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ABSTRACT
In this paper, we focus on the generation of a strongly coupled monolithic system to describe the interaction
of the magnetic field, generated mechanical vibrations and corresponding acoustic behaviour active in an MRI
environment. We linearise the resulting nonlinear equations and consider both temporal and frequency dependant
axisymmetric formulations of the full three dimensional problem. We also utilise a stress tensor approach for the
electromagnetic forces, previously employed in [1, 2, 3]. This formulation allows the use of H1 conforming hp
finite elements, which when combined with hp refinement results in the possibility of accurate solutions. The fully
discretised scheme is solved by a Newton-Raphson procedure, in an extension of [1], which employed a fixed-
point algorithm. The results of our formulation are benchmarked against a series of numerical examples including
an application to a realistic magnet geometry shown in Figure 1.
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1. Introduction

Recently Magnetic Resonance Imaging (MRI) has become an important tool in the medical industry.
The non-intrusive imaging capability and high resolution makes it desirable for identifying a range of
medical ailments, such as tumours, damaged cartilage and internal bleeding. The most common type of
magnet used in MRI scanners are superconducting magnets, consisting of superconducting wire cooled
by liquid helium contained within a vessel known as a cryostat. Figure 1 shows a typical setup of an MRI
scanner, which consists essentially of four main components. A set of main magnetic coils produce a
strong uniform stationary magnetic field across the radial section of the scanner. The secondary magnetic
coils are used to avoid large stray fields arising outside the scanner. The cryostat consists of a set of
metallic vessels used to maintain the supercooled magnet temperatures and shield from radiation. A set
of resistive coils inside the imaging volume, known as gradient coils, produce pulsed gradient magnetic
fields to generate an image of the patient.
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Figure 1: Primary Components of a typical MRI scanner

The presence of eddy currents in these conducting (metallic) vessels can be caused by changing magnetic
fields, such as those generated by the pulsed gradient fields. These eddy currents can cause perturbations
in the magnetic field. They also give rise to Lorentz forces and exert electro-mechanical stresses in the
conducting components which cause them to vibrate and deform. These deformations cause the magnetic
field to further perturb thus generating more eddy currents. The vibrations also cause perturbations of the
surrounding air, which in turn produces an acoustic pressure field. These phenomena can have undesired
effects causing imaging artefacts (ghosting), decreased component life and uncomfortable conditions for
the patient, due to the noise from mechanical vibrations.



2. Coupled System
The aim of this work is to develop a computational analysis tool to aid in the magnet design by providing
a better understanding of the induced vibrations and acoustic behaviour. These phenomena are described
through the coupled set of Maxwell (eq. 1a and 1b) and linear elasticity (eq. 1c) equations. In the air
the linear elasticity equations reduce to a scalar Helmholtz equation for the acoustic pressure (eq. 1d).
Here ρ denotes the density of the material, µ the electromagnetic permeability, ε dielectric permittivity,
γ the electric conductivity, λ and G the Lamé parameters, c the speed of sound through a medium, E the
electric field vector, H the magnetic field vector, u the displacement field vector, p̂ the acoustic pressure
and σm is the cauchy stress tensor and the dot symbol (˙) is used to represent a time derivative.

∇ × E = µḢ ∇ · εE = 0 in Ω (1a)

∇ × H = J (u̇,H ,E) ∇ · µH = 0 in Ω (1b)

∇ · σm (u) + b (H ) = ρü σm (u) = λ (∇ · u) I + G
(
∇symu

)
in Ωc (1c)

∇2 p̂ −
1
c2

¨̂p = 0 in Ωn (1d)

The current term consists of J (u̇,H ,E) = J s + J l (u̇,H ) + Jo (E), the source, Lorentz and Ohmic,
or eddy currents. The magneto-mechanical coupling, shown in Figure 2, arises in the conductor due to
the Lorentz currents and through body forces in terms of Maxwell stresses, b (H ) = ∇ · σe (H ) in
continuation of [1, 2, 3], defined as

σe (H ) = µ

(
H ⊗ H −

1
2

(H · H ) I
)

(2)

The acoustic pressure is coupled to the magneto-mechanical problem at the air-conductor interface
boundary (∂Ωc) through jump conditions in the tractions and accelerations.

[[σ]]n = 0 on ∂Ωc (3a)

[[ü]] = 0 on ∂Ωc (3b)

where n is the outward normal vector associated with the boundary and the double bracket symbol
[[x]] = xn − xc defines the jump in the solution across a boundary. The subscripts c and n correspond to
the conducting and non-conducting sub domains of our computational domain, shown in Figure 2.
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Figure 2: Computational domain of the coupled system

3. Computational Framework
3.1. Axisymmetric Problem
Given that the geometry of the MRI Cryostat is constant across the bore section of the cylinder and
modelling only one set of gradient coils, the Z-gradient, the problem may be expressed in terms of an
axisymmetric formulation. By expressing the geometry in cylindrical coordinates the fields are inde-
pendent of the angular component and so the order of the geometry reduces from 3D to a 2D plane.
The problem is solved on the r, z plane as opposed to the x, y, z Cartesian domain, whilst still resolving
the full 3D nature of the fields. However this requires a more complex weak formulation, which takes
account of the differential operators expressed in cylindrical coordinates. By introducing appropriately
scaled variables the 1/r singularity at the radial axis can be eliminated and ur and uz the components
of mechanical displacements along with the Aφ component of a vector potential for representing the
electromagnetic fields can all be discretised by H1 conforming hp finite elements.



