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Abstract

This paper presents the development of an automation process for the self-learning finite element method (FEM)
and its application to a number of engineering problems. The self-learning FEM involves the integration of a
suitably trained Evolutionary Polynomial Regression (EPR) model that represents the material constitutive
behaviour in the framework of the finite element method. The automation algorithm was coded in Matlab
environment using a new bespoke version of EPR. Two numerical examples are presented to illustrate the
proposed methodology. The results show that using EPR in the self-learning finite element method provides
very accurate predictions, simplifies the training of EPR and reduces the time required for analysis.

1 —Introduction

The self-learning simulation is an extension of the autoprogressive algorithm originally introduced by
Ghaboussi et al. [1]. Hashash et al. [2] proposed a self-learning simulation methodology, also called
inverse analysis technique. This methodology employs the auto-progressive algorithm that extracts
material’s constitutive behaviour (stress-strain relationship) using global load-displacement
measurements. The self-learning finite element method introduced by Hashash [2] utilizes a neural
network (ANN) based constitutive model to extract the materials behaviour [2]. Although there has
been valuable research on the self-learning FEM using ANN, and demonstration of the advantages
that ANN offers in constitutive modelling, however, it is also known that ANNs also suffer from a
number of drawbacks. For example, the number of neurons, number of hidden layers, transfer
function, etc. must be determined a priori, requiring a time-consuming trial and error procedure [3].
Faramarzi et al. [4] proposed an algorithm for training EPR models and their incorporation in the self-
learning procedure and highlighted the advantages of EPR over ANN. In this paper the process of
EPR based self-learning FEM has been applied to overcome the problems with the ANN approach
and improve the way of EPR training.

2 — Evolutionary polynomial regression (EPR)
In recent years, by rapid developments in computational software and hardware alternative computer
aided pattern recognition approaches have been extended beyond classical plasticity theories to
modelling many engineering problems. Evolutionary polynomial regression (EPR) is a new hybrid
technique based on evolutionary computing, aimed to search for polynomial structures representing
the behaviour of a system [4]. EPR is a combination of genetic algorithm (GA) which searches for
symbolic structures and least square (LS) regression which is used to estimate the constants values
[5]. A typical formulation of EPR expression can be stated as:
m
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where y is the estimated output of the system; a; is a constant value; F is a function constructed by
the process; X is the matrix of input variables; f is a function defined by the user; and m is the
number of terms of the expression excluding bias a,,.



3 — EPR based self-learning finite element method

The methodology of incorporating an EPR in finite element analysis was first presented by Javadi and
Rezania [3]. They showed that a properly trained EPR on experimental data can be implemented in a
finite element model with more simplicity compared with a conventional constitutive model [3].
However, this approach of training EPR needs a large number of experiments which is costly and may
not be available in all cases. Therefore, training EPR within the self-learning FEM seems to be much
more efficient. The framework of the self-learning FEM consists of two steps. In step 1, the applied
load and constrained boundary conditions are implemented and the boundary forces and
displacements are measured for each loading increment. Two finite elements analyses are considered
in parallel (FEA and FEB) and an EPR model which represents the stress-strain relationship is trained.
The FE model (A) simulates a structure and applies the forces while in parallel, the FE model (B)
applies the corresponding displacements. The stresses and strains are determined at each integration
point for both FE models. The methodology assumes that the stresses of FE (A) are accurate and
strains of FE (B) are accurate and they are used to train the EPR model. Each cycle of self-learning
that accomplishes the entire applied load is called a pass. Several passes may be required to complete
the analysis. The flowchart of the EPR-based self-learning FEM is shown in Figure 1.
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Figure 1. The flow chart of the proposed automation process of EPR-based self-learning FEM

4 — Numerical examples

4 -1 Example 1

A 2D plane stress panel subjected to in-plane compression is considered. The geometry of the plate,
boundary conditions and loading are shown in Figure 2. Due to the symmetry, only a quarter of the
plate is simulated. The material of the plate is linear elastic with Young’s modulus E = 500 pa and
poison’s ratio u = 0.3 and the pressure applied is 10 pa. This example has been deliberately kept
simple in order to verify the process of EPR based self-learning simulation.

