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ABSTRACT

We present a method of obtaining properties of electromagnetic cavities with frequency dependent materials,
such as the resonant frequencies, quality factors and mode shapes, using a high-order discontinuous Galerkin
(DG) time-domain solver. Optimal convergence in the resonant frequency has been achieved for all numerical
examples. The accuracy of resonant frequencies obtained is quantified and we present a study of errors due to
geometrical approximation. Advantages of a multi-processor computation using Message Passing Interface (MPI)
are demonstrated.
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1. Introduction

Recent advances in manufacturing techniques, such as electron beam lithography make it possible to
manufacture resonant cavities on the scale of the wavelength of light. These devices frequently have
desirable qualities such as high quality factors and well defined resonant frequencies [1]. However, the
typical scale and the geometric complexity introduce several challenges for numerical simulation.

The behaviour of these resonators is described by Maxwells’ equations of classical electromagnetics.
For dispersive materials, an auxiliary ordinary differential equation based on the Drude model of solids
[2] is coupled to the Maxwell system. Frequency domain solvers are traditionally employed to find the
resonant frequencies and associated modes, but as the scale and geometric complexity of the devices
increase, the large eigenvalue system that must be solved becomes computationally prohibitive.

We propose using the Discontinuous Galerkin method with explicit time marching, which only requires
solving a block diagonal system of equations for each timestep [3]. The frequency spectrum, resonant
frequencies and quality factors are then recovered by a Fourier transform of the time domain solution.

2. DG solution of the transient Maxwell’s equations in dispersive media

Maxwell’s equations of classical electromagnetics and the auxiliary ordinary different equation required
for dispersive media in linear, dimensionless, conservation form by

∂ U
∂t
+

nsd∑
k=1

∂ Fk (U)
∂xk

= S (U) , (1)

where nsddenotes the number of spatial dimensions. The vector of unknowns, U, is
given by U = (εE1, εE2, εE3, µH1, µH2, µH3, J1, J2, J3)T , the flux vectors, Fk , are given
by F1 = (0, H3,−H2, 0,−E3, E2, 0, 0, 0)T , F2 = (−H3, 0, H1, E3, 0,−E1, 0, 0, 0)T and F3 =

(H2,−H1, 0,−E2, E1, 0, 0, 0, 0)T and the source term, S, is given by S = (0, 0, 0, 0, 0, 0, ω2
d
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γd J1, ω2
d

E2−γd J2, ω2
d

E3−γd J3)T . HereE = (E1, E2, E3) is the electric field intensity,H = (H1, H2, H2)
is the magnetic field intensity and J = (J1, J2, J3) is the polarisation current. The material parameters ε ,
µ, ω and γ are the electric permittivity, magnetic permeability, plasma frequency and electron damping
coefficient respectively.



We discretise the computational domain Ω on an unstructured mesh. The DG weak formulation [4] of
(1) on an element Ωe can then be written as

∫
Ωe

W ·
∂ Ue

∂t
dΩ +

∫
Ωe

W · *
,

nsd∑
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-

dΩ +
∫
∂Ωe

W · A−n ~Ue� dΓe = 0 ,

where Ue denotes the solution vector restricted to the element Ωe , W is a vector of test functions and
~Ue� = Ue − Uout denotes the jump of the solution across the element boundary ∂Ωe . The boundary
term, derived after introducing the numerical flux on the boundary and using a flux-splitting technique,
results in
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+//
-
,

where n is the outward unit normal of the element and 03x1 is a zero vector of dimension 3. After
introducing the approximation of the solution and using a Galerkin formulation, the following system of
ordinary differential equations is obtained

M
dU
dt
+ R (U ) = 0 ,

where U is the vector of nodal values, M is the block diagonal mass matrix and R (U ) is the residual
vector. The system of ordinary differential equations is advanced in time using a fourth-order explicit
Runge-Kutta method.