3.2. Time Harmonic System
Computational speed is of great importance to the design process of an MRI scanner, as designers must
test a large number of concept designs over a wide range of operational conditions. For this reason
one would prefer to solve in the frequency domain, rather than the full time dependant problem. This
formulation allows the designer to sweep quickly over the sourcing frequencies of the Z-gradient coil
and compute the dissipated power as a function of the frequency. We have therefore chosen to adopt the
approach taken in [1] of assuming a time harmonic, rather than pulsed, sourcing current in the gradient
coil so that we can formulate the equations in the frequency domain.

3.3. Monolithic Scheme
Unlike the work previously carried out in [1], which involves the implementation of a fixed point it-
eration scheme, we have chosen to adopt a Newton-Raphson approach to solve the coupled system of
non-linear equations (eq. 1). By forming the monolithic system, shown below in eq. 4, this method offers
a more robust solver with quadratic rates of convergence.
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Where R is the system residual vector, obtained from eq. 1, δ is the solution update vector and K is the
Tangent stiffness matrix, formed by taking the directional derivative of the residuals with respect to the
solution fields, outlined in [4]. To obtain the solution X = [H ,u,p]T we define some initial guess X [0]

and update it by solving eq. 4 and iterating over X [k+1] = X [k] + δ until convergence is acheived.

3.4. Perfectly Matched Layer
Due to the nature of acoustic wave propogation we must treat the infinite boundary of the computational
domain with special consideration to allow for accurate results. We have chosen to employ a perfectly
matched layer, or PML, to deal with the absorbtion of outgoing waves and avoid numerical pollution
from artificial reflections at the boundary. The PML is analogous to a metamaterial where its parameters
are artificial and are constructed through an exponential decay function in the complex plane (resulting
in a complex coordinate stretching in the layer), in order to absorb incoming waves. A full PML con-
struction and its behaviour in a hp finite element context is discussed in [5]. To demonstrate the effect of
the PML a simple test problem is setup, shown in Figure 3, in which a sphere is located at the centre of
an axisymmetric domain and an incident plane wave is propogated in the positive z direction (upwards)
with a PML around the outer domain boundary. The acoustic pressure can be expressed as p̂ = p̂in + p̂sc ,
where p̂in is an incident (known) plane wave and p̂sc is the unknown scattered wave
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Figure 3: Problem Setup
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Figure 5: Solution Comparison

The contour plots of the computed scattered field p̂sc is shown in Figure 4. The left plot shows the
pressure field without the PML and the right plot with the PML implemented. Figure 5 is a line plot of
the scattered field p̂sc from the outer radius of the sphere at the centre of the domain to the edge of the
PML. It is clear from the plots that without the PML the artificial reflections at the domain boundary
cause numerical artefacts to emerge. With the PML implemented it is possible to absorb these waves
and allow for accurate solutions within the computational domain. In the PML layer the solution decays
to the defined boundary value and does not fully reflect the analytical solution.



4. Numerical Results
We present the following numerical example of a realistic cryostat geometry of an actual MRI scanner.
Given that our axisymmetric formulation is still valid for a full 3D problem, Figure 6 shows the plots
of the two magnetic field components, generated by the static and gradient coils, around the full 3D
scanner.

Figure 6: Static (left) and Gradient (right) Magnetic fields
The acoustic behaviour of the MRI magnet geometry is important for determining the noise levels gen-
erated during an imaging cycle. The high noise levels can be uncomfortable for patients undergoing a
body scan, thus the need to accurately simulate the acoustic pressure generated by the scanner is of vital
importance. In Figure 7 the effect of p, polynomial basis function, refinement on the acoustic distribution
is visualised.

Figure 7: p effect on acoustic wave problem
The solution for linear, p = 1, basis functions varies significantly from those with higher order basis
functions, p = 3 and p = 5. The linear shape functions result in numerical dispersion, which causes
the amplitude to grow until steady state, whereas the higher order basis functions are much better at
capturing the wave function and result in a more accurate solution.

5. Conclusions
The results presented here provide a framework to the set up of an analysis tool for the prediction of
deformation and vibration in the conducting regions of an MRI scanner and the correponding acoustic
patterns and sound levels that arise. The accuracy of the non-linear coupled hp finite element framework
has been verified on a series of further benchmark industrial and academic examples, which will be
presented in the talk at ACME conference Cardiff.
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