
Proceedings of the 24th UK Conference of the

Association for Computational Mechanics in Engineering

31 March - 01 April 2016, Cardiff University, Cardiff

An adaptive cross approximation (ACA) for the extended boundary element
method (XBEM) in anisotropic materials

S. H. Kettle1, *G. Hattori1, L. Campos2, J. Trevelyan1 and E. L. Albuquerque2

1School of Engineering and Computing Sciences, Durham University, South Road, DH1 3LE, Durham, UK
2 Department of Mechanical Engineering, University of Brasilia, 70910-900, Brasilia, Brazil

*gabriel.hattori@durham.ac.uk

ABSTRACT

The extended boundary element method (XBEM) is a modification from the standard BEM, where enrichment

functions are embedded into the BEM formulation. The results obtained with this method were seen to be accurate

and stable, being especially useful for fracture problems. However, the method suffers from the presence of a linear

system containing unsymmetric and fully populated matrices which needs to be solved in order to get the solution

of the boundary problem. This can be computationally expensive for problems dealing with multiple cracks for

instance. Adaptive cross approximation (ACA) is used to reduce the number of operations necessary to solve the

linear system of equations for a fracture problem with an anisotropic material.
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1. Introduction

The boundary element method (BEM) relies on a mathematical formulation that allows one to model

a given domain considering only its boundaries. One of the advantages of this approach is to obtain a

reduced mesh due to the boundary only discretisation. However, the linear system of equations is fully

populated and non-symmetric. Large problems can become cumbersome to be solved numerically.

For this reason, adaptive cross approximation (ACA) has become a popular technique to accelerate

the computational solution time. The idea of the method is to use the smoothness of the operator to

approximate the so called admissible blocks, thus accelerating the evaluation of the matrix vector product

that lies within each iteration of an iterative solver.

The extended boundary element method (XBEM) has been proposed by [1] for isotropic materials and

extended to anisotropic materials by [2]. In this case the additional degrees of freedom correspond to

the stress intensity factors (SIF), which are the key parameters in fracture mechanics problems. The

advantage of this formulation is that the degrees of freedom do not depend on the number of enriched

nodes, as they correspond to the SIF. Moreover, there is no need for post-processing (such as the J-

integral) to obtain the SIF, since they are calculated as part of the displacement solution. In this work we

tackle for the first time the use of ACA in an XBEM formulation for anisotropic 2D materials.

2. Extended boundary element method (XBEM)

A dual BEM formulation is modified with the enrichment as defined in [2]. Two boundary integral equa-

tions (BIE), are necessary to avoid the mathematical degeneration which arises from the coincidence of

the crack faces. The displacement boundary integral equation (DBIE) and the traction boundary integral

equation (TBIE) are given by [2]

ci j (ξ)u j (ξ) +

∫
Γ
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∫
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∫
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where Γc = Γ+ ∪ Γ− stands for the crack surfaces Γ+ and Γ−, Nr is the normal at the observation point x,

Fl j is the enrichment function and K̃l j is the additional degree of freedom which stands for the SIF. Let

us recall that strongly singular and hypersingular terms arise from the integration of the p∗
i j

, d∗
r i j

and

s∗
r i j

kernels and they have to regularised before numerical integration is possible. More details about the

regularisation procedure and the XBEM formulation can be found in [1].

The enrichment function used in Eqs. (1) and (2) are the same as defined in [3] for anisotropic materials

using the extended finite element method (XFEM).

3. Adaptive Cross Approximation (ACA)

In this paper the form of ACA used is fully pivoted ACA. While partially pivoted ACA allows for reduc-

tions in storage and generation of the system matrix, the subject of this paper is addressing reductions in

computations in the solution. If the number of operations required for generation and storage are each

proportional to the square of the dimension of the system matrix, the direct solution of the linear system

requires a number of operations proportional to its cube. Iterative solvers such as GMRES reduce the

complexity but involve an expensive matrix vector product within each iteration.

In order for ACA to produce an accurate low rank approximation, the matrix must be asymptotically

smooth. In BEM, this smoothness is only found where the collocation nodes are well separated geomet-

rically from the nodes upon which they are being integrated over. The admissibility of a matrix block

is assessed based on geometric considerations, by performing hierarchical clustering [4], before ACA

is applied. The whole matrix is recursively subdivided until it satisfies an admissibility criterion or a

minimum block size has been reached.

Performing hierarchical clustering on a dual formulated BEM matrix requires separation of the boundary

nodes and the crack nodes at all times [5]. Discontinuous elements are used on the crack, with one surface

corresponding to the DBIE and the other corresponding to the TBIE. For this reason, when constructing

the hierarchical cluster tree, the crack surfaces must be separated from the external boundaries, and both

crack surfaces must be separated from each other in collocation, but can be considered as a whole when

being integrated over by for a remote collocation point. Thus it is important to place nodes on opposing

crack surfaces in different clusters row-wise, but unimportant column-wise in the matrix. This creates

asymmetry in the structure of the hierarchical cluster tree.

