

Proceedings of the 24th UK Conference of the

 Association for Computational Mechanics in Engineering

31 March – 01 April 2016, Cardiff University, Cardiff

Development of a High Performance Computing Approach for Studying

the Coupled Behaviour of Porous Media

*Manhui Wang¹, Lee Hosking¹, Shakil Masum¹ and Hywel Thomas¹

1
Geoenvironmental Research Centre, School of Engineering, Cardiff University,

Queen's Buildings, The Parade, Cardiff CF24 3AA, United Kingdom

*wangm9@cardiff.ac.uk

ABSTRACT

High-performance computing (HPC) techniques, especially parallel computing, can be used to significantly

reduce the computational time in very large scale simulations. In this work, the popular HPC hardware and

parallel programming tools are reviewed and discussed. Then a hybrid Message Passing Interface/Open Multi-

Processing (ie, MPI/OpenMP) model is proposed to parallelise the numerical code COMPASS, which adopts a

coupled thermal/hydraulic/chemical/mechanical (THCM) approach to model the behaviour of

saturated/unsaturated media. Various optimisation techniques have also been employed to achieve better

performance. Together with code optimisation, the parallel COMPASS has shown significant performance

improvement, which has been seen for an example application in carbon dioxide sequestration.

Keywords: high performance computing; parallel computing; THCM; COMPASS

1. Introduction

Geoenvironmental problems, such as contaminated land, landfills, waste disposal, and carbon dioxide

sequestration, are generally based upon flow conditions through soils and/or chemical reactions. For

example, the flow of carbon dioxide through rocks/soils and the associated chemical processes are

important factors controlling the capacity and long term stability in carbon dioxide sequestration.

These problems are often complex in respect to both the processes occurring and their geometry and

scale. In recent years, a coupled thermal/hydraulic/chemical/mechanical (THCM) approach to model

the behaviour of saturated/unsaturated media has been developed at the Geoenviromental Reseach

Cenre (GRC) at Cardiff University [1-4]. The model has been implemented in the numerical computer

code COMPASS (COde for Modelling PArtially Saturated Soils), and used to simulate a number of

problems. The finite element method is employed for the spatial discretisation, and a finite difference

time stepping scheme is implemented for temporal discretisation.

As the scale and complexity in geoenergy applications increases, the demands for computational

resources increase dramatically and eventually become time-limiting for very large simulation

problems. Recent developments of high-performance computing (HPC) provide great advantages to

overcome these large computational demands and time-limiting issues. Parallel computing on HPC

platforms can significantly reduce the computational time. It is worthwhile to invest time and efforts

to develop numerical modelling code that run on a HPC system. In this paper, the authors briefly

demonstrate the development of parallel version of the GRC’s in-house numerical modelling code,

COMPASS, with cutting-edge HPC technologies. It aims to enable the integrated parallel COMPASS

code to run on supercomputers efficiently, reliably and quickly.

2. HPC hardware and parallel programming tools

The November 2015 Top 500 ranking of world supercomputers [5] shows that more than 80% of HPC

machines are classified as having a cluster architecture. HPC clusters usually consist of a large

number of distributed computer nodes linked through high performance networks. A well-known

transport mechanism between nodes is message passing, which was adopted by many parallel

programming tools, such as Theoretical Chemistry Group Message Passing System (TCGMSG) [6],

Parallel Virtual Machine (PVM) [7], and Message Passing Interface (MPI) [8]. With a number of

features that provide both convenience and high performance communication, MPI is the most widely

used model, and has become the de facto standard for incorporating parallelism into scientific and

other application codes.

