two-dimensional linear elastic structures.
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1. Introduction

One of the most challenging aspects of structural design is finding the optimal layout, or topology of a
structure. Topology optimisation is the most general form of structural optimisation and is concerned
with finding the boundary of a given problem domain which is optimal in that it minimises an objective
functional while satisfying given constraints.

In this paper a topology optimisation is implemented by performing an adjoint-based sensitivity analysis
to compute the gradient of the objective functional as described in [1]. The level set function (LSF) which
defines the internal boundaries of the problem can then be advected along the steepest descent gradient
towards an optima. The LSM developed by Osher and Sethian [2] is a simple and efficient method for
computing the evolution of a moving interface. Since it was first used for structural optimisation in [4],
the LSM has been used for boundary tracking in many shape optimisation implementations and has
proven efficacy.

In this paper, the spatial domain of both the physical problem and the level set transport problem are
discretised using the DGSIP method [3]. The DG method differs from the continuous Galerkin (CG)
method in that it works over a trial space of functions which are only piecewise continuous. One of the
main advantages of DG finite elements is that they are trivially parallelisable. As such this work is a first
step towards exploiting parallel computing techniques to create an efficient shape optimisation method
for large-scale problems.

Following this introduction, Section 2 will present and explain an algorithm for finding the solution to
the minimum compliance problem for a cantilever beam. This will be followed by some numerical results
for the given problem and conclusions in Section 3.

2. Topology optimisation algorithm and problem formulation

For the general case the proposed optimisation algorithm is as follows:

1. Define the problem domain.
2. Initialise the LSF as a signed distance function (SDF).
3. Until the value of the objective functional converges:

(a) compute the current state and the adjoint state through the solution of the physical and adjoint
problems;



(b) compute the advection velocity; and
(c) evolve the interface through the solution of the transport Hamilton-Jacobi equation.

i. Reinitialise the LSF to a SDF through a geometric redistancing method.

The algorithm will now be explained through the use of an example optimisation problem. The objective
of the optimisation process will be to determine the boundary, which for a given domain, load distribution
and boundary conditions, will minimise the compliance of the system whilst satisfying a given weight
constraint. Mathematically this can be stated as:

inf J (Ω) where: J (Ω) =
∫
∂ΩN

g · u ds + `
∫
Ω

dx (1)

Where J is the objective functional, Ω is the domain, ∂ΩN is the Neumann part of the boundary, g are
the surface tractions, u is the displacement field, and ` is a penalty term enforcing the weight constraint.

2.1. Step 1: Defining the problem domain

The problem to be discussed in this paper aims to find the optimal topology of a 2D cantilever beam
problem, the dimensions and the boundary/loading conditions are shown in Figure 1(a). The domain is
discretised into a mesh of 100 by 50 first order, piecewise continuous, square elements. The domain has
two sets of elastic properties which represent the material section and the void section. The material part
of the domain has Young’s modulus, E = 1Pa and Poisson’s ratio, ν = 0.3, and the void is modelled as a
much more compliant material section which has a Young’s modulus E = 10−3Pa and Poisson’s Ratio,
ν = 0.3. The value of Young’s modulus varies smoothly across the interface between the two materials
by applying a smoothed sign function to the LSF and using this as the input to a linear function which
varies between the two values of Young’s Modulus as the sign function varies between -1 and 1.

(a) Cantilever beam problem (b) Initial zero level set

Figure 1: Initialisation of the problem

2.2. Step 2: Initialisation of the LSF as an SDF

The interface between the material portion and the void portion of the domain is defined as the zero level
set of the LSF, φ. Where the level set function is greater than zero the domain is filled with material and
where the level set function is less than zero the domain is filled with the ersatz material which represents
the void as further described in Section 2.1.

There are two main reasons for initialising the LSF as an SDF. First of all, numerical inaccuracies will
occur during the transport process if there are large variations in the gradient of the LSF, especially in the
region close to the zero level set. Secondly, initialising the LSF as an SDF and maintaining this property
through frequent reinitialisation greatly simplifies the level set transport equation as discussed in Section
2.5.

When choosing the initial LSF, one must be sure to ensure that there are sufficient holes in the domain.
This is because for a two dimensional problem being evolvedwith a time stepping schemewhich satisfies a
strict CFL condition, no holes can be created during the optimisation process [1]. The initial configuration
can be seen in Figure 1(b), where black represents the material and white represents the voids.