Constraints other than the admissibility criterion must be put in place to assure that these conditions

are met, as although the geometry of crack nodes are usually clearly distinguishable from those of the

boundary, this is not always the case. Furthermore, coincident nodes on opposite crack surfaces will be

clustered together unless the algorithm is instructed otherwise.

A detailed explanation about ACA applied to BEM can be found in [6].

4. Results

The results are presented for a two dimensional anisotropic plate containing 12 internal cracks. The

problem is discretised with 2000 nodes for the external boundaries and 300 nodes per crack. Continuous

elements are employed on the external boundaries and discontinuous elements are used on the crack

faces. There are 9248 degrees of freedom (DOF) in total, of which 48 DOFs correspond to the SIFs of

each crack (mode I and II). The material properties are given by: C11 = 117.97 GPa, C12 = 14.19 GPa,

C16 = 35.43 GPa, C22 = 15.64 GPa, C26 = 7.49 GPa, C66 = 21.38 GPa. Figure 1 represents the matrix

structure resulting from the hierarchical clustering of the problem.

Table 1 illustrates the savings of solving the linear system of equations using ACA. The solution error is

defined as

error =
| |xACA − x| |F

| |x| |F
(3)

where xACA is the displacement solution when the linear system of equations was approximated with

ACA, x is the displacement solution obtained by solving the full system using a direct solver and | |(.) | |F



Figure 1: : ACA generated matrix partitioning.

stands for the Frobenius norm. The parameter εC is the threshold error of the ACA approximation using

the Frobenius norm.

Table 1: Operational savings data

εC
Solution error

Operations Saving(%)
Total (%) SIFs (%)

1 × 10−4 0.310 0.130 6.562 × 106 92.3

1 × 10−5 0.022 0.018 7.499 × 106 91.2

1 × 10−6 1.27 × 10−5 1.26 × 10−5 8.449 × 106 90.1

The data given as ’Operations’ is the number of computations required to perform a matrix vector prod-

uct using the approximated system matrix. This is the total sum of O (r (N+M )) for every low rank block

combined with O (N M ) for every full rank block, where r represents the rank and N and M represent

the rows and columns, respectively. ’Saving’ stands for the gain in number of computations required to

perform the full rank matrix-vector product.

The results show that reductions in εC , as expected, improves the accuracy of the eventual solution.

ACA is successfully applied to all parts of the matrix, with exception of the last 48 rows and columns.

For the latter, the columns are partitioned into 50×48 blocks and then approximated using ACA. For the

former, these are extra rows necessary to balance the system of equations as shown in [1], and contain

the so called tying equations. These rows are sparsely populated, therefore are not considered for ACA.

Applying these configurations produces an accurate solution with computational savings in excess of

90% per iteration and low errors for both displacement field and SIFs.

In Table 1 the error for the Frobenius norm is the same for boundary displacements and the SIFs in the

solution vector. However, it is known that the terms of the linear system of equations associated to the

enriched terms can be of very different order of magnitude from the other terms. Moreover, it might be

speculated that the accuracy of these terms is strongly influential over the accuracy of the computed SIFs.

In this case, it is worthwhile, then, to consider lower error in the ACA approximation for the sub-blocks



containing terms related to the SIF and allowing a higher error in approximating all other sub-blocks.

Table 2 analyses this issue considering two errors for the Frobenius norm, εC and εSIF . One can verify

that the error in SIFs is strongly governed by εC , and less so by εSIF for the SIFs reduce slightly even

for high accuracy, nevertheless the number of operations increases.

Table 2: Operational savings data for different levels of error

εC εSIF
Solution error

Operations Saving(%)
Total (%) SIFs (%)

1 × 10−3 1 × 10−4 2.995 1.407 5.515 × 106 93.55

1 × 10−8 2.995 1.404 5.627 × 106 92.42

1 × 10−4 1 × 10−4 0.306 0.127 6.507 × 106 92.39

1 × 10−8 0.306 0.125 6.618 × 106 92.26

1 × 10−5 1 × 10−4 0.023 0.017 7.471 × 106 91.26

1 × 10−8 0.022 0.018 7.583 × 106 91.13

5. Conclusions

In this work we applied ACA with the XBEM for solving an anisotropic fracture problem for the first

time in literature. ACA is employed as a method to accelerate the solution of the system of equations

obtained from the XBEM formulation. The achieved saving times are more than 90% of efficiency

compared to solving the system using regular Gauss elimination. We are looking forward to extend this

formulation to deal with 3D problems.
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