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ABSTRACT 

High-performance computing (HPC) techniques, especially parallel computing, can be used to significantly 

reduce the computational time in very large scale simulations. In this work, the popular HPC hardware and 

parallel programming tools are reviewed and discussed. Then a hybrid Message Passing Interface/Open Multi-

Processing (ie, MPI/OpenMP) model is proposed to parallelise the numerical code COMPASS, which adopts a 

coupled thermal/hydraulic/chemical/mechanical (THCM) approach to model the behaviour of 

saturated/unsaturated media. Various optimisation techniques have also been employed to achieve better 

performance. Together with code optimisation, the parallel COMPASS has shown significant performance 

improvement, which has been seen for an example application in carbon dioxide sequestration. 
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1. Introduction  

Geoenvironmental problems, such as contaminated land, landfills, waste disposal, and carbon dioxide 

sequestration, are generally based upon flow conditions through soils and/or chemical reactions. For 

example, the flow of carbon dioxide through rocks/soils and the associated chemical processes are 

important factors controlling the capacity and long term stability in carbon dioxide sequestration. 

These problems are often complex in respect to both the processes occurring and their geometry and 

scale. In recent years, a coupled thermal/hydraulic/chemical/mechanical (THCM) approach to model 

the behaviour of saturated/unsaturated media has been developed at the Geoenviromental Reseach 

Cenre (GRC) at Cardiff University [1-4]. The model has been implemented in the numerical computer 

code COMPASS (COde for Modelling PArtially Saturated Soils), and used to simulate a number of 

problems. The finite element method is employed for the spatial discretisation, and a finite difference 

time stepping scheme is implemented for temporal discretisation.  

 

As the scale and complexity in geoenergy applications increases, the demands for computational 

resources increase dramatically and eventually become time-limiting for very large simulation 

problems.  Recent developments of high-performance computing (HPC) provide great advantages to 

overcome these large computational demands and time-limiting issues. Parallel computing on HPC 

platforms can significantly reduce the computational time. It is worthwhile to invest time and efforts 

to develop numerical modelling code that run on a HPC system. In this paper, the authors briefly 

demonstrate the development of parallel version of the GRC’s in-house numerical modelling code, 

COMPASS, with cutting-edge HPC technologies. It aims to enable the integrated parallel COMPASS 

code to run on supercomputers efficiently, reliably and quickly. 

 

2. HPC hardware and parallel programming tools  

The November 2015 Top 500 ranking of world supercomputers [5] shows that more than 80% of HPC 

machines are classified as having a cluster architecture. HPC clusters usually consist of a large 

number of distributed computer nodes linked through high performance networks. A well-known 

transport mechanism between nodes is message passing, which was adopted by many parallel 



 

programming tools, such as Theoretical Chemistry Group Message Passing System (TCGMSG) [6], 

Parallel Virtual Machine (PVM) [7], and Message Passing Interface (MPI) [8]. With a number of 

features that provide both convenience and high performance communication, MPI is the most widely 

used model, and has become the de facto standard for incorporating parallelism into scientific and 

other application codes. 

 
Table 1: Comparison of features between MPI and OpenMP 

 

MPI OpenMP 

Shared or distributed memory architectures Only shared memory architecture 

Requires an MPI library(MPICH, Intel MPI etc) Doesn’t need other library 

No specific requirements for compiler Requires a compiler that supports OpenMP 

Message based Directive based 

Both process and thread based approach Only thread based parallelism 

Overhead for creating process is one time 
Threads can be created and joined for particular task 

which add overhead 

There are overheads associated with transferring 

message between processes 
No such overheads, as thread can share variables 

Process in MPI  has private variable only, no shared 

variable 
Thread can have both private and shared variables 

Requires more programming changes to go from 

serial to parallel version 

Directives can be added incrementally, less changes 

from serial to parallel version 

Rich functionality, flexible, harder to program Easier to program, data racing bug 

 

In a HPC cluster, each computer node itself is a symmetric multiprocessor (SMP) system, on which 

memory is shared across the processors. Open Multi-Processing (OpenMP) [9] has provided a very 

rich and flexible programming model for such shared memory systems. Now most computers, even 

desktops/laptops, have multi-core CPUs, which can have access to the common memory on the 

machine. This computer architecture provides great convenience for parallelism, and OpenMP 

becomes one of the most popular programming models as it is easy to implement. Table 1 lists the 

major features of MPI and OpenMP. In order to achieve scalable performance, many application 

programs typically maintain and manipulate global data structures that are distributed between the 

memory managed by individual processors. The application programming interfaces (API) that 

provide such functionality include the Global Arrays (GA) toolkit [10], Distributed Data Interface 

(DDI) [11], and Parallel Programming Interface for Distributed Data (PPIDD) [12]. 

