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ABSTRACT

The aim of this work is to provide a promising way to improve the computational efficiency for BEM. This study
introduces an ’a priori’ model reduction method in BEM analysis aiming to enhance efficiency by approximating
the problem solution using the most appropriate set of basis functions, which depend on Karhunen-Loève decom-
position. The calculation process will proceed making use of a precomputed basis function space if the norm of the
residual is small enough; if not, it need to enrich the approximation basis and compute again some of the previous
steps. Finally, an example is proposed which demonstrates fast resolution of BEM problem and illustrates the
potential of this numerical technique. This work is preliminary work in a larger programme leading to optimisation
using isogeometric BEM scheme accelerated with the Proper Orthogonal Decomposition.
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1. Introduction

The Boundary Element Method (BEM) [1] is a domain discretization technique for solving partial
differential equations; one major advantage of boundary integral equation approaches is to decrease the
dimension by one, i.e., only line integrals are required in 2D and surface integrals in 3D problems, from
which a smaller systemof equationswill be generated.Hence, this alleviates the burden ofmesh generation
as a surface mesh generation is much easier, more rapid and (importantly) more robust than domain mesh.
In spite of teh advances in FE mesh generation, these advantages of BEM remain considerable when
the objective is to analyse many, similar geometries, such as in optimisation schemes, involving multiple
remeshing operations. The drawbacks of BEM include the fully populated matrix structure; it also dos
not lend itself as well as FEM to materially non-linear problems. In order to accelerate the solution
(specifically, the re-solution) of the dense linear system, model reduction techniques present a promising
strategy.

Model reduction techniques have been derived from some problems in random data processing, and
further used in image processing. They have been successfully applied in some finite element frameworks
[2, 3], the nonlinear mechanical problem [4, 5] and 2D BEM in fluid mechanics [6]. In the current work
we assess their suitability for the BEM analysis process in 3D elasticity, updating solutions following
geometric changes that might occur during an optimisation process. In the future this will be extended
into an isogeometric BEM context.

1.1. Boundary Element Discretization

For a linear elastic problem, the structure occupies a continuous domain Ω, having boundary Γ, with the
boundary conditions,

u = u on Γu
t = t on Γt

(1)



where the domain boundary Γ = Γu + Γt .

The Boundary Integral Equation (BIE) can be written as follows,

ui (s) +
∫
Γ

Ti j (s, x)u j (x)dΓ(x) =
∫
Γ

Ui j (s, x)t j (x)dΓ(x) (2)

where s is the ‘source’ point and x the ‘field’ point. By using standard methods of discretisation of (2)
and taking s as all nodes in turn, we arrive at the matrix form

H u = G t (3)

where u contains the nodal displacements and t the nodal tractions. Both u and t include a combination
of unknown values and prescribed boundary conditions. Rearrangement of (3) leads to the final form

A x = F (4)

where the size of A is N × N .

1.2. The Karhunen-Loève Decomposition (KLD)

Also known as Proper Orthogonal Decomposition (POD), the KLD is a powerful and elegant method for
data analysis aimed at obtaining low-dimensional descriptions of a high-dimensional process.

For an arbitrary evolution process, a certain field could be defined by a discrete form as up (xi ), ∀p ∈
[1, . . . , P],∀i ∈ [1, . . . , N], describing the nodal displacement (xi) at the calculation step p. Themain idea
of the KLD is to obtain a low dimensional space containing the most typical or characteristic behaviour
among the displacement fields. This is equivalent to obtaining a function φ(x) maximizing α defined by

α =

∑P
p=1

[∑N
i=1 φ(xi )u

p (xi )
]2∑N

i=1(φ(xi ))2
(5)

Introducing a vector notation, Eq.(5) takes the following matrix form

kφ = αφ (6)

The two point correlation matrix k is given by

k =
P∑

p=1

up (up )T (7)

which is symmetric and positive definite.