2.3. Step 3(a): Computation of the state and the adjoint state through DG solution of the physical model

In order to compute the gradient of the objective functional, an adjoint-based sensitivity analysis is
performed. The minimum compliance problem is self-adjoint and as such is simpler than the general
case in which an adjoint state would also have to be computed at each iteration. The author points the
reader towards [1] for the details of deriving the topological derivative and simply states the result that
for the objective functional stated in (1) the topological derivative yields a vector field, V :

V = bn with b = σ(u) · ε(u) − ` (2)

In order to compute this advection velocity field, it is necessary to first compute the displacement field
for the current state of the cantilever beam problem. For a linear elastic stress analysis problem, the DG
approximation for the displacement field, u, is given by:∫

Ω

f vdΩ =
∫
Ω

vB · DBu dΩ −
∫
Γ

[[v]] · D{{Bu}} dΓ −
∫
Γ

{{Bv}} · D[[u]] dΓ +
∫
Γ

µ[[v]] · [[u]] dΓ (3)

Where Γ denotes the element face, f are the body forces, v is the test function, B is the strain-displacement
matrix, D is the elastic properties matrix, µ is a penalty parameter, [[q]] denotes the jump of q and {{q}}
denotes the average of q. For this problem, the boundary conditions are imposed strongly. Once again the
author directs the reader to [3], for the details on the discretisation of elliptic problems using the DGSIP
method.

2.4. Step 3(b): Computation of the advection velocity

The advection occurs only in the normal direction to the interface and so the advection velocity at each
node is given by, b, defined in (2). The stress, σ, and strain, ε, can be recovered from the displacement
solution of the linear elasticity problem described in Section 2.3. The ` term is a penalty term which
describes the volume ratio, i.e. the ratio of material to void, at convergence. It is prescribed during the
initial iteration, for the numerical example in this paper, ` = 150.

2.5. Step 3(c): Evolution of the interface

The evolution of the LSF occurs through the solution of a Hamilton-Jacobi equation. However, as
mentioned in Section 2.2, the maintenance of the LSF as an SDF ensures that the Euclidean norm of
the spatial derivatives is always equal to unity and as such the level set transport equation can be greatly
simplified as described in [5], which can be stated as follows:

∂φ

∂t
= b (4)

Equation (4) is solved explicitly in time using a forward Euler method. The time step is constrained by
the CFL condition and is inversely dependent on the maximum absolute value of the advection velocity
field at each iteration and the size of the elements in the mesh. (4) is solved in space using DG finite
elements once again. For this particular equation, both CG and DG formulations are the same, however,
the DG formulation of (4) can be solved independently for each element, allowing for a much more
efficient solution.

2.6. Step 3(c)i: Reinitialisation of the level set function

Maintaining the signed distance property of the LSF can be achieved through multiple methods. One
method is known as geometric redistancing (or the brute force method). For this Yamasaki et al. [5]
presented a method which involves discretising the zero level set and then computing the minimum
distance from each node to the discretised interface and multiplying this by the sign of the level set at
that node. When using a discontinuous LSF the multiplication by the sign can cause discontinuities at
the interface which results in the LSF not being reinitialised as an SDF. To remedy this a smoothing is
applied to the LSF prior to the reinitialisation whereby the value of the LSF at each node is taken to be
the average of the values at each of the degrees of freedom at that node.



3. Numerical results and conclusions

The problem presented in the previous section was ran for 50 iterations. Figure 2(a) shows a smooth
convergence of the objective functional until it reaches a minimum. The final shape after 50 iterations is
shown in Figure 2(b).

(a) Convergence of the objective functional (b) Final topology after 50 iterations

Figure 2: Numerical results

To conclude, a topology optimisation algorithm using level set methods and the discontinuous Galerkin
method has been presented and explained. The algorithm was implemented to find the optimal topology
of a 2D linear elastic cantilever beam. The results show that the algorithm has good convergence and
stability properties, and the optimal design shown is similar to that published in the literature.

Acknowledgements

The first author acknowledges financial support during the completion of this work by theUKEngineering
and Physical Sciences Research (EPSRC) grant.

References

[1] G. Allaire, F. Jouve, and A. Toader. Structural optimization using sensitivity analysis and a level-set
method. J. Comput. Phys., 194(1):363–393, 2004.

[2] J. A. Sethian. Level set methods and fast marching methods: evolving interfaces in computational
geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge university
press, 1999.

[3] D. N. Arnold, F. Brezzi, B. Cockburn, and L. Donatella Marini, Unified analysis of discon-
tinuous galerkinmethods for elliptic problems, SIAMJ. Numer. Anal., 39(5):1749–1779,2002, 2011.

[4] J. A. Sethian and Andreas Wiegmann, Structural Boundary Design via Level Set and Immersed
Interface Methods. J. Comput. Phys., 163, 489–528, 2000.

[5] S. Yamasaki, S. Nishiwaki, T. Yamada, K. Izui and M. Yoshimura, A structural optimization
method based on the level-set method using a new geometry-based reinitialization scheme, Int. J.
Numer. Meth. Eng., 83(12), 1580–1624, 2010.