The measurements are generated synthetically from a FE model using ABAQUS. It is assumed that
during the experiment the displacements at the node on the right corner (nodel) are recorded. Two
finite elements models are created and three EPR models are used for the training process. Figure 3
shows the prediction of EPR-based self-learning FE model for the displacement at node (1) from one
pass. Comparison is made between the results of the actual (linear elastic) model and the EPR based



self-learning FEM. It can be seen that the EPR-based FEM is able to provide an excellent agreement
with the actual data.
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Fig.2 Geometry, loading, mesh and BC of the plate. Fig. 3 EPR based self-learning FEM prediction at nodel 1.

4 - 2 Example Two

A 2D truss structure with 13 axial force elements is considered in the second example. The geometry,
boundary conditions and loading are illustrated in Figure 4. The truss is subjected to a concentrated
load (100 KN) at node 3. The load—displacement data were generated using FE simulation with
ABAQUS using the nonlinear Ramberg-Osgood model. The load and the corresponding displacement
at node 3 are considered as the experimental measurements used in the self-learning process. The
general form of the Ramberg-Osgood model is [6]:

g, 2Boo o\n
CRET (ao) ~E (2)

Where E = 20.0x10°pa, co = 1.0x107 pa, B =2.34, n = 3.
The values of stresses were considered as input and strains as output. After training, in each run, an

EPR model with the highest COD was chosen. It can be seen from Figure 5 that the EPR-based self—
learning method is able to accurately capture the nonlinear behaviour of the truss from the first pass.
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Fig. 4 Truss structure and the applied load
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Fig. 5 Comparison between the Ramberg model and the EPR-based self-learning FEM
(displacements at node 3)

5 — Conclusion

The conventional approach to constitutive modelling using data mining techniques requires a
significant amount of data which could be costly and not available at all cases. Furthermore, obtaining
a homogenous stress-strain state in experiments could be very challenging, especially for complex
loading conditions. In this paper an EPR-based self-learning FE simulation model has been developed
as an efficient approach for learning the constitutive behaviour of materials. The main advantage of
using EPR in the self-learning FEM is that it gives transparent and structure equations representing
the constitutive behaviour of material which can be readily implemented in FE code. The
implementation EPR in the FE procedure is straightforward. In the self-learning FEM, there is no
need to check yielding, to compute the gradients of plastic potential curve, to update the yield surface,
etc.

The developed approach takes the advantages of the rich data buried in non-homogenous materials. It
was shown that the EPR-based self-learning FEM is able to capture the material behaviour from one
pass, reducing the overall computational time. In the two examples presented, the automation process
was run only once and the EPR model captured the complete behaviour with very high accuracy. It
should be noted that in more complex problems, more passes may be required to capture the more
complex material behaviour. The proposed approach can be used in different boundary value
problems.

Reference

[1] Ghaboussi, J. and Sidarta, D.E. (1998). "New nested adaptive neural networks (NANN) for constitutive
modelling.” Computers and Geotechnics, 22(1), 29-52.

[2] Hashash, Y.M.A., Maruland, C., Ghaboussi, J., & Jung, S. (2006). Novel Approach to integration of
numerical modelling and field observations for deep excavations. ASCE Journal of Geotechnical and
Geoenviromental Engineering, 132(8), pp. 1019-31.

[3] Javadi AA, Rezania M. (2009) intelligent finite element method: An evolutionary approach to constitutive
modelling, Advanced Engineering Informatics, volume 23, no. 4, pages 442-451.

[4] Faramarzi, A. Javadi, A.A. and Alani, M. (2014). An EPR-based self-learning approach to material
modelling. Computers and structures 137 (2014), pp.63-71.

[5] Giustolisi, O. & Savic, D. (2006). A symbolic data-driven technique based on evolutionary polynomial
regression. Journal of Hydro informatics, 8(3), pp. 207-22.

[6] Ramberg W, Osgood WR. (1943). Description of stress-strain curves by three parameters. National advisory
committee for aeronautics. [Technical Note No. 902].