Here, the functions defining the characteristic structure of up (x) are the eigenfunctions φk (x) ≡ φ
k

associated with the highest eigenvalues.

2. Reduced Model Construction
If some direct simulations have been carried out previously, the nodal displacement can be defined as
u(xi, sp ) ≡ up

i , ∀i ∈ [1, . . . , N], ∀p ∈ [1, . . . , P]. The eigenvalues are assumed ordered, if αk > 10−10α1,
∀k ∈ [1, . . . , n], (α1 is the highest eigenvalue). Then, those n eigenvectors related to the eigenvalues
above could be used for generating an approximating basis for further solutions. The matrix B is defined
as

B =



φ11 φ21 · · · φn1
φ12 φ22 · · · φn2
...

...
. . .

...

φ1N φ2N · · · φnN



(8)



where N is the DOF of the system and we take eigenvectors 1,...,n. The nodal displacement vector in
Eq.(4) could be written as

x =
n∑
i=1

ζiφ
i
= Bζ (9)

which could be substituted to Eq.(4) to obtain

ABζ = F (10)

and we finally premultiply both sides by BT,

BTABζ = BTF (11)

This procedure provides a final n × n matrix in a low dimension. While the generation of matrix A is
still time consuming, it can be accelerated by er-use of matrix coefficients that are unchanged from a
previous design iteration. This process is likely to be made more powerful and general when the authors
implement their future plans of bringing POD to an isogeometric BEM context.

3. An ’a priori’ Model Reduction Strategy
As the geometry evolves during the design/optimisation process, the basis matrix B should be updated.
The basis matrix B is generated by the first P steps, and another S steps will be analysed with this basis.
After each S steps, the residual of the system should be evaluated as

R = Ax − F = ABζ − F (12)

If the norm of residual is sufficiently small, ‖ R ‖< ε , with ε a threshold value, the next S steps will
be continued; otherwise, the approximation basis should be enriched and the last S steps recomputed to
ensure accuracy is maintained. The enrichment is built using the Krylov subspace, the new basis matrix
being defined as

B∗ = {BV, R, AR, A2R} (13)

where V is the combination of the most representative eigenvectors which is from the previous reduced
result ζ . A new solution vector could be written as

ζ∗ =
[
B∗TB∗

]−1
B∗TBζ (14)

4. Numerical Example
In this preliminary study, the problem is defined as a simple cube (Fig. 1) which is under a uniaxial
compressive pressure of 1MPa in the z-direction. The left, back and bottom surfaces have normal
displacement constraints. The material properties of steel are used. As a design evolution process, the
height h will be continuously increased in 0.02m increments. This problem is solved first P = 25 steps
for generating the approximation matrix using the conventional BEM approach. The approximation is
performed using 54 elements, giving 168 degrees of freedom. The eigenvalues and eigenvectors are
derived from those pre-calculated displacements, and only 4 eigenvalues satisfy the selection criterion
(αk > 10−10α1). This means a 168 × 168 matrix will be reduced to a 4 × 4 matrix for solving the
remaining design iterations. The next calculation step will be divided to S = 35 parts, for each part,
including Ssub = 5 sub-calculation steps. In this case, the solution is performed starting from the reduced
basis which is obtained previously and after each 5 steps, the quality of the solution is checked and follows
the previous criterion for judging whether the basis should be enriched.

Fig. 2 compares the displacement result of the top surface in the z-direction; as the figure shows, the
reduction model provides an accurate result with a lower dimensional computation, and the error is
within 0.14%.



Figure 1: The cube under uniaxial com-
pression

Figure 2: Displacement solutions

5. Conclusions

In this article, the Karhunen-Loève decomposition model reduction approach is combined with the
Boundary Element Method for 3D elasticity. The size of linear system is dramatically decreased while
mainitaining appropriate accuracy. The numerical example proves the potential of this method. Fur-
ther work will demonstrate the extension of this method to isogeometric BEM, and linking with the
optimisation process for more complicated structural components.
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