3. Resonant frequencies and mode shapes

The engineering quantities of interest are the resonant frequencies and the associated modes shapes and
quality factors. In order to obtain these quantities from time domain simulations, we begin with an intial
field distribution containing a point excitation. Maxwells’ equations are solved to advance the fields in
time, and the amplitude of the solution field is recorded at fixed time intervals, ∆t, at at least one point
in space for a period of time, T . The resulting discrete field intensity signal is illustrated in Figure 1a.
Taking the fast Fourier transform of the field intensity signal results in its frequency eigenspectrum,
shown in Figure 1b for a 3-dimensional cubic cavity with a perfect electric conductory (PEC) boundary.
The resonant frequencies of the cavity correspond to the locations of peaks in the spectrum, whilst the
quality factors are related to peak widths. The mode shape associated to a given resonant frequency can
be obtained as a postprocess, by taking the discrete Fourier transform at the desired frequency.

For a high fidelity computation of broadband spectrums, two properties of the fast Fourier transformmust
be taken into consideration: (1) the spectrum resolution is inversely proportional to T ; (2) the highest
resonant frequency that can be computed is inversely proportional to ∆t. To alleviate the potentially large
computational cost which results, we employ a high-order DG solver with a NEFEM [5] rationale. This
enables the use of extremely coarse meshes that guarantee that the time step of the explicit time marching
algorithm is not restricted by the stability condition, but by the maximum frequency that is to be resolved.
In addition, an efficient parallel implementation using MPI has been developed, enabling to dramatically
reduce the computational time required to advance the solution large periods of time.

4. Numerical Results

The solver was validated validated using a rectangular 2-dimensional cavity filled with a dispersive
medium (ε∞ = 1, σ = 1, ω = 6.7433, γ = 0.0799), surrounded by a perfect electric conductor, with
a width twice its length. Figure 2a shows how error in the resonant frequency, calculated relative to
a reference solution, converges with T to a final numerical error due to spatial discretisation. Optimal
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(a) Signal obtained from simulation run.
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(b) Eigenspectrum obtained by FFT

Figure 1: Signal and corresponding eigenspectrum obtained from a time domain simulation for a cubic,
free-space cavity with a PEC boundary.

convergence of the error in resonant frequency is shown in Figure 2b, the error convergences as the
numerical dispersion error, at a rate h2(p+2).
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(a) Convergence of the error in calculated resonant
frequency with T for three different meshes.
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(b) h-convergence of the error in resonant frequency
obtained for the fundamental frequency.

Figure 2: Results for a rectangular cavity filled with a dispersive medium, surrounded by a PEC boundary

A circular free-space cavity is used to illustrate the effect of boundary approximations on computed
resonant frequencies. In Figure ??, convergence of error for p- and h-refinement is shown for iosparametric
elements and NEFEM elements. The geometrical error can be seen to have a significant effect for low-
order planar elements.
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(a) Convergence of error in resonant frequency with
square root of number of degrees of freedom for
mode shown in (b).

(b) Meshes for resonant frequency error below 10−3, left to
right: planar isoparametric elements, p = 1 nefem elements,
p = 4 isoparametric elements.

Figure 3: Results for a circular free-space cavity surrounded by a PEC boundary.



(a) Examples of mode shape obtained
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(b) Parallel speed up for a mesh of 12,288 planar
hexahedral elements

Figure 4: Results for fully 3-dimensional cubic cavity with PEC boundaries

Parallel computation allows computation of resonant frequencies and mode shapes for challenging
realistic 2- and 3-dimensional geometries with high accuracy, in a reasonable run time. Dramatic speed
increases can be obtained for larger meshes, notable with higher-order elements, as illustrated by an
almost linear speed up shown in Figure 4b.

5. Conclusions

A method has been presented for obtaining electromagnetic resonance properties of cavities using
a parallelised discontinuous Galerkin time domain solver. We validated the method by showing h-
convergence of the error in resonant frequencies. Themethod has been validated and optimal convergance
rates in the resonant frequency error has been achieved. The effect of geometrical representation and
high-order elements on resonant frequencies have been quantified and the advantages of parallelisation
quantified.
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