Table 1: Comparison of features between MPI and OpenMP

MPI OpenMP

Shared or distributed memory architectures Only shared memory architecture

Requires an MPI library(MPICH, Intel MPI etc) Doesn’t need other library

No specific requirements for compiler Requires a compiler that supports OpenMP

Message based Directive based

Both process and thread based approach Only thread based parallelism

Overhead for creating process is one time
Threads can be created and joined for particular task

which add overhead

There are overheads associated with transferring

message between processes
No such overheads, as thread can share variables

Process in MPI has private variable only, no shared

variable
Thread can have both private and shared variables

Requires more programming changes to go from

serial to parallel version

Directives can be added incrementally, less changes

from serial to parallel version

Rich functionality, flexible, harder to program Easier to program, data racing bug

In a HPC cluster, each computer node itself is a symmetric multiprocessor (SMP) system, on which

memory is shared across the processors. Open Multi-Processing (OpenMP) [9] has provided a very

rich and flexible programming model for such shared memory systems. Now most computers, even

desktops/laptops, have multi-core CPUs, which can have access to the common memory on the

machine. This computer architecture provides great convenience for parallelism, and OpenMP

becomes one of the most popular programming models as it is easy to implement. Table 1 lists the

major features of MPI and OpenMP. In order to achieve scalable performance, many application

programs typically maintain and manipulate global data structures that are distributed between the

memory managed by individual processors. The application programming interfaces (API) that

provide such functionality include the Global Arrays (GA) toolkit [10], Distributed Data Interface

(DDI) [11], and Parallel Programming Interface for Distributed Data (PPIDD) [12].

With the development of new accelerator technologies, general-purpose graphical processing units

(GPGPUs) now can be used for parallel computing [13]. CUDA and OpenCL are most widely used

GPU parallel programming tools. The potential performance improvement is enormous if the

algorithms can take advantage of the GPU's programming model and do most of their computation on

the GPU. There are cases of over a 100X performance improvement for some codes running on GPUs

relative to CPUs. But one of the critical limitations is that you have to rewrite the code for the GPU.

It is particularly hard to port existing complex code for GPU parallel computing.

Basing on the above analysis and discussions, it is a good option to develop parallel implementation

with both MPI and OpenMP for currently existing large packages, in order to take full advantage of

modern HPC facilities available.

3. Parallel strategies for COMPASS

As the popular HPC clusters have the hybrid architecture, where memory is distributed across the

computer nodes but shared within the node, a hybrid MPI/OpenMP model is proposed for parallel

implementation for the numerical code COMPASS. The hybrid model can take advantage of the

merits of both MPI and OpenMP. MPI facilitates efficient inter-node reductions and transferring of

complex data structures, and it helps the application scale across multiple SMP nodes in the HPC

cluster. OpenMP manages the workload on each SMP node, and makes more efficient use of the

shared memory. By spawning several OpenMP threads for each MPI process, less replicated data and

less memory are required due to the decrease of the total number of MPI processes. Within each SMP

node where only one MPI process is allocated, the synchronization is implicit, which eliminates much

of the overhead associated with message passing.

In COMPASS, the majority of the computation time is spent in two sections: system matrix build and

solver. The system matrix build process is to form the matrices for each element, and then assemble

them into global matrix. In this section, coarse-grained domain decomposition can be employed as

there is no communication in the matrix forming process for each element. Only at the end are all

element matrices synchronised and added together. The solver is to provide the solution for the

equations involved. In general, there are two types of solvers, direct and iterative [14]. A direct solver,

such as LU decomposition, is very robust and efficient, but for large and complex systems, the

memory required may become a bottleneck. Iterative solvers require lower memory, which is crucial

for large scale simulations. Among these iterative solvers, the conjugate gradient algorithm is one of

the most effective iterative methods.

For LU decomposition, fine-grained parallelism is achieved during the forward and back substitution.

In conjugate gradient algorithms, vector-vector and matrix-vector operations are heavily involved. For

vector-vector operations, it is not suitable for MPI parallelism as the communication takes longer than

the calculation itself [3]. However, OpenMP can take over them as there is no such communication.

Matrix-vector multiplication is parallelised with MPI. In addition, substantial code optimisation is

carried out to improve the performance further. For some frequently used code segments, memory and

file input/output operations are carefully examined.