 

With the development of new accelerator technologies, general-purpose graphical processing units 

(GPGPUs) now can be used for parallel computing [13]. CUDA and OpenCL are most widely used 

GPU parallel programming tools. The potential performance improvement is enormous if the 

algorithms can take advantage of the GPU's programming model and do most of their computation on 

the GPU. There are cases of over a 100X performance improvement for some codes running on GPUs 

relative to CPUs.  But one of the critical limitations is that you have to rewrite the code for the GPU. 

It is particularly hard to port existing complex code for GPU parallel computing.  

 

Basing on the above analysis and discussions, it is a good option to develop parallel implementation 

with both MPI and OpenMP for currently existing large packages, in order to take full advantage of 

modern HPC facilities available. 

 

3. Parallel strategies for COMPASS  



 

As the popular HPC clusters have the hybrid architecture, where memory is distributed across the 

computer nodes but shared within the node, a hybrid MPI/OpenMP model is proposed for parallel 

implementation for the numerical code COMPASS. The hybrid model can take advantage of the 

merits of both MPI and OpenMP. MPI facilitates efficient inter-node reductions and transferring of 

complex data structures, and it helps the application scale across multiple SMP nodes in the HPC 

cluster. OpenMP manages the workload on each SMP node, and makes more efficient use of the 

shared memory. By spawning several OpenMP threads for each MPI process, less replicated data and 

less memory are required due to the decrease of the total number of MPI processes. Within each SMP 

node where only one MPI process is allocated, the synchronization is implicit, which eliminates much 

of the overhead associated with message passing. 

 

In COMPASS, the majority of the computation time is spent in two sections: system matrix build and 

solver. The system matrix build process is to form the matrices for each element, and then assemble 

them into global matrix. In this section, coarse-grained domain decomposition can be employed as 

there is no communication in the matrix forming process for each element. Only at the end are all 

element matrices synchronised and added together. The solver is to provide the solution for the 

equations involved. In general, there are two types of solvers, direct and iterative [14]. A direct solver, 

such as LU decomposition, is very robust and efficient, but for large and complex systems, the 

memory required may become a bottleneck. Iterative solvers require lower memory, which is crucial 

for large scale simulations. Among these iterative solvers, the conjugate gradient algorithm is one of 

the most effective iterative methods. 

 

For LU decomposition, fine-grained parallelism is achieved during the forward and back substitution. 

In conjugate gradient algorithms, vector-vector and matrix-vector operations are heavily involved. For 

vector-vector operations, it is not suitable for MPI parallelism as the communication takes longer than 

the calculation itself [3]. However, OpenMP can take over them as there is no such communication. 

Matrix-vector multiplication is parallelised with MPI. In addition, substantial code optimisation is 

carried out to improve the performance further. For some frequently used code segments, memory and 

file input/output operations are carefully examined. 

 

4. Application simulation and initial performance 

The development of the parallel code is demonstrated by simulating the injection of carbon dioxide in 

a coal seam associated carbon capture and sequestration (CCS) technologies. The simulation 

considers carbon dioxide injection into a 500 m radius, two-dimensional, axisymmetric, 

hypothetically isolated coal bed. This example has a very large domain, which is discretised by about 

20,000 triangle elements. Figure 1 shows the total wall time for system matrix build and solver. The 

      

Figure 1: Total wall time of system matrix build and solver 



 

wall time for parallel and serial modes is displayed in Figure 1(a), while the parallel results are 

displayed in a magnified mode in Figure 1(b). The serial code, which is not optimised, is three times 

slower compared with the parallel program with 1 core. Together with code optimisation, the parallel 

code has achieved a maximum 7.5 times speed-up compared to the non-optimised serial one. 

 

5. Conclusions 

This work here has reviewed and discussed the popular HPC hardware and parallel programming 

tools. Then a hybrid MPI/OpenMP model is proposed to parallelise the numerical code COMPASS. 

Together with code optimisation, a significant performance improvement has been seen for an 

example application in carbon dioxide sequestration. The developments presented in this paper will 

facilitate more efficient computational research in the study of carbon sequestration and other large 

scale geoenvironmental applications. 
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