4. Application simulation and initial performance

The development of the parallel code is demonstrated by simulating the injection of carbon dioxide in

a coal seam associated carbon capture and sequestration (CCS) technologies. The simulation

considers carbon dioxide injection into a 500 m radius, two-dimensional, axisymmetric,

hypothetically isolated coal bed. This example has a very large domain, which is discretised by about

20,000 triangle elements. Figure 1 shows the total wall time for system matrix build and solver. The

Figure 1: Total wall time of system matrix build and solver

wall time for parallel and serial modes is displayed in Figure 1(a), while the parallel results are

displayed in a magnified mode in Figure 1(b). The serial code, which is not optimised, is three times

slower compared with the parallel program with 1 core. Together with code optimisation, the parallel

code has achieved a maximum 7.5 times speed-up compared to the non-optimised serial one.

5. Conclusions

This work here has reviewed and discussed the popular HPC hardware and parallel programming

tools. Then a hybrid MPI/OpenMP model is proposed to parallelise the numerical code COMPASS.

Together with code optimisation, a significant performance improvement has been seen for an

example application in carbon dioxide sequestration. The developments presented in this paper will

facilitate more efficient computational research in the study of carbon sequestration and other large

scale geoenvironmental applications.

Acknowledgements

The work described here has been carried out as part of GRC's Seren project, which is funded by the

Welsh European Funding Office (WEFO). The financial support is gratefully acknowledged. This

work has been performed using the computational facilities of the Advanced Research

Computing@Cardiff (ARCCA) Division, Cardiff University.

References

[1] H. R. Thomas and Y. He, A coupled heat-moisture transfer theory for deformable unsaturated soil and its

algorithmic implementation, International Journal for Numerical Methods in Engineering, 40(18), 3421–

3441, 1997.

[2] S. C. Seetharam, An investigation of the thermro/hydro/chemical/mechanical behaviour of unsaturated

soils, Ph.D. Thesis, Cardiff University, Wales, UK, 2003.

[3] P. J. Vardon, A three-dimensional numerical investigation of the thermo-hydro-mechanical behaviour of a

large-scale prototype repository, Ph.D. Thesis, Cardiff University, Wales, UK, 2009.

[4] S. A. Masum, Modelling of reactive gas transport in unsaturated soil. A coupled thermo-hydro-chemical-

mechanical approach, PhD thesis, Cardiff University, Wales, UK, 2012.

[5] Top 500 supercomputer site, http://www.top500.org/.

[6] R. J. Harrison, Portable tools and applications for parallel computers, International Journal of Quantum

Chemistry, 40, 847-863, 1991.

[7] PVM website, http://www.csm.ornl.gov/pvm/.

[8] Message Passing Interface (MPI), http://www.mpi-forum.org/.

[9] OpenMP Specifications, http://openmp.org/wp/openmp-specifications/.

[10] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, E. Aprà, Advances, Applications and

Performance of the Global Arrays Shared Memory Programming Toolkit, International Journal of High

Performance Computing Applications, 20, 203-231, 2006.

[11] G. D. Fletcher, M. W. Schmidt, B. M. Bode, M. S. Gordon, The Distributed Data Interface in GAMESS,

Computer Physics Communications, 128, 190-200, 2000.

[12] M. Wang, A. J. May and P. J. Knowles, Parallel programming interface for distributed data, Computer

Physics Communications, 180(12), 2673-2679, 2009.

[13] S. Mittal and J. Vetter, A Survey of CPU-GPU Heterogeneous Computing Techniques, ACM Computing

Surveys, 47(4), Article 69, 2015.

[14] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, L. Dongraa, V. Eijkhout, R. Pozo, C. Romine, H.

Van derVorst, Templates For the Solution of Linear Systems: Building Blocks For Iterative Methods, John

Wiley Press, New York, 1995.

http://www.top500.